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Abstract 

The cut polytope P,(G) of a graph G is the convex hull of the incidence vectors of all cuts of G; the cut 

cone C(G) of G is the cone generated by the incidence vectors of all cuts of G. We introduce the 

operation of collapsing an inequality valid over the cut cone C(K,) of the complete graph with 

n vertices: it consists of identifying vertices and adding the weights of the corresponding incident 

edges. Using collapsing and its inverse operation (lifting), we give several methods to find facets of 

C(K,). We also show how to construct facets of C(K.) from the difference of inequalities valid over 

C(K,). When G is an induced subgraph of a graph H, we give sufficient conditions to derive 

inequalities defining facets of P,(H) from inequalities defining facets of P,(G). Finally, the descrip- 

tion (up to permutation) of the cut cone C(K,) is given. 

1. Introduction and preliminaries 

We use the standard graph-theoretical terminology as in [9, lo]. An edge with 

endpoints i and j in an undirected graph will be denoted by ij (or ji). The complete 

graph on n vertices is denoted by K,. Let G = (V, E) be a graph, and let S be a (possibly 

empty) subset of V. The cut corresponding to S is the set 6(S) of edges with exactly one 

endpoint in S. (In particular, we allow S=O, in which case 6(S) is a zero vector.) 

Throughout this paper, we shall let 6(S) stand for both a cut and its incidence vector. 

The cut cone C(G) of a graph G is the cone generated by the incidence vectors of all 
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edge sets of cuts of G; the cut polytope P,(G) of a graph G is the convex hull of the 

incidence vectors of all edge sets of cuts of G. For every graph G, the cone C(G) and the 

polytope P,(G) are full dimensional. As usual, we let BA denote the set of all mappings 

from A to B; elements of BA can be thought of as vectors whose components are 

subscripted by elements of A and take values in B. 

Let G =( I’, E) be a graph, and let u be a vector in RE. If the inequality vTx 60 is 

satisfied by all points in C(G) or, equivalently, by all cut vectors 6(S), we say that the 

inequality vTx 60 is valid over C(G). The face defined by the inequality oTx ~0 is the 

set F,={xEC(G): uTx=O}. A root of the vector v is a nonzero cut vector which belongs 

to F,. The dimension of a face F,, denoted by dim(F,), is the largest number of affinely 

independent points in F, minus one or, equivalently, the largest number of linearly 

independent roots of u (since F, contains the zero vector). The codimension of a face F, 
is equal to (“)-dim(u). A facet of C(G) is a face of dimension lE\- 1. 

For every graph G = (V, E), and for every vector u in RE, we define a graph G(u) as 

follows: its edges are all the edges ij in G for which rij#O, and its vertices are all the 

endpoints of these edges; to.every edge ij, the weight Uij is assigned. The graph G(o) is 

called the supporting graph of u. Let uTx<O be an inequality valid over C(G). If all 

nonzero components of v are + 1, then we say that the inequality vTx < 0 is pure. As 

usual, a vector with components all equal to zero will be denoted by 0. 

When G is the complete graph K, with n vertices, the corresponding cut cone will be 

denoted by C,. Points in C, can be interpreted as semi-metrics on n points; in fact, C, 

coincides with the family of all the semi-metrics on n points which are isometrically 

embeddable into L’; in this context, the study of the cut cone C, was started in 1960 by 

Deza [12]. (For more informations, see for instance [2,6,13,14,24].) 

We now describe two classes of inequalities valid over the cone C,. The first class is 

the class of hypermetric inequalities which were introduced by Deza [12] and later, 

independently, by Kelly [22]. For every integer row vector, b=(bI, . . . . b,) such that 

bI + . . . + b,= 1, the hypermetric inequality specified by the vector b is the inequality 

l<i<jQn 

We refer to each inequality (1) as Hyp(b). Write b(S) = CieS bi. To see that (1) is valid, 

observe that 

C bibj=C bi C bj=b(S)(l-b(S)) 
ijsd(S) is.5 j$S 

and that t(1 - t)<O for all integers t. Let u be the vector defined by Uij= bib, for all ij. 

Note that every root of the vector u is a cut for which b(S) is equal to zero or one. 

An hypermetric inequality that will play a special role in our paper is the inequality 

Xij-Xik-Xjk<O; 

we shall refer to such inequality as triangle inequality. It is easy to verify that, for n 2 3, 

every triangle inequality defines a facet of C,. 
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The second class of inequalities valid over C, is the class of cycle inequalities which 

were introduced by Deza and Laurent [17]. To specify these inequalities, we need one 

more definition. Let f be an integer greater than or equal to three; a cycle 

C=(1,2, . . . . f) is the graph with vertices 1,2, . . . . f and edges 12,23, . . . . f 1. For every 

cycle C, E(C) denotes the set of its edges. Let b=(b 1, . . ., b,) be an integer row vector 

such that b, + . . + b,= 3; order the components of b in such a way that 

bl,b 2 ,..., bf>03b,+, ,..., b,. Then the cycle inequality specified by the vector b is the 

inequality 

C bibjxij - C Xij~O; (2) 
l<i<j<n ijeE(C) 

we shall refer to each inequality (2) as Cyc(b). 

For every nonnegative integer n, we let [l, n] denote the set { 1,. . ., n}, and we let 

N stand for (;). In the following, we describe two operations on an inequality valid 

over the cone C,: permutation and switching. 

Let u be a vector in RN. For every permutation CJ of the set [l, n], we define a vector 

vu in RN by 

U~=Ub(i)a(j) for every 1 <i<j<n; 

we shall say that vu has been obtained from v via the permutation g or that v” is 

permutation equivalent to u. Clearly, the inequality vTx d 0 is valid over C, if and only 

if the inequality (u~)~x ~0 is valid over C,. It is easy to verify that if Hyp(b,, . . ., b,) is 

an hypermetric facet-defining inequality of C,, then for every permutation g of the set 

[l, n], the inequality Hyp(b,(,,, . . ., b,(,,,) defines a facet of C,. However, if 

Cyc(b,, ..‘, b,) is a cycle facet-defining inequality of C,, then the inequality 

Cyc(b,,,,, . . ., b,J does not define a facet of C, for every permutation D of the set [l, n] 

c171. 
The second operation, called switching, relates the cut polytope of a graph G with 

the cut cone of G in the following sense. Since Pc(G)cC(G), every inequality valid 

over C(G) is also valid over P,(G). Moreover, every facet-defining inequality of C(G) is 

facet-defining inequality of P,-(G). In fact, the switching operation will show that 

looking for all facets of P,(G) is equivalent to looking for all facets of C(G). To 

describe this operation, consider a graph G = (V, E) and let u be a vector in [WE. For 

every subset S of V, we define a vector us in [WE by 

S 
Vij= 

Uij if ij$S(S), 

- Uij otherwise, 

we shall say that the vector us has been obtained from v by switching the cut 6(S). 

Write 

d= - C vij. 
ijeS(S) 
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For the case G = K,, Deza [ 121 (see also [17]) showed that for every vector v in [WN 

and for every root 6(S) of v, the inequality vTx < 0 defines a facet of C, if and only if the 

inequality (v’)‘x d 0 defines a facet of C,. For a general graph G = (V, E), Barahona 

and Mahjoub [S] showed that for every vector v in IWE and for every cut 6(S), vTx d b 
defines a facet of P,(G)-if and only if the inequality (v~)~x< b-d defines a facet 

of P,-(G). Furthermore, they showed that every inequality defining a facet of P,-(G) 

can be obtained for some inequality defining a facet of C(G) by switching a cut 

[8]. In [15], it was shown that switching and permutation are the only symmetries of 

P,(K). 
In Section 2, we introduce two operations on an inequality valid over C,: collapsing 

and expansion; collapsing an inequality consists of identifying vertices and adding the 

weights of the corresponding incident edges; the expansion of an inequality is the 

inverse operation of collapsing. 

In Sections 3-5, we give several results on lifting. Lifting is a commonly used 

technique in polyhedral combinatorics to derive inequalities defining facets of a poly- 

hedron in [w” from inequalities defining facets of a polyhedron in [w”’ with n’ <n (see for 

instance [23]). 

Let G =( V, E) and H =( W, F) be two graphs where the former is an induced 

subgraph of the latter, and let v be a vector in IWE. Lifting the vector v means to find 

a vector v’ in [WF such that the following two conditions hold: 

- if vTx < 0 is valid over C(G), then (v’)~x d 0 is valid over C(H); 

- if vTx<O defines a facet of C(G), then (v’)~x<O defines a facet of C(H). 

If v’ = (v, 0) where 0 is the vector in [WFmE with components all equal to zero, then we 

shall say that v’ was obtained from v by zero-l$fting. 

Finally, in Section 6, we give the complete description of the cut cone C,. 

2. Collapsing and expansion 

Let n be an integer greater than or equal to two, and let k be an integer such that 

1 d k<n- 1. Recall that N stands for (“2). For every partition, XL= { V,, . . . . Vk} of the 

set [ 1, n] into k nonempty subsets, and for every vector v in [WN, we define a vector vn in 

[w(t) by 

4 = ,,“E_ 4 for all ldi<jbk. 
J 

We call the vector vx the n-collapsing of v. If k = n- 1, then precisely one of the 

k subsets of [l, n], say I’, , has size two, all the others have size one; in this case, if 

.V1 = {i,j} then we denote the vector vA simply by v’*j, and we call the vector vi*j the 

(i,j)-collapsing of v. The rc-collapsing of an inequality vTx<O is the inequality 

(vn)TX < 0. 

The n-collapsing of an hypermetric inequality Hyp(bi , . . ., b,) can be easily obtained 

in the following way: define a vector v in RN by writing bibj for Vij. Clearly, for distinct 
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i and j in [l, n], the (i, j)-collapsing of the vector u is the vector v’,j given by 

(bi+bj)bk 

vi/= bhbk 
i 

if h=i, kE[l,n]-{i,j}, 

if h,k[l,n]-{i,j}. 

Now define a vector b’,j in Iw(“;‘) by 

bi,.i= bi+bj if h=i, 
h 

i bh if hE[l,n]-{i,j}. 

Since bkj+ ... + bij= 1, the inequality (u’,‘)~x 60 is an hypermetric inequality. We call 

the vector b’qj the (i j)-collapsing of the vector b. For instance, if b=(l, 1, 1, - 1, - 1) 

then the (1,2)-collapsing of b is the vector (2,1, - 1, - 1). 

Proposition 2.1. Let 7c be a partition of the set [l, n] into k nonempty subsets 
(1 < k < n - 1). If the inequality vTx < 0 is valid over C,, then the inequality (z?)~x < 0 is 

valid over Ck. 

Proof. Write n=(V,, . . . , V,); let S be a subset of [ 1, k]; and set S’ = uiss vi. Clearly, S’ 

is a subset of [l, n]. Now it is easy to verify that (u~)~~(S)=U~~(S’). 0 

Let G = (V, E) be a graph; the concept of the n-collapsing of a vector v can be 

extended to the case when v is a vector in IRE in the following sense. For every partition 

n = ( VI,. . , Vk} of V, let E’ be the set of edges of the graph G’ obtained from G by 

identifying all the vertices in each K into a single vertex (multiple edges are deleted). 

Define the 7c-collapsing of v as the vector un in [WE’ given by 

II Vij = c vhk for all ijEE’. 
hkdZ,hsV,,ksV, 

Clearly, if uTx ~0 is valid over C(G), then the inequality (v”)~x<< is valid over C(G’). 

Let C be the set of all partitions of the set [ 1, n], and let u be a vector in RN. For 

every n in C, we denote by V” the vector in RN defined by 

5” = (UK, 0). 

The vector V” is a zero-lifting of VI. Let L(u) = (6”: T-cEC}. It is easy to verify that L(u) is 
a lattice isomorphic to the set of all the partitions of [l, n]; the order of L(u) is the 

following: for all partitions 71 = { VI, . . . , &} and 7~’ = { W, , . . ., wh} in C, E” > 3’ if and 

only if for every i in (1, . . . , k}, K E ~j for some j in { 1, . . . , h}. Note that the greatest 

element of the lattice L(u) is u, and that the smallest element of L(u) is 0 (zero vector 

corresponding to the trivial partition n = {Cl, n]}). For every vector u, we call the 

lattice L(v) the collapsing lattice of u. 

Let u be a vector in R(i), and let v’ be a vector in [w@, with n’ > n. If u is a 7c-collapsing 

of u’ for some partition 7~ of [l, n’], then we say that u’ is an expansion of v. Not every 

expansion of an inequality valid over the cut cone C, is valid over C,,. In fact, every 

inequality uTx 6 0 valid over C, admits an expansion which is not valid over some cut 
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cone containing C,. For instance, let k be an arbitrary element in [l, n]; define a vector 

v’ by 

1 if i=n+l, j=k, 

vij= 0 if ikn+l, jfk, 

Vij otherwise. 

Note that the vector v is the (k, n + 1)-collapsing of v’, and that the inequality (v’)~x < 0 

is not valid over C,, 1. On the other hand, every inequality which is valid over C, 

admits an expansion which is valid over C, + 1 : its zero-lifting. 

Let v be a vector in [WN, and let v’ be an expansion of v. If the inequality (v’)~x < 0 is 

pure, then we say that (v’)~x 60 is a puri$ication of the inequality vTx ~0. Every 

inequality vTx GO valid over C, admits a purification which is valid over some cut 

cone containing C,. If v is not pure then some coefficient vhk is greater than one in 

modulo. Without loss of generality, we can assume that vhk> 1; define a vector u’ in 

rW(“:‘) by 

4 

~~-1 if i=h, j=k, 

1 if i=n+l, j=h, 

Vij= -1 if i=n+l, j=k, 

0 if i=n+l, j#h,k, 

vij otherwise. 

Clearly, the vector v is the (k, n + 1)-collapsing of v’. Now, let S be a subset of [l, II + 11; 

without loss of generalilty, we can assume that IZ + 1 #S. Clearly, if h and k are both in 

S or both not in S then (v’)~~(S)<O (since(v’)T6(S)=vT6(S)); if hES and k@ then 

(V’)T8(S) = UT&S) - V,,,, + v,,k - 1 + 1, and so (v’)~G(S)<O; if h@ and kES then 

(V’)T6(S)=~T6(S)-v/,k+a~k-1-l, 

and so (v’)~G(S) < 0. Hence, the inequality (v’)~x < 0 is valid over C, + r. Repeating this 

procedure on v’ will yield a purification of the vector v. 

Letrc={Vi,..., I$} be a partition of the set [l, n], and let S be a subset of [l, n]. We 

say that the cut 6(S) is compatible with the partition rc if, for every i = 1, . . . , k, each Vi is 

a subset of S whenever Sn Vi # 0. Recall that, for every vector v in [WN, the vector vn 

denotes the rr-collapsing of u and us denotes the vector obtained from v by switching 

the cut 6(S). 

Proposition 2.2. Let 71 = { VI, . . . , Vk} be a partition of the set [l, n], and let S be a subset 

of[l,n]. If the cut 6(S) is compatible with 7~ then (~“)~=(v~)n. 

Proof. Let i and j be two distinct elements in [l, n]. Clearly, it is sufficient to show that 

the vector obtained from the (i,j)-collapsing of v by switching the cut 6(S) is the 
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(i,j)-collapsing of the vector obtained from u by switching the cut 6(S), i.e. 

(u’,j)’ = (a’)‘~‘. Let n be the corresponding partition of [ 1, n]. Set x = us, y = xivj, z = vi-j, 

and w=z’. Since the cut 6(S) is compatible with the partition X, ij$S(S), and so we 

may assume that both i and j are in S. Let h and k be distinct elements in [I, n] - (i, j}; 

we have 

yik = xik + xjk = 

-Vik-Vjk if k#S, 

Z)ik+Ujk if kES, 

-t&k if hk&(S), 
Yhk = Xhk = 

ukk if hk$6(S), 

Wik = 
-Zik= -vik-Vjk if k$S, 

Zik = vik + Ujk if kES, 

-Z,,k= -v,,k if hkeG(S), 
Whk = 

Zhk = vhk if hk$G(S). 0 

We refer to [16] for an extension of the notion of collapsing for the multicut 

polytope. 

3. Zero-lifting 

In this section, we consider two graphs G = (I’$) and H = ( W, F) where the former is 

an induced subgraph of the latter. Let v be a vector in I@, and let Q be a vector in RF-s 

with components all equal to zero. It is easy to see that if the inequality u*x d d is valid 

over P,(G), then the inequality (a, Q)*x<d is valid over P,(H). Conversely, if the 

inequality (v, O)T~ <d is valid over P,(H), then the inequality vTx<d is valid over 

P,-(G). This is-a special case of the following observation. 

Theorem 3.1 (De Simone [l 11). Zf (u, (3)*x <d dejines a facet of P,(H) then V*X < d 
deJines a facet of P,(G). 

Consider the following problem: 

given an inequality v*x<d defining a facet of PC(G), 
is the inequality (u, ())‘x Q d dejning a facet of P,-(H) ? 

Barahona and Mahjoub [S] showed that for the inequalities 

(3) 

Xij>O, Xij< I, (4) 

the answer to (3) is ‘yes’ if and only if ij does not belong to any triangle of H. In 

addition, they showed that the answer to (3) is again ‘yes’ for every other inequality 

they studied in [S]. 
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We say that an inequality vTx < d is nontrivial if the supporting graph G(v) of v has 

more than two vertices. Note that the supporting graphs of the inequalities (4) have 

precisely two vertices. De Simone [ 1 l] gave a sufficient condition on the graphs G and 

H under which problem (3) has a positive answer for all the inequalities of the linear 

description of PC(G), with the exception of (4). 

Theorem 3.2 (De Simone [l 11). Let G = (V,E) be a graph with n vertices; let n 2 3, and 
let H=(Vu(r},F). ZfN(r)-{v}EN( )f v or some vertex v in G then problem (3) has 
a positive answer for every nontrivial inequality defining a facet of P,(G). 

Corollary 3.3. (De Simone [ll]; Deza and Laurent [17]). Let G be a complete graph 
with n vertices and let n> 3. Then vTx<d dejines a facet of P,(G) if and only if 
[v, QITx <d defines a facet of the cut polytope of every complete graph with more than 
n vertices. 

Now consider the graph K, with n > 3. Write K, = (V, E) and let v be a vector in [WE. 

Recall that, for every vector v, G(v) denotes the supporting graph of v. Clearly, if 

G(v)=(V’,E’) is a partial subgraph of K, then the vector v can be written as 

v=(v’,Q), with v’EF? and QE[W~‘-~. 

Theorem 3.4. Let K, =( V, E) with n > 3; let E’ be a subset of E, and let v be a vector in 
[WE such that v=(v’, (I), with v’ in [WE’, and such that G(v)=(V’,E’). Zf v’x<d dejnes 
a facet of P,(K,) then, for every subgraph H =( W, F) of K, containing G(v), the 
inequality 

(v’, O)T~ <d, 

with v’ER~ and 0~[Wr-~‘, dejines a facet of P,(H). 

Proof. Suppose the contrary: there exists a partial subgraph H of K, containing G(v) 

such that (v’, QTx <d does not define a facet of P,(H). Then (v’,())~x <d can be 

obtained as sum of two other inequalities valid over P,(H), say v?x <d, and v;x Q d2. 
But the inequalities [vl,QITx<dI and [v2,Q]Tx<d2r with &[WEPF, are valid over 

P&K,) and their sum is [v’,QITx<d, contradicting the fact that [v’,glTx<d defines 

a facet of P&K,). 0 

An instant corollary of Theorem 3.4 is the following. 

Corollary 3.5. Let G = (V, E) be the complete graph with n vertices; let n 2 3; and let 
H = ( W, F) be a graph containing G as induced subgraph. Then problem (3) has a positive 
answer for every facet-definining inequality of P,(G). 
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Proof. Let vTx d d be a facet-defining inequality of P,-(G). Let T denote the set of edges 

of the complete graph with IWI vertices. Corollary 3.3 implies that the inequality 

(v, Q)T~ <d, with (3~ [w ‘-’ defines a facet of P,-(K,,,). Since H is a partial subgraph of 

Klw,, the corollary follows from Theorem 3.4. 0 

We end this section by considering a generalization of problem (3). 

Given an inequality vTx d d dejining a face of P,(G) of codimension r, 

is the inequality (v, Q)T~ d d dejining a face of P,(H) of codimension r? 
The answer to the above problem is, in general, ‘no’. For instance, consider the vector 

b = (1, 1, - 1, - 1) and define a vector v by vij = bibj (1 d i <j < 4). It is easy to verify that 

while the inequality vTx < 0 defines a face of Pc(K,) of codimension four, the inequal- 

ity (v,())~x<~, with OerW”, defines a face of P,(K,) of codimension five. 

4. Nonzero lifting 

In this section, we consider a complete graph with n vertices, n> 5. Recall that 

N stands for (“2). Let v be a vector in [WN, and let vTx < 0 be a facet-defining inequality of 

C,. In Section 3, we have seen that this inequality can be lifted to a facet-defining 

inequality of C,, , with n’ > n, by just adding zeroes (Corollary 3.3). In this section, we 

study the more general lifting problem. For this purpose, recall that for distinct i and 

j in [l, n], the vector vi-j denotes the (i, j)-collapsing of v. 

Theorem 4.1. Let v be a vector in RN satisfying the following three conditions: 

(i) there exists p in [l,n] such that Cjs[l,n]-(p)vpj=O (6((p)) is a root of v); 

(ii) there exist distinct h and k in [l,n]-{p} such that both inequalities (v**~)~x < 0 

and (v*~~)‘x 60 define facets of C,_ i ; 

(iii) there exist distinct i and j in [l,n]-{p, h, k} such that vij#O. 

If the inequality vTx d 0 is valid over C, then it de$nes a facet of C,. 

Proof. Suppose the contrary: vTx < 0 does not define a facet of C,. Then vTx 6 0 is the 

sum of two inequalities, say uTx < 0 and wTx d 0 (with u # 0 and w # Q), valid over C,. 

Let Undo and uPsk be the (p, h)-collapsing and the (p, k)-collapsing of the vector u, 

respectively; similarly, let wPsh and wPyk be the (p, h)- collapsing and the (p, k)-collapsing 

of the vector w, respectively. Proposition 2.1 implies that the four inequalities 

(U”,h)TX < 0, (u”.“)‘x 60, 

(w”*h)‘x < 0, (W”,k)TX < 0 

are valid over C, _ 1. It is easy to verify that vP,~ = Undo + waft, and that u*,~ = n*sk + w*,~. 

Now, (ii) implies that either u P’h=O or wPYh=t& and that either u**~=O or w*,~=O. 

Without loss of generality, we can assume that u**~=(), and so - 
7 

Upj+Uhj=O, Uij=O for all i,jE[l,n]-{p,h}. (5) 
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If wP3k = Q then Uij= 0, for all i, j in Cl, n] - {p, h, k}, contradicting (iii). Hence, uPgk = 0, 

and so 

Upj + Uk j = 0, uij=O for all i,je[l,n]-{P,k}. (6) 

Now, (5) and (6) imply 

Uij= 

i 

a@ if i=p, j=h or k, 

-Uph if i=k, j=h, 

0 otherwise. 

Since uTx d 0 is valid over C,, it follows that Up,, d 0 (because uT6( { p}) = 2Uph), and so 

Uph<O (7) 

(for otherwise u=(J). Since wTx<O is valid over C,, it follows that 

c wpj d 0, 
je[l,nl-fpi 

and so 

But, (i) implies that Cj~[l,n]_ipi *, u = 0, and so Up,, 2 0, contradicting (7). 0 

From the proof of Theorem 4.1, we get the following observation. 

Remark 1. Let v be a vector in RN satisfying conditions (ii) and (iii) of Theorem 4.1. If 

the inequality uTx d 0 is valid over C,, then either it defines a facet of C, or it is the sum 

of two inequalities valid over C,, one of which is a positive multiple of the triangle 

facet-defining inequality xhk - xph - xpk < 0. 

In the following, we show some applications of Theorem 4.1 on hypermetric and 

cycle inequalities. 

Corollary 4.2. Let b = (b, , . . . , b,_ I) be an integer vector satisfying the following condi- 

tions: 

- bI+...+b,_,=l; 
_ there exist distinct h and k in [l, n - l] such that bh = bk - 1; 
_ there exist distinct i and j in [l, n- l] - {h, k) such that bibj#O. 

If the hypermetric inequality Hyp(b) defines a facet of C,_ 1, then the hypermetric 

inequality Hyp(d) speciJed by the vector d =(d,, . . . ,d,), with 
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de$nes a facet of C,. 

Proof. Without loss of generality, we may assume that h= 1 and k=2, and so 

d=(bl,bI,bJ, . . . . b,_I, 1). Let d’,” and d2,” be the (l,n)-collapsing and the (2,n)- 

collapsing of the vector d, respectively. We have 

d’~“=(bI+l,bI,b3 ,..., b,_J, 

d2~“=(b1,bI+1,b3 ,..., b,_& 

Since d’,” can be obtained from d2,” by a permutation of the set [l, n - 11, it follows 

that the hypermetric inequality Hyp(d’3”) is permutation equivalent to the hypermet- 

ric inequality Hyp(d’,“). Note that d’,“= b, and so Hyp(d2,“) defines a facet of C,_ 1. 

Define a vector v in RN by Uij= didj for all ij. NOW the vector v satisfies conditions (i), 

(ii) and (iii) of Theorem 4.1 with p = n. 0 

For instance, consider the vector b = (3,2,2, - 1, - 1, - 1, - 1, - 2). Since the hyper- 

metric inequality Hyp(b) defines a facet of C8, Corollary 4.2 implies that the hyper- 

metric inequality Hyp(3,2,2, - 1, - 1, - 1, -2, -2,1) defines a facet of C9. (Here, 

h=7 and k=8.) 

Corollary 4.3. Let c = (c 1, . . . , c,_ 2) be an integer vector satisfying the following three 
conditions: 
_ c,+...+c,_z=l; 
_ there exists h in [ 1, n - 23 such that ch = - 1; 

~ there exist distinct i and j in [ 1, n - 2]- {h} such that cicj # 0. 
If the hypermetric inequality Hyp(c) defines a facet of Cn-2, then the hypermetric 

inequality Hyp(d) specijied by the vector d = (d 1, . . . , d,), with 

Ci if i= 1,2, . . . ,n-2 

di= 1 ifi=n-1, 

-1 ifi=n, 

defines a facet of C,. 

Proof. Corollary 2.1 guarantees that the hypermetric inequality Hyp(b) specified by 

thevectorb=(c,,c,,..., c, _ 2, 0) defines a facet of C,_ 1. Now, observe that the vector 

b satisfies the assumptions of Corollary 4.2 (with k=n- 1). 0 

Corollary 4.4. Letf be an integer greater than or equal to three, and let b = (b,, . . , b,_ 1) 
be an integer vector satisfying the following four conditions: 

- bI+...+b,_,=3; 
- b 1, . . . . b,>Oz=b,+,, . . ,b,; 
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- there exists distinct hand k in [l,f] such that bh=bk-1 with k=h+l (modf); 

- there exists distinct i and j in [l, n- l] - (h, k} such that b,b,#O. 

Let b’ be the vector obtained from b by permuting h and k; let d be the vector obtained 

from b by inserting 1 between bh and bk and by replacing bk with b,,. If the cycle inequality 
Cyc(b) de$nes a facet of C,_ 1, and ifthe cycle inequality Cyc(b’) defines a facet of C,_ 1, 

then the cycle inequality Cyc(d) defines a facet of C,. 

Proof. Without loss of generality, we may assume that h= 1 and k=2, and so 

d=(b,, l,bi,&, . . . . b, - 1). Let vTx < 0 denote the cycle inequality Cyc(d); write 

dtS2=(bI+l,bI,b3 ,..., b,_I), 

d293=(bI,bI+l,b3 ,..., b,_,). 

It is easy to verify that the (1,2)-collapsing and (1,3)-collapsing of the vector v yield the 

two cycle inequalities Cyc(d’52) and Cyc(d’v3), respectively. Since d’,2 = b’ and since 

d2v3 =b, both inequalities Cyc(d’g2) and Cyc(d2v3) define facets of C,_ i. Now the 

vector u satisfies conditions (i), (ii) and (iii) of Theorem 4.1 with p=2. 0 

For instance, consider the vector b=(3,2,2, - 1, - 1, - 1, - 1). Since the cycle 

inequality Cyc(b) defines a facet of C,, Corollary 4.4 implies that the cycle inequality 

Cyc(2, I, 2,2, - 1, - 1, - 1, - 1) defines a facet of Cs. (Here, h= 1 and k=2.) 
We ended Section 3 by pointing out that, in general, the zero-lifting of a face does 

not preserve the codimension. In the following, we show that a similar result holds for 

the general nonzero-lifting. For this purpose, let n be an integer greater than or equal 

to eight; let b” be the vector in R” defined by b” = (n - 6,2,2,1,1, - 1, . . . , - 1); and let 

w be the vector in rW(:) with components wi2=wZ3=3, w~~=w~~=~, 

wi4 = w35 = wd5 = 1, and Wij=O otherwise. Consider the inequality 

The inequality (8) belongs to the class of clique-web inequalities valid over C, 

introduced by Deza and Laurent in [18]: (8) is the clique-web inequality C Wi(b”) with 

corresponding antiweb A W;(n- 6,2,2,1,1). 

Proposition 4.5. Let n>8. Then the inequality (8) defines a face of C, of dimension 

G)-(n-4). 

Proof. For every n 3 8, define a vector vn in RN by 

bFby-wij 
(vn)ij= baby 

{ 

if l,<i<j<5, 

1 J otherwise. 

To prove that the inequality, (u”)~x GO defines a face of C, of dimension (;)-(n-4), 
we use induction on n. A computer check guarantees that (u8)‘x < 0 defines a face of 
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Cs of dimension 24. Now, suppose that the inequality (u~)~x < 0 defines a face of C, of 

dimension (“2) -(n - 4). We want to show that the inequality (u”+ l)T~ 60 defines a face 

ofC,+1 of dimension (“t ‘)-(n - 3). For this purpose, let S be a subset of [2, n]. Since 

Cl= 1 by = 5, the cut 6(S) is a root of U” if and only if 

b”(S)(S-b”(S))= C Wij, 

ijea(S) 

and so every root 6(S) of v”, with l$S, yields a root of unfl. By the inductive 

hypothesis, dim(v”)=(“,)-(n-4), and so we can find a set RI that contains dim(v”) 

linearly independent roots of vn+l. Since(“t’)-(n-3)= (;)-(n-4)+(n_l),weonly 

need find n - 1 additional roots. Consider the following n - 1 sets: 

S’={2,3,n+l}, S’={3,4,n+ l}, S’={3,4,5,n+l}, 

S’={2,3,4,6,n+l}, S’={2,3,k,n+l}, for every k=6 ,..., n. 

Clearly, every set S’ listed above yields a root of u”+ ‘. Let R2 denote the set of these 

n- 1 new roots of u”+ ‘. Now it is easy to verify that all the vectors in Rl uRZ are 

linearly independent. 0 

5. Difference of inequalities 

In this section, we show how to construct, from a given face of the cut cone C,, 

a face of C, of higher dimension. Recall that N stands for (“2). Let u be a vector in [WN 

such that vTx d 0 is valid over C,; we want to find a vector w in [WN and two nonzero 

real numbers CI and p such that both inequalities wTx 60 and (XV - pw)‘x d 0 are valid 

over C,. Clearly, if the inequality (u - w)‘x d 0 is valid over C,, then the face F, defined 

by the inequality vTx d 0 is contained in the face F, defined by the inequality wTx < 0. 

For every vector u in [WN, let m, and MU denote the minimum and maximum nonzero 

value assumed by IuT’s(S)l over all subsets S of [I, n], respectively. In this section, we 

let n stand for an integer greater than or equal to seven. 

Proposition 5.1. Let vTx < 0 and wTx d 0 be two inequalities valid over C,. If F, G F,,, 

then the inequality 

(A4,u - m”W)TX Q 0 

is valid over C,. 

Proof. Let S be a subset of [l,n]. If 6(S) is a root of w then 
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which is < 0. If 6(S) is not a root of w then it is neither a root of u (since F, E FW). Hence 

(Mwu-m”w)T6(S)=M,uTG(S)-m”wTG(S) 

< -Mwm”+m”Mw=O. 0 

Let uTx < 0 be an hypermetric inequality specified by a vector b in RN. Clearly, for 

every cut vector 6(S), 

vTG(S)=b(S)(l -b(S)), 

which is an even integer. Hence, m, 3 2. Furthermore, if uTx <O is a triangle inequality, 

then m, = M, = 2. Similarly, if aTx d 0 is a cycle inequality specified by a vector b in RN 

and a cycle C, then, for every cut vector 6(S), 

vTs(S)=b(S)(3-b(S))-IE(C)nG(S)I, 

which, again, is an even integer, and so m,32. 

Corollary 5.2. Let vTx d 0 be an hypermetric or cycle inequality over C,, and let wTx < 0 
be a triangle inequality. Zf F, c F, then the inequality 

(v-W)Tx<O 

is valid over C,. 

The proof follows directly from Proposition 5.1 and from the fact that m, 3 M, = 2. 

Proposition 5.3. Let b = (b 1, . . . , b,) be an integer vector in KY’ such that bi#O 

(i= 1, . . . , n) and such that b, + ... + b, = 1. Let the components of b be ordered in such 

a way that bl, . . . ,b,>O>b,+I, . . . , b,, for some p 2 2. If there exist distinct i and j in 

[ 1, p], and if there exists a k in {p + 1, . . . , n> such that 

bi+bj-b,> ~ bi+ 1: 
i=l 

(9) 

then the face of C, dejined by the inequality Hyp(b) is strictly contained in the face of C, 
defined by the triangle inequality xij - xik - xjk < 0. 

Proof. Let S be a subset of [l, n] such that 6(S) is a root of Hyp(b). Without loss of 

generality, we may assume that k$S. Note that b(S) is equal to zero or one. If both 

i and j are in S then 

b(S)kbi+bj+ i bi-bk, 
i=p+l 

and so (9) implies that b(S) > 2, a contradiction. If at least one of i and j is not in S, 

then S(S) is a root of xij-Xik-Xjk<O. 0 
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For instance, consider the hypermetric inequality Hyp(b) with b= 

(1,3,2, - 1, - 1, - 1, -2). Since b satisfies (9) (with i = 2, j= 3 and k= 7), it follows that 

every root of Hyp(b) is also a root of the triangle inequality Hyp(0, 1, l,O,O,O, - 1). 

Observe that an hypermetric inequality Hyp(b) satisfying the assumptions of Proposi- 

tion 5.3 does not define a facet of C,. 

Proposition 5.4. Let b = (b, , . . . , b,) be an integer vector in R” such that b, + ... + b, = 3. 

Let the components of b be ordered in such a way that b,, . . . , b,>O> b,+ 1, . . . , b, for 

some f 2 3. If there exist distinct i and j in [ 1, f 1, and if there exists a k in {f + 1, . . , , n} 

such that 

bi+bj-b,3 ~ bi, 
i=l 

then the face of C, de$ned by the inequality Cyc(b) is strictly contained in the face of C, 

dejined by the triangle inequality xij-xik - xjk < 0. 

Proof. The proof is similar to the proof of Proposition 5.3 and relies on the fact that if 

6(S) is a root of Cyc(b) then b(S) is equal to one or two. q 

Consider again the hypermetric inequality Hyp(b) with b =(l, 3, 

2, - 1, - 1, - 1, -2), and let Hyp(dl, . . . ,d,) denote the triangle inequality 

Hyp(0, 1, l,O,O,O, - 1). We have seen that every root of Hyp(b) is also a root of 

Hyp(d). Hence, Corollary 5.2 implies that the inequality 

C (bibj-didj)xij~O 
l<i<j<7 

(10) 

is valid over C,. Now, the inequality Hyp(b) has 19 roots, all of which are linearly 

independent. Since every root of Hyp(b) is a root of (lo), to show that (10) defines 

a facet of C7, we only need find one root of (10) which is linearly independent from the 

other 19; our choice for such a root is 6( { 1,7)). Hence, (10) defines a facet of C7. 

Theorem 5.5 will generalize this procedure. Incidentally, inequality (10) can be 

obtained from the cycle inequality Cyc(3,2,2, - 1, - 1, - 1, - 1) by switching the cut 

&{l> 7)). 

Theorem 5.5. Let b=(2n-13,3,2,-l, -l,-l,-2 ,..., -2) and d=(n-7,1,1,0, 

O,O, - 1, . . . , - 1) be two vectors in R”. Then the inequality 

dejines a facet of C,. 

Proof. Write 

VEX= C (bibj-didj)Xij. 
l$i<j,Cn 
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To prove validity of the inequality vTx<O, let S be a subset of the set [l, n]. Without 

loss of generality, we can assume that 1 #S. We have 

vTG(S)=b(S)(l -b(S))-d(S)(l -d(S)) 

=(b(S)-d(S))(l -b(S)-d(S)). 

Set 

a=ISn{2,3}1, fl=ISn{4,5,6}1, Y=lSn(CLnl-C461). 

It is easy to verify that 

b(S)=k-P-2y, d(S)=cc-y, 

where kE {0,2,3,5}, and so 

vTG(S)=(k-cc-/I-y)(l-k--++++y). 

Now it is a routine but tedious matter to verify that uTS(S) < 0. 

We prove that uTx < 0 defines a facet of C,, for all n B 7, by induction on n. For this 

purpose, note that when n = 7, vTx < 0 is inequality (lo), and so it defines a facet of C7. 

Now assume that vTