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The relationship between stock return volatility and trading volume is analysed by
using the modi® ed mixture model (MMM) framework proposed by Andersen (1996).
This theory postulates that price changes and volumes are driven by a common latent
information process, which is commonly interpreted as the volatility. Using GMM
estimation Andersen ® nds that the persistence in this latent process falls when
a bivariate model of returns and volume, i.e. the MMM, is estimated instead of
a univariate model for returns. This empirical ® nding is inconsistent with the MMM.
As opposed to Andersen’s study we apply recently developed simulation techniques
based on Markov Chain Monte Carlo (MCMC). A clear advantage of MCMC
methods is that estimates of volatility are readily available for use in, for example,
dynamic portfolio allocation and option pricing applications. Using Andersen’s data
for IBM we ® nd that the persistence of volatility remains high in the bivariate case.
This suggests that the choice of the estimation technique could be important in testing
the validity of the MMM.

I. INTRODUCTION

The relationship between stock return volatility and trading
volume has been a subject on the research agenda for a few
decades now. The results of these studies can be used in
various ® elds of ® nancial economics, but its main applica-
tions are used in dynamic portfolio allocation and the
pricing of options. A better understanding of the underlying
stochastic volatility process enables us to use the insights of
modern ® nance in a more sophisticated way. Clark (1973)
started the discussion by presenting the intuitively appeal-
ing Mixture of Distributions Hypothesis (MDH). The
MDH posits that stock returns and trading volumes are
jointly dependent on the same underlying, latent informa-
tion ¯ ow variable. Empirical studies by Epps and Epps
(1976), Tauchen and Pitts (1983) and Harris (1986, 1987)
largely con® rmed the predictions of this hypothesis. Recent
work by, for example, Lamoureux and Lastrapes (1994),
Richardson and Smith (1994) and Liesenfeld (1998) revealed
some shortcomings of the standard mixture hypothesis. In
a direct test of the standard mixture model, Richardson and
Smith (1994) state that linking price changes and trading
volume to the same latent information ¯ ow via a bivariate

conditional normal distribution may not be the correct
speci® cation. Lamoureux and Lastrapes (1994) estimate the
time series behaviour of the mixing variable. They conclude
that it does not account fully for the observed persistence in
volatility.

In the last decade a substantial number of papers in the
market microstructure literature focused on the link be-
tween return volatility and trading volume. Most models in
this area of research assume that price movements are
caused by the arrival of new information and the process
that incorporates this information into market prices. Im-
portant variables in these models are trading volume, the
number of trades and liquidity. Most work is devoted to
explain the intra-daily relationship between volatility and
volume. A ® rst approach to merge the insights of the MDH
with those of the market microstructure theory is an empiri-
cal model of the daily return Ð volume relationship developed
by Andersen (1996). Andersen’s model is explicitly moti-
vated by the results of the market microstructure models by
Glosten and Milgrom (1985), Kyle (1985) and Admati and
P¯ eiderer (1988, 1989). He combines several, important fea-
tures of these models Ð for instance an asymmetric informa-
tion structure and the presence of liquidity or noise traders
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1 Here we would like to thank Torben Andersen for providing us with the data set.

Ð with the MDH and the related concept of stochastic
volatility. The resulting model, called the Modi® ed Mixture
Model (MMM), is estimated with a dynamic AR(1) stochas-
tic volatility process for the latent rate of information arri-
val, as proposed by Andersen (1994).

In this paper we start by presenting the MMM as well as
the main ideas of the underlying theoretical model of Glos-
ten and Milgrom (1985). Andersen (1996) provides a testable
version of this model. Subsequently, he tests this model on
a heavily liquid stock (IBM) listed on the New York Stock
Exchange (NYSE). In the estimation stage he uses the Gen-
eralized Method of Moments (GMM) technique to estimate
several empirical speci® cations. One of the contributions of
our study is that we use a di� erent technique to estimate the
empirical model. In particular, we construct an algorithm
based on Markov Chain Monte Carlo (MCMC) simulation
methods and Bayesian analysis. Jacquier et al. (1994) esti-
mate a univariate stochastic volatility model using these
techniques. We adapt and extend their ideas by estimating
both a univariate model for stock returns and a bivariate
model for stock returns and trading volume. The resulting
bivariate speci® cation is equivalent to the modi® ed
version of the mixture model as advocated by Andersen
(1996). In order to be able to compare our results directly
with Andersen’s study we decided to use the same stock
return and trading volume series (IBM) for our analysis.1

We are particularly interested in whether we are able to
con® rm Andersen’s result that the persistence parameter
will decrease signi® cantly in the MMM. A further, major
advantage of our estimation method is that it enables us to
study the latent information process. This is not possible
when GMM or Simulated Maximum Likelihood methods
are used.

The remainder of this paper is organized as follows. In
order to give the modi® ed mixture model more theoretical
background we ® rst present the original model developed
by Glosten and Milgrom (1985) in Section II. In Section III
we derive an empirical version of the bivariate model, which
is similar to the speci® cation used by Andersen (1996).
Section IV contains a discussion on the MCMC estimation
technique in greater detail. In Section V we present sum-
mary statistics and other characteristics of the IBM stock
return and corresponding trading volume series. Section VI
provides simulation results, using the MCMC algorithm,
for the univariate model, in the spirit of Jacquier et al.
(1994). We present histograms of the respective draws of
parameters simulating a univariate SV model. In Section
VII we show results for the modi® ed mixture model. We
compare our simulation results directly with those of An-
dersen (1996) and indirectly with those of other studies, see
for instance Liesenfeld (1998), who estimates the same
model using simulated maximum likelihood estimation

(SML) and a German database. Finally, Section VIII
contains an interpretation of results and some concluding
comments.

II . THE THEORETICAL MODEL

The modi® ed version of the MDH by Andersen (1996) is in
fact based on a theoretical model by Glosten and Milgrom
(1985), henceforth GM. Their model is particularly suitable
as it is explicitly structured to explain the process of in-
formation arrival and assimilation that occurs shortly after
a piece of relevant information enters the market. GM base
their model in an environment where there is a single mar-
ket for an asset with a random liquidation value. Informa-
tion on the terminal value of this asset enters into the
market and each market player could possibly receive this
information in a di� erent way. At every point in time three
di� erent groups of risk-neutral traders are active in the
market for this asset: a specialist, informed traders and
uninformed traders. GM assume at this point that investors
arrive at the market sequentially in random order. In this
setting informed traders obtain private signals regarding the
true value of the asset. GM show that these private informa-
tion arrivals eventually induce a dynamic learning process
that results in prices that fully re¯ ect the content of the
information through the sequence of trades and transac-
tions. This period is referred to as a so-called price discovery
or information assimilation phase. This turbulent period is
then followed by an equilibrium phase.

The dynamics of GM’s model are best characterized by
a marketplace where each piece of new information relevant
for the terminal value of the asset leads to a period of price
discovery followed by a temporary equilibrium. Because of
the frequent arrival of new information, all agents revise
their estimates of the terminal value on a continuous basis.
This information is either gathered from public signals,
observable by each market player in a similar fashion, or
from private sources that are only received by traders with
a signi® cant information advantage. Next to that each
trader is able to derive information from the sequence of
transaction prices.

Andersen (1996) formalizes the dynamics of the model as
follows: Ct is the common information set at time t and each
trader’s information set is denoted by u t. From the outline
above it follows that u t consists of Ct plus a possible private
information set, dependent on the group of investors the
particular trader belongs to. The value the specialist assigns
to the asset is the expected value conditional on his current
information: Pt = E[V |St], where V denotes the terminal
value of the asset and St denotes the information set at time
t of the specialist. GM assume that the specialist knows the
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2 See also O’Hara (1995) for a detailed discussion on the no-trading theorem.
3 The formal derivation and assumptions made are displayed in Andersen (1996, p. 176). Andersen argues that the Poisson approximation
is more precise than a normal approximation.

structure of traders in the market as well as the structure of
new arrivals taking place. The specialist works under a zero
pro® t constraint. GM and Andersen (1996) explicitly state
that Pt will not be the quoted price as the specialist is able to
observe whether the next agent buys or sells. This can be
interpreted as an additional source of information. The
specialist will quote prices of V conditional on St plus the
additional buy or sell information in his order book. This
implies that the specialist will never regret a trade ex post.
Transaction prices then follow a martingale and therefore
observed prices for V at time t are fair assessments of the
future value of the asset.

Before we present the empirical version of this model in
the next section we proceed, analogous to Andersen (1996),
by assuming that uninformed traders arrive at the market
according to a constant Poisson information arrival process
with intensity m0 per day. The presence of liquidity traders
(m0 ) is necessary in this context, see Kyle (1985), because
they are able to provide the market with liquidity, thereby
helping to circumvent the no-trading theorem of Milgrom
and Stokey (1982).2 Andersen (1996) and GM subsequently
assume that these liquidity traders have inelastic demand
and supply functions, which implies that such a trader will
buy or sell with probability one half. In contrast, informed
traders base their trading decision on the expected value of
the asset conditional on their information set, u t. The in-
formation sets of informed investors are of course correlated
but not necessarily identical, which leaves room for initial
disagreement among informed traders. An important point
is, however, that the value they and other traders assign to
the asset converges during the price discovery phase. This
implies that there is a direct relationship between the in-
formativeness of private information signals and the arrival
rate of traders with an information advantage. The theory of
GM is in fact meant to describe the price and information
arrival process within a day. Andersen (1996), however,
translates their theory into a daily framework. Thereby he
avoids a lot of complications associated with short-run
dependencies in informed trading. The properties of the
return and volume series at the daily level are driven largely
by the number of information arrivals per day. In the next
section we show Andersen’s formal derivation of an empiri-
cal and testable version of the GM model.

II I . THE EMPIRICAL MODEL

In the marketplace set by GM the market moves from one
temporary equilibrium to the other, during and across trad-
ing days, in response to a large number of information
arrivals each trading day. Using the same framework as

Clark (1973) and Tauchen and Pitts (1983) and assuming
a large number of daily information arrivals, Andersen
(1996) presents a modi® ed version of the mixture of distri-
butions hypothesis. He starts with the following return
speci® cations:

Rt |Kt ~ N(0, s 2 Kt) (1)

Here Rt denotes the daily return, which is the logarithmic
di� erence in prices of two consecutive trading days. Kt is the
intensity of information arrivals, measured relative to
a benchmark of a ® xed, large number of information arri-
vals and s 2 is a constant scaling factor. This implies that
returns are conditionally normal, but the variances of the
returns re¯ ect the intensity of the information. This result is
similar to the more general theorem presented by Clark
(1973). In this setting the dynamics of the return volatility is
solely dependent on the properties of the information ¯ ow
in the market, see also Lamoureux and Lastrapes (1990,
1994) for this result. In contrast to these and other related
studies, Andersen (1996) assumes that daily trading volume
(Vt) can be divided into an informed component (IVt) and
a noisy component (NVt). In addition to that, he assumes
that the noise trading part of trading volume is governed by
a stochastic process with an arrival intensity of m0 per day.
This implies that the noise component of trading volume is
directed by a time-invariant Poisson process Po(m0 ). Con-
sequently, the systematic part of daily trading volume is due
to the dynamics of the underlying process of information
arrival. Using this result and the insights of the GM model
in the previous section, Andersen (1996) presents a frame-
work in which each informed trader on average makes only
a few trades per day. Combined with the expressions for
noise and informed components of trading volume this
eventually leads to the following distribution for daily trad-
ing volume:3

Vt |Kt ~ Po(m0 + m1 Kt) (2)

Volume is Poisson distributed, conditional on Kt. In this
setting m0 re¯ ects the noise component of trading volume,
i.e. liquidity trades, and m1 is the factor of proportionality ,
or the informed component of trading volume, which is
proportional to the information ¯ ow. Andersen (1996)
shows that this factor determines how strongly daily trading
volume ¯ uctuates in response to the arrival of unexpected
news. Moreover he shows in his formal derivation of the
empirical model that m1 consists of the product of two other
factors: the maximum number of insiders that might obtain
a private signal and the expected number of trades by an
insider. These factors are, however, not identi® able and
therefore we ignore these parameters. We proceed along the
same path. Andersen normalizes the system by setting
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4 In the empirical section we implement the detrending procedure using a nonparametric regression with a normal kernel. Here we would
like to thank Torben Andersen for providing a copy of his GAUSS program.

s in Equation 1 to 1, which leads to the following return
equation:

Rt |Kt ~ N(0, Kt) (3)

Here it becomes clear that the return volatility in Equa-
tion 3 is identical to the information ¯ ow and therefore the
unobserved information process (Kt) can be interpreted as
a stochastic volatility process, see Andersen (1994) and
Taylor (1994). At this point we have to bear in mind that the
trading volume series generally exhibits a strong time trend,
especially when measured over a time period longer than
a few years. Andersen (1996) shows for the IBM stock that
there is indeed a trend present in the trading volume series.
In order to be able to compare our results with those of
Andersen (1996) we decided to apply the same detrending
procedure. In this procedure the daily volume series are
detrended by extracting a time trend (at) from the observed
volume series:4

Vot = Vtat (4)

where V ot denotes the observable volume series and Vt the
stationary volume series. It should be pointed out here that
we face a scaling problem here, see Andersen (1996) and
Liesenfeld (1998). The estimated time trend, aW t will at best
reproduce the true underlying trend up to a certain propor-
tionality factor (c):

caW t = at (5)

where c is an unknown positive constant. The detrended
volume series then become:

V= t = Vot

aW t
= cV t (6)

This leads to the following distribution for daily trading
volume:

V= t |Kt ~ c. Po(m0 + m1 Kt) with m0 > 0, c > 0 (7)

The detrending procedure introduces a parameter c that can
be estimated, see also Liesenfeld (1998). The detrended vol-
ume series in Equation 6 is given by a product of a Poisson
distributed random variable Vt and a positive constant c.
The resulting empirical speci® cation is a combination of the
return (Equation 3) and volume (Equation 7) equations. The
di� erence with the standard bivariate mixture model for
price changes and trading volume, see Tauchen and Pitts
(1983), is in the speci® cation of the volume equation. In our
modi® ed version of the mixture hypothesis there is a much
stronger link with the market microstructure literature. This
link is represented by assuming the presence of liquidity
traders in the market, represented by the noisy part of

trading volume. In addition, we assume a conditional Pois-
son distribution in the volume speci® cation, instead of the
conditional normal distribution. This explicitly respects the
non-negativity constraint for trading volume. Note that the
return speci® cation is left unchanged. Thus, by accounting
for an information independent part of trading volume,
the MMM can be interpreted as a generalization of the
standard bivariate Tauchen and Pitts (1983) mixture
model. Because of the Poisson distribution, the density
function is only de® ned for integer-valued random vari-
ables. This however cannot be ensured as Vt and c are
real-valued scalars. Hence Liesenfeld (1998) concludes that
Maximum Likelihood (ML) estimation using a Poisson
distribution cannot be applied directly. If one, however,
assumes that (m0 + m1 ) is large enough, the Poisson distri-
bution can be approximated by a corresponding normal
distribution:

V= t |Kt ~ N (c[m0 + m1 Kt], c2 [m0 + m1 Kt]) with

m0 > 0, c > 0 (8)

Liesenfeld (1996) uses this volume speci® cation in a
simulated maximum likelihood procedure, originally pro-
posed by Danielsson and Richard (1993). Andersen (1996)
estimates his empirical model with the Generalized Method
of Moments (GMM). We will estimate the MMM with
a di� erent estimation technique based on Bayesian analysis.
To estimate the model we ® rst need to specify the stochastic
process, which is assumed to govern the latent number of
information arrivals (Kt). In line with Andersen’s approach
we propose a full dynamic presentation for the mixing
variable.

Andersen (1996) makes a few remarks that are relevant in
the selection of a dynamic representation of the information
arrival process. Information on a company tends to be
positively correlated: unexpected announcements tend to be
followed by several other, often related news items. Conse-
quently Andersen states, looking at the bulk of empirical
research on volatility processes, that the dynamic process
must display positive conditional dependencies. Andersen
proposes two possible speci® cations: a standard SARV
model and an exponential SARV speci® cation, which is
equivalent to a lognormal speci® cation for information arri-
val. Bearing in mind the clustering of new arrivals, we
specify a lognormal Stochastic Volatility model for the
latent variable. This leads to the following speci® cation for
the empirical version of the modi® ed mixture model:

yt|ht ~ N(0, exp (ht)) (9)

Vt |ht ~ Po(m0 + m1 exp (ht)) (10)

ht = m + u ht ± 1 + h t h t ~ N (0, s 2
g
) (11)
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5 Note that our latent information arrival process di� ers slightly from the SARV model Andersen (1996) primarily uses. The logarithmic
speci® cation remains close to the processes that have been proposed in theoretical ® nancial models for volatility as, for example, in Hull
and White (1987).
6 Another problem with GMM is the possible ine� ciency of the parameter estimates, resulting from choosing a particular set of moments,
see Andersen and Sù rensen (1996). Gallant and Tauchen (1996) ® x this problem in their E� cient Method of Moment (EMM) estimation
procedures. However, EMM does not provide us with an estimate of the latent variable either.
7 This implicitly means that we estimate cm0 and cm1 , respectively.

where we introduced ht º ln(Kt) as the logarithm of the
latent information process.5

IV . THE ESTIMATION PROCEDURE

In this section we describe issues relating to the alternative
estimation method for the modi® ed mixture model (Equa-
tions 9Ð 11). In particular we propose to construct an algo-
rithm based on Markov Chain Monte Carlo (MCMC)
simulation techniques. All parameters in the model are
estimated using Bayesian analysis. Note that the model
without a trading volume, Equation 10 is exactly equal to
the univariate Stochastic Volatility (SV) model, studied
extensively in the literature, see Jacquier et al. (1994),
Ruiz (1994), Andersen and Sù rensen (1996) Mahieu and
Schotman (1998) and Kim et al. (1998) among others. The
techniques for estimating these simple SV models can be
extended in order to deal with the estimation of the para-
meters and the latent information process in the bivariate
modi® ed mixture model of Andersen (1996). Andersen
(1996) estimates the MMM using Hansen’s (1982) Gener-
alized Method of Moments (GMM). GMM is a relatively
fast and robust method for estimating dynamic latent
variable models. A major advantage of GMM is that
the implications of the distributional assumptions of a
model can be estimated adequately. A serious disadvan-
tage of GMM is, however, that no estimate of the latent
process itself is made.6 For ® nancial applications,
such as the pricing and hedging of options, an estimate
of the volatility process is required. Another paper inves-
tigating Andersen’s (1996) model is Liesenfeld (1998). In
that paper a Simulated Maximum Likelihood (SML)
estimation procedure, advocated by Danielsson and
Richard (1993), is applied. This approach also su� ers from
the disadvantage that the latent information process itself
is not estimated.

From the previous paragraph it has become clear that
a need exists for an estimation method of the MMM that
gives us an estimate of the latent information process and
the associated volatility process. In this paper we will build
on the MCMC methods of Shephard and Pitt (1997). These
methods allow a simultaneous estimate of both the latent
variable and the unknown parameters. In the following
we will sketch our estimation procedure. More details
on the algorithm can be found in the Appendix. The para-
meters in the MMM can be collected in the vector

u º (m , u , s 2
g
, m0 , m1 ). Note that we do not include the vol-

ume scaling parameter c in this vector, which is used in
Andersen (1996). Our setup implies that estimates form
m0 and m1 include the volume scaling.7 This leads to the
observation that we cannot directly test hypotheses on these
parameters, see Andersen (1996). However, we are still able
to measure the fractions of the average daily volume that are
independent (m0 ) and dependent (m1 ) on the information
¯ ow, respectively.

We apply a Bayesian estimation procedure for the para-
meters. We use both informative and non-informative
priors. The constant m in the latent variable transition
equation has a non Ð informative prior distribution which
leads to a normal posterior. For the transition parameter
u we chose a beta distribution prior on the interval ( - 1,1),
with a mean of 0.90 and a standard deviation of 0.10. The
resulting posterior is non-conjugate, which led us to
sample from it by using an accept Ð reject algorithm. The
prior distribution for s 2

g
is an inverse gamma distribution

which again leads to an inverse gamma posterior. These
priors are similar to the ones used in Shephard and Pitt
(1997). The two parameters in the volume equation (Equa-
tion 10) were sampled from non-conjugate posterior distri-
butions using accept Ð reject algorithms. The priors for
m0 and m1 are a gamma and a normal distribution, respec-
tively. The parameters in these prior distributions for
m0 and m1 are chosen to have an implied mean and stan-
dard deviation that correspond to the GMM parameter
estimates in Andersen (1996).

The MCMC algorithm that we employ cycles through six
conditional distributions. The ® rst ® ve correspond with the
parameters u and the sixth with the latent variable. Let u * i be
the parameter vector with the ith parameter deleted. We can
then draw from the distributions:

f (u i |YT , V T , h= T , u * i) (12)

with

Y T º {yt}T
t= 1 V T º {V t}T

t= 1 hT º {ht}T
t= 1 (13)

where the last stage of the estimation procedure refers to the
conditional distribution of the latent variables hT :

f (hT |Y T , VT , hT , u * i) (14)

In each round of the MCMC algorithm a new element from
the vector ( u , hT ) is drawn. Each draw replaces the old value
for that element and the algorithm moves to the next
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8 Andersen (1996) deletes all observations between 24 December and 1 January. For reasons of comparison we follow his approach. The
summary statistics are presented in Andersen (1996) too. We still decided to include the main statistics in Table 1 as they will be referred to
in the empirical section. Andersen (1996) also presents a table with cross-correlations between squared returns and trading volume (not
detrended) for several lags.
9 In addition, we divided the full sample into various sub-samples. The results were equivalent to those reported in Andersen (1996). We
choose to provide the main summary statistics here. Andersen also displays the autocorrelation functions up to 50 lags for returns, squared
returns and absolute returns, respectively. These series are clearly not i.i.d. as the appropriate con® dence bands are frequently violated.
1 0 The other detrending method, based on a centred two year rolling sample mean, rendered the same results.
1 1 The sub-sample analysis in Andersen (1996) shows that the higher kurtosis for returns is caused by the stock market crash in 1987. In the
majority of the sub-samples the kurtosis of volume is higher than for returns.
1 2 Andersen (1996) reports highly signi® cant cross-correlations between return volatility and trading volume, which is also in line with the
results of previous studies of Karpo� (1987).

element. As Tierney (1994) has shown this algorithm con-
verges to drawings from the joint distribution of the para-
meters and the latent variables, under mild conditions that
the densities should be positive over their support. For
common lengths of ® nancial time series, draws from the
conditional distributions can be prohibitive as the condi-
tional distribution of the latent variables is proportional to
a T -dimensional integral (see Jacquier et al. 1994) due to the
nonlinear relation between the measurement Equations
9 and 10 and the transition Equation 11. Much attention
has been given to this issue, as was described above. Here we
follow the approach of Shephard and Pitt (1997) who pro-
pose to draw blocks of states instead of single states as in
Jacquier et al. (1994). Within the MCMC chain the length of
the blocks is determined by so-called knots that are ran-
domly drawn from the states of the previous round of the
MCMC. As opposed to single move samplers as in Jacquier
et al. (1994), the multi move block samplers are quicker and
show much less autocorrelation in successive draws from
the chain. We use the pseudo Metropolis Ð Hastings algo-
rithm of Tierney (1994) to evaluate each block of latent
variables. Compared to the standard Metropolis Ð Hastings
sampler (see Chib and Greenberg, 1995), this algorithm
allows the blanket function to be a dominating distribution
on parts of the support only. For all technical details of this
sampler we refer to the appendix.

V. DATA DESCRIPTION AND SUMMARY
STATISTICS

This section brie¯ y describes the general features of the IBM
stock return and volume series. As stated earlier we use the
same data set as Andersen (1996), who uses a large sample of
continuously compounded daily returns, corrected for divi-
dends and stock splits. The investigation period starts 2 Jan-
uary 1973 and ends 23 December 1991, spanning 4693
return observations.8 The closing prices were obtained from
the Standard & Poor’s Daily Stock Price Guide. The time
series of returns and detrended volumes series we use for our
empirical analysis are shown in Fig. 1. Corresponding histo-
grams for the returns and volume series are provided in

Fig. 2.9 The sample return mean is very small and the
corresponding variance of returns is much higher, see Table
1. Daily return series display the expected excess kurtosis.
Excluding the volatile period of October 1987 would obvi-
ously yield a much lower kurtosis value. Skewness values
are apparently dominated by the negative value in October
1987 too. Daily IBM stock returns are therefore not in line
with a normal distribution. Finally, looking at the auto-
correlation coe� cients shows that the IBM returns series
display the usual dependencies we ® nd in higher order
moments.

As noted earlier we have to detrend the volume series
as the sample period is very long. Andersen (1996) provides
evidence that there is a signi® cant growth percentage
in the IBM volume series. He describes two possible
detrending procedures. We apply the ® rst procedure
where a nonparametric regression with a normal kernel
is used.1 0 In this method, the trend component that
produces a normal volume series is estimated. Subsequently,
the detrended series is obtained by simply dividing each
trading ® gure with the corresponding normal volume for
that day, which leads to an average of approximately
one. This corresponds to a two-sided moving average
with weights that decline as we move further from the
trading day.

Summary statistics for the detrended trading volume
series are also shown in Table 1. The mean of this series is
near unity, which is consistent with the normalization rule
used in the detrending procedure. Skewness measures are
clearly positive and the kurtosis value is signi® cantly greater
than 3.1 1 As expected, the lower lag autocorrelations for
trading volume have very high values. In line with the
standard mixture model of Harris (1987), trading volume
displays a higher degree of autocorrelation than the return
series.1 2

VI . UNIVARIATE SIMULATION RESULTS

The MCMC simulation algorithm, see Section IV, is ® rst
applied to the IBM stock return series. We start estimating
both the parameters and the latent information process of
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Fig. 1. Time series of IBM stock returns and trading volumes (1973 Ð 1991)

Fig. 2. Histograms of IBM stock returns and trading volumes series (1973 Ð 1991)

Table 1. Summary statistics of the IBM stock return and detrended trading volume series

Mean
(0.102 ) St. Dev. Maximum Minimum Skewness Kurtosis

Returns 1.51 1.46 10.05 - 26.09 - 1.04 27.82
Volumes 0.99 0.41 5.93 0.22 2.10 13.00

AC(1) AC(2) AC(3) AC(4) AC(5) AC(10)

Returns - 0.031 - 0.008 0.005 - 0.035 0.025 - 0.022
Volumes 0.521 0.315 0.249 0.234 0.223 0.128

Number of observations (T ) is 4693; AC(p) denotes the return autocorrelation with lag p; The standard error of
the return autocorrelations (1/T ) 0 . 5 is equal to 0.015.

the underlying, univariate stochastic volatility model with-
out an additional measurement equation for trading
volume. In Fig. 3 histograms of the draws of each of
the three parameters (m , u , and s 2

g
, respectively) in this

speci® cation are shown together with the corresponding
sequence of draws of these parameters.

For each parameter we present simulation results for
25 000 consecutive draws. Convergence of the MCMC chain
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Fig. 3. Histograms of simulated parameters and sequence of draws: univariate SV model
P1 = m ; P2 = u ; P3 = s 2

g
.

1 3 For an extensive review of current algorithms for checking MCMC output we refer to Cowles and Carlin (1996).

is checked by comparing the draws of several chains simul-
taneously.1 3 The marginal distributions in the histograms
are in line with our expectations. Table 2 provides summary
statistics on these distributions. The constant in the
transition equation, m (P1-Univariate), has a distribution
that is severely positively skewed. Furthermore it is clear
that this distribution has fat tails. The large span between
minimum and maximum values for m con® rms the existence
of a non-normal distribution for the draws of this
parameter. The associated Monte Carlo standard error is

relatively large. We can therefore conclude that the
simulated values for this parameter are very unstable in the
univariate model. As expected, the volatility persistence
parameter, u (P2-Univariate), is close to unity in the
univariate case. The distribution of this parameter is nega-
tively skewed with a mean of approximately 0.99. The
Monte Carlo standard errors are now very small relative to
the mean value for this parameter. In addition, the sequence
of draws in Fig. 3 shows that almost every value of the
persistence parameter is above 0.95. This result is consistent
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1 4 On the other hand, Foster and Viswanathan (1995) obtain the result that the extension of the univariate model into bivariate models
with trading volume possibly leads to a reduction in the volatility persistence.
1 5 It should be noted that the detrended volume series has a mean of unity, which is obtained through the detrending procedure described
in the previous section.

Table 2. Summary statistics univariate simulation results

m u s 2
g

Mean 0.382 0.987 0.027
MC std. error 0.359 0.008 0.018
Minimum - 13.499 0.924 0.000
Maximum 15.078 0.999 1.006
Skewness 1.140 - 1.166 16.63
Kurtosis 230.401 5.084 679.226

Correlations
m 1.000
u 0.013 1.000
s 2

g
- 0.082 - 0.105 1.000

AC(1) 0.064 0.000 - 0.348
AC(2) 0.027 - 0.001 0.354
AC(3) - 0.011 0.006 - 0.197
AC(4) 0.005 - 0.007 0.189
AC(5) - 0.015 0.000 - 0.123
AC(10) - 0.007 0.009 0.034
AC(20) 0.003 - 0.008 0.001
Number of draws 25 000 25 000 25 000

MC std. error denotes the Monte Carlo standard errors of the
simulated parameters, AC(p) denotes the autocorrelation with
lag p.

with Andersen (1996), who estimates a univariate SARV-
model on the same series, using GMM estimation.
Finally, estimates for s 2

g
(P3-Univariate) indicate that we

have quite a lot of outliers in our simulations for this
parameter too. This is also indicated by the correspond-
ing skewness and kurtosis values and the sequence of
draws in Fig. 3.

Looking at the correlations between the parameters in
Table 2, we can conclude that these are generally low.
Moreover, autocorrelation coe� cients are negligible for
m and u . For s 2

g
we ® nd that these estimates are high

for lower lags, but the coe� cients decrease quickly for
longer lag lengths. This result is also found in the study
of Shephard and Pitt (1997). In the next section we
discuss the simulation results for the bivariate, modi® ed
mixture model of Andersen (1996). In particular, we are
interested in whether the bivariate parameter estimates will
have the same distributional properties as those in the
univariate case. Another point of interest is whether we are
able to con® rm Andersen (1996) and Liesenfeld (1998) with
respect to the decrease of the measure of persistence in
volatility ( u ).

VI I . BIVARIATE SIMULATION RESULTS

The next step is to apply the MCMC simulation algorithm
to the IBM return and trading volume series. We start by
estimating both the parameters and the latent information
process of the underlying, bivariate stochastic volatility
model, which includes an additional measurement equation
for trading volume. In Fig. 4 histograms of the draws of each
of the ® ve parameters (m , u , s 2

g
, m0 and m1 , respectively) are

shown together with the corresponding sequence of draws
of these parameters. Again, we present results for 25 000
consecutive draws. A ® rst, quick glance at the summary
statistics presented in Table 3, tells us that the distributions
of these parameters have di� erent features when compared
to the univariate case. The constant in the transition equa-
tion, m (P1-Bivariate), has a slightly lower mean, but the
standard error is much lower than in the univariate setting.
The displayed minimum and maximum values are in line
with this phenomenon. The most interesting result is that
the volatility persistence parameter, u (P2-Bivariate), is still
close to one in the bivariate model simulations. In fact it
does not even decrease in value. This is in sharp contrast
with the results in Andersen (1996) and Liesenfeld (1998),
who ® nd substantially lower persistence in volatility in the
case of the modi® ed mixture model.1 4

Andersen (1996) investigates whether the reduction of the
persistence parameter could be caused by the choice of the
estimation procedure. He concludes that the signi® cant re-
duction in the estimated volatility persistence cannot be
explained by di� erences between estimation methods. In
particular, he shows that univariate GARCH and SV mod-
els for the IBM return series, estimated by both GMM and
Maximum Likelihood, have a high volatility persistence
(0.99). The general structure of the modi® ed mixture model
could be an alternative explanation of the signi® cant drop in
persistence. Using the MCMC simulation approach we
show that the bivariate mixture model still has the same,
high persistence level. This indicates that the choice of the
estimation procedure may indeed be a very important factor
in this issue. The mean value for s 2

g
does not change very

much either relative to the univariate approach, but again
the Monte Carlo standard error decreases substantially in
the bivariate model speci® cation.

As mentioned earlier, m0 (P4-Bivariate) measures the frac-
tion of daily trading volume independent of the underlying
latent information process: exp(ht). On average we ® nd that
about 82.2% of daily trading volume is unrelated to the
information ¯ ow.1 5 The fraction of daily trading volume
in IBM stocks that is directly in¯ uenced by the latent
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Fig. 4. Histograms of simulated parameters and sequence of draws: modiÞ ed mixture model. P1 = m ; P2 = u ; P3 = s 2
g
; P4 = m0 ; P5 = m1 .
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Table 3. Summary statistics bivariate simulation results

m u s 2
g

m0 m1

Mean 0.356 0.987 0.029 0.822 0.092
MC std. error 0.054 0.008 0.003 0.027 0.014
Minimum - 0.131 0.931 0.017 0.697 0.000
Maximum 0.580 0.999 0.049 0.996 0.163
Skewness - 1.136 - 1.130 0.379 0.048 0.069
Kurtosis 6.236 4.844 3.503 3.541 3.795

Correlations
m 1.000
u - 0.006 1.000
s 2

g
0.097 - 0.010 1.000

m0 - 0.145 - 0.007 0.002 1.000
m1 - 0.104 0.002 0.017 - 0.784 1.000

AC(1) 0.046 0.016 - 0.975 0.658 0.698
AC(2) 0.010 0.005 0.926 0.498 0.527
AC(3) - 0.011 - 0.001 - 0.878 0.377 0.398
AC(4) 0.007 - 0.001 0.833 0.281 0.299
AC(5) - 0.012 - 0.006 - 0.789 0.207 0.218
AC(10) - 0.001 0.009 0.599 0.055 0.049
AC(20) 0.004 0.003 0.341 - 0.002 - 0.008

Number of draws 25 000 25 000 25 000 25 000 25 000

MC std. error denotes the Monte Carlo standard errors of the simulated parameters, AC(p) denotes
the autocorrelation with lag p.

Fig. 5. Scatter diagrams bivariate model
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Fig. 6. Estimated volatility series; univariate model, bivariate model and di¤ erence

information process, is measured by m1 (P5-Bivariate).
The marginal distribution of m1 has a mean of 9.2%.
These fractions di� er from the values found by Andersen.
The percentage of information-insensitive trading he
® nds, is much lower (65.0%) and the information re-
lated part of trading volume is larger in Andersen’s case
(17.1%).

The correlation between the simulated bivariate para-
meter values, see also Table 3, is signi® cant in four cases
now. Particularly, m is weakly correlated with all other
parameters except u . The strongest negative correlation is,
however, present between m0 and m1 : 0.784. This may be
expected because of the structure of the modi® ed mixture
model. We expect high values for m1 whenever there is little
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1 6 These results are consistent with earlier ® ndings of Richardson and Smith (1994) who ® nd that the information ¯ ow tends to exhibit
positive skewness and large kurtosis.

information-insensitive trading and vice versa. In order to
check whether these correlations are caused by outliers, we
present scatter diagrams for these four cases. In the lower
right panel of Fig. 5 we plot the series of the two correlated
volume parameters and the corresponding regression line.
We can clearly see that there is a strong negative correlation
between m0 and m1 . The other diagrams are rather incon-
clusive. The summary statistics in Table 3 furthermore show
that the estimated autocorrelations for the parameters of the
bivariate model are still low for m and u . For the other three
parameters we ® nd high coe� cients for lower lag lengths.
For m0 and m1 these values quickly decrease, but it takes
more than 50 lags to obtain a low value for the autocorrela-
tion coe� cients of s 2

g
. Possibly this problem can be solved

by a multi-move block procedure for the structural para-
meters, proposed in Pitt and Shephard (1998). Sub-sample
analysis, however, shows that the marginal distributions of
s 2

g
are very similar.

As mentioned in the introduction, one of the advantages
of the MCMC simulation procedure is that it enables us to
study the latent information process, which can be very
useful in several areas of ® nance. In the upper panel of
Fig. 6 we present the estimated volatility series for the
univariate model speci® cation:

exp (ht) = 1
M

M

+
i= 1

exp(h( i)
t ) t = 1, ¼ , T (15)

with h( i)
t a time-t draw from the MCMC chain in iteration i.

The middle panel displays the volatility series for the bivari-
ate mixture model. From a practical point of view we are
mainly interested in whether we ® nd a signi® cant di� erence
between the two estimated volatility series. Therefore we
plot the di� erence between the two series in the lower panel
of Fig. 6. This graph shows us that these series do not di� er
very much in most periods, but in some volatile periods, e.g.
the oil crisis in 1973 and the stock market crash of 1987, we
observe di� erences in squared percentages of more than
2%. This can have a substantial impact on the valuation
of, for instance, derivative instruments and several strategic
or tactical asset allocation topics.

Summary statistics are presented in Table 4.1 6 We can see
that the means of both series do not di� er very much.

VIII . INTERPRETATION OF RESULTS AND
CONCLUDING COMM ENTS

We have studied the joint distribution of daily returns
and trading volumes. The contemporaneous relationship

Table 4. Summary statistics univariate and bivariate volatility series

Univariate Bivariate

Mean 1.838 1.823
Std. Dev. 1.340 1.353
Minimum 0.415 0.376
Maximum 22.190 23.607
Skewness 4.782 4.927
Kurtosis 48.001 51.573

between the two variables is derived from a market micro-
structure model in which the presence of liquidity traders
and asymmetric information structures are the main fea-
tures. The resulting speci® cation is consistent with the
mixture of distributions hypothesis documented in earlier
papers. Analogous to Andersen (1996), the standard mixture
model is modi® ed by specifying a modi® ed volume equa-
tion. In this setup trading volume is Poisson distributed,
which implies that the modi® ed mixture model explicitly
accounts for the presence of liquidity traders by assuming
that part of daily trading volume is unrelated to the latent
information ¯ ow (noise trading) and that part is directly
linked to the unobservable information process. The result-
ing bivariate system is governed by a random mixing
variable representing the information ¯ ow or stochastic
volatility variable. The lognormal stochastic volatility
process is modelled as an AR(1) process. We make the
following contributions to this discussion started by
Andersen. We apply a di� erent estimation procedure:
a Markov Chain Monte Carlo based on Bayesian analysis.
In contrast to the GMM approach of Andersen (1996),
the MCMC method has the clear advantage that we are
able to produce an estimate of the latent information pro-
cess. This estimate can be used in several areas of modern
® nance.

The simulation results give reasons to believe that the
discussion on this issue has only just started. Simulation
results of the univariate stochastic volatility model con® rm
Andersen’s result that the persistence parameter is close to
unity for the liquid IBM stock return series. Monte Carlo
standard errors are, however, rather large for the other two
parameters, which indicates that the results are relatively
unstable for the univariate model. Results for the bivariate
mixture model are more robust in the sense that the mar-
ginal distributions of the simulated parameters are much
less skewed and kurtotic. The most important result of this
paper is that the persistence in volatility does not decrease
in the bivariate model. Andersen (1996) and Liesenfeld
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(1998) ® nd that the persistence in volatility drops signi® -
cantly when the univariate speci® cation is extended into
a bivariate speci® cation with trading volume. Andersen
(1996) argues that this might be caused by types of informa-
tion arrival processes that have a di� erent impact on vol-
ume and return volatility persistence. News releases and
periodic events such as macro-economic announcements
induce heavy trading volumes, but have only a short-lived
e� ect on volatility. Failing to control for this di� erence
could bias the estimation results. We, however, think that
the choice of the estimation procedure also e� ects results.
Using the same return and volume series (IBM) and a speci-
® cation similar to that of Andersen (1996), we still ® nd
a high persistence in volatility in the bivariate case. Further-
more we ® nd that a smaller part of daily trading volume is
directly related to the unobservable information process.

The modi® ed mixture model has proven to be a very
fruitful area for further research as the results clearly indi-
cate that trading volume can be an important variable in
understanding the latent information and volatility process.
This indicates that a bivariate framework may be the path
to follow in new projects. Another interesting area for fur-
ther research is to discriminate between various types of
information that enter ® nancial markets.
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APPENDIX

In this appendix we explain some technical details about
our estimation technique. The basic aspects of the multi-
move block sampler from Shephard and Pitt (1995) are
described ® rst. The parameters of the models are estimated
by Bayesian techniques. The prior distributions and the
resulting posterior distributions are presented in the second
part of this appendix.

The block sampler

Basically, the block sampler of Shephard and Pitt
(1997) draws samples from a multivariate distribution by
importance sampling. This method is applicable to a wide
range of models, including the non-Gaussian state space
models described in the text. One of the main advantages of
this sampler is that it is considerably faster than a sampler
that draws from univariate distributions sequentially. Now
consider the SV model with a bivariate measurement equa-
tion that we analyse in the text:

yt |ht ~ N(0, exp(ht))

V t |ht ~ Po(m0 + m1 exp(ht))

ht = m + u ht ± 1 + h t h t ~ N(0, s 2
g
)

(A1)

If we now let Y T º {y1 , y2 , ¼ , yT} and V T º {V 1 , V 2 ,
¼ , V T} and write down the marginal likelihood function
for the parameters u , we eventually obtain:

log f (YT , V T ; u ) ~

e hI

¼ e hT

f (Y T , V T |HT ; u ) f (HT ; u ) dh1 dhT (A2)

The parameter vector u containing the relevant hyper-
parameters can only be estimated by simulation since we

need to integrate out the latent variables or states HT º
{h1 , h2 , ¼ , hT} from the likelihood function. In the special
case of Gaussian models we could perform this integration
analytically by the Kalman ® lter.1 7 In order to be able to
perform inference on either of the parameters or the states in
the SV model, we need to solve the integration problem. As
analytical methods are impossible we resort to simulating
the likelihood value. Suppose we can draw M vectors
(H(1 )

T , ¼ , H(M)
T ) from the distribution f (HT ; u ). An estimate

of the integral is then:

1
M

M

+
k= 1

f (Y T , V T |H(k)
T ; u )

The number M can be set in such a way that the Monte
Carlo standard error is smaller than a pre-speci® ed number,
see Geweke (1994). The drawing of states from the highly
dimensional density function f (HT ; u ) seems to be a daunt-
ing task at ® rst. Recently, a number of techniques have been
developed that are able to tackle this problem. One of the
most widely investigated ways is to use simulation methods
based on Markov Chain Monte Carlo (MCMC). The
MCMC methods basically break down highly dimensional
problems into smaller, more tractable problems. By com-
bining a series of solutions to the latter we are able to
construct an answer to our initial problem. In particular, for
our SV model we set up a MCMC for estimating both the
states and the parameters. More speci® cally, we use the
Gibbs sampler, which cycles through a series of conditional
distributions. Tierney (1994) shows that draws from the
conditional distributions converge to draws from the multi-
variate density. The Bayesian Gibbs sampler in our case can
be represented by the following six steps:

1. Set i = 1.
2. Get starting values for the parameters u ( i) and the

states H( i)
T .

3. For each of the P parameters in u ( i) draw a new value
from the conditional distributions:

f ( u ( i+ 1 )
j |YT , V T , HT ;{u ( i+ 1 )

p }j ± 1
p = 1 , {u ( i)

p }P
p = j+ 1 )

j = 1, ¼ , P

4. Draw H( i+ 1 )
T from f (H( i+ 1 )

T |Y T , V T , u ( i+ 1 )) .
5. Set i = i + 1.
6. Go to 3.

The conditional distributions of the parameters in step
3 are described later in this appendix.

Here we direct our attention to drawing from the condi-
tional distribution of the states HT . Drawing the vector
HT could then be split up by drawing from T univariate
conditional densities f (ht |Y T , VT , u , HT t) where HT t is the
state vector with the ith state deleted. This is the approach
taken by Jacquier et al. (1994). Shephard (1994) argues that
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1 8 In particular, the multi-move samplers in Shephard (1994) su� ered from serial correlation between successive draws HT .
1 9 For example, this might occur in an SV model with very high persistence.

for state space models these single-move samplers are
slower with respect to multi-move samplers, in which
a whole vector is sampled at once. Shephard and Pitt (1997)
further re® ne the methods of Shephard (1994).1 8

As Shephard and Pitt (1997) note, direct sampling of the
states HT might su� er from the fact that this distribution is
highly degenerate.1 9 Consequently, attention is directed to-
wards sampling from the conditional distribution of the
errors {h 1 , h 2 , ¼ , h T} in the state transition Equation A1.
For expositional purposes we rede® ne the state transition
equation by:

ht = u ht ± 1 + s
g
h t h t ~ N(0, 1)

As the joint distribution of the errors is highly dimensional,
sampling from this distribution is performed in blocks.
These blocks are determined by stochastic knots, i.e. the end
points change in every round of the general Gibbs sequence
described above. The distribution from which we sample is
then:

log f (h t ± 1 , ¼ , h t+ k ± 1 |ht ± 1 , ht+ k+ 1 , yt, ¼ ,

yt+ k, V t, ¼ , V t+ k) (A3)

This conditional distribution is approximated by a multi-
variate Gaussian density that can be obtained by expanding
expression (A3) about an initial point:

(h t ± 1 , ¼ , h t+ k ± 1 |h= t, ¼ , h= T + k)

For this reason we rewrite expression (A3) as:

log f (h t ± 1 , ¼ , h t+ k ± 1 |ht ± 1 , ht+ k+ 1 , yt, ¼ , yt+ k, Vt, ¼ , Vt+ k)

~ log f (h t ± 1 , ¼ , h t+ k ± 1 |ht ± 1 , ht+ k+ 1 )

+ log f (yt, ¼ , yt+ k, V t, ¼ , V t+ k |ht ± 1 , ht+ k+ 1 )

= - 1
2

k

+
j = 0

h 2
t+ j ± 1 +

t+ k

+
s= t

log f (ys, Vs |hs)

» - 1
2

k

+
j = 0

h 2
t+ j ± 1 +

t+ k

+
s= t

log f (ys, Vs |h= s)

+ (hs - h= s)
¶ log f (ys, Vs |h= s)

¶ h= s

+ 1
2

(hs - h= s)2
¶ 2 log f (ys, Vs |h= s)

¶ h= 2s

This awkward looking density can be calculated using the
Gaussian state space model with the following measurement

and transition equation:

h= s - 1 ¶ 2 log f (ys, Vs |h= s)
¶ h= 2s 2

± 1

1 ¶ log f (ys, Vs |h= s)
¶ h= s 2 = hs + e s ,

hs = u hs ± 1 + s g h t h t ~ N(0, 1)

The error term e s has a normal distribution with mean
zero and variance:

Var(e s) = - 1 ¶ 2 log f ( ys, Vs |h= s)
¶ h= 2s 2

± 1

As this model is Gaussian, the simulation smoother from de
Jong and Shephard (1995) can be used to draw from the
required proposal density. Subsequently, draws from the
smoother can be used in a Metropolis Ð Hastings accept Ð
reject framework. The states around which the second Ð
order expansion is made, are obtained by iterating the
moment smoother of Koopman (1993) to the mode of the
density (A3). Shephard and Pitt (1997) show that conver-
gence to this mode occurs quickly.

Priors and Posteriors

In drawing the parameters from the conditional distribu-
tions we make frequent use of the pseudo-dominating
Metropolis Ð Hastings algorithm (pseudo-MH) sampler,
see Tierney (1994). This sampler is based on the general
acceptance Ð rejection principle, but di� ers in the sense that
the blanket density function does not need to be dominant
for the total support of the distribution we want to draw
from. In the following we describe the prior and resulting
posterior distributions for each of the parameters.

m

As in Pitt and Shephard (1998) we assume a non-informa-
tive prior distribution for m :

f (m )~ c

This leads to the normal posterior with the following
mean and variance:

E[ m |hT ; u \ m ] =
h1 +

T

+
t= 2

(ht - u ht ± 1 )

(1 - u ) 1 T - 1 + 1
(1 + u )2 2

Var[ m |hT ; u nm ] = s 2
g

(1 - u )2 1 T - 1 + 1
(1 + u )2 2

u

For the persistence parameter in the latent process HT we
specify a prior on (u + 1)/2. When we allow - 1 < u < 1
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this assures that 0 < (u + 1)/2 < 1. The prior distribution is
a beta distribution with parameters d 1 and d 2 . This leads to
the following posterior for the persistence parameter:

f ( u |hT , s 2
g ) ~ 1 u + 1

2 2
d 1 ± 1

1 1 - u

2 2
d 2 ± 1

3 exp 1 - 1
2 s 2

g 3 (1 - u 2 ) 1 h1 - m
(1 + u ) 2

2

+
T

+
t= 2

(ht - m (1 - u ) - u ht ± 1 )2 4
Sampling from this distribution is performed using the
pseudo-MH with a gamma type blanket function.

s g

Here we use an inverse gamma prior with parameters
S0 and p as in Shephard and Pitt (1997):

f (s 2
g | u ) ~ s 2 ( ± p /2 + 1 )

g exp 1 - S0

2 s 2
g
2

This leads to the following conjugate posterior:

f (s 2
g
|HT , u ) ~ s 2 ( ± (T + p )/2 + 1 )

g
exp 1 - 1

2s 2
g 3 S0 + (1 - u 2 )

3 1 h1 - m
(1 + u ) 2

2

+
T

+
t= 2

(ht - m (1 - u )2 - u ht ± 1 )2 4 2

m0

We specify a gamma prior for m0 with parameters g 1 and g 2 .
This leads to the non-conjugate posterior:

f (m0 |V T , m1 ) ~ exp 1 - (g 2 + T )m0

+
T

+
t= 1

ln 3 m( c 1 ± 1 )/T
0 (m0 + m1 ht)Vt 4 2

We sample again with the pseudo-MH with a normal distri-
bution as blanket. The mean and variance parameters of the
blanket function were obtained by a second Ð order Taylor
expansion of the argument in the exponent.

m1

The prior for the informed component of trading volume is
normal with mean m and variance n 2 . The posterior is again
non-conjugate:

f (m1 |VT , m0 ) ~
1
n

exp 1 - 1
2

(m1 - m )2

n 2 - m1

T

+
t= 1

ht 2
3

T

Õ
t= 1

(m0 + m1 ht)Vt

Sampling from this distribution is performed by pseudo-
MH using a normal blanket function obtained in a similar
way as for m0 .
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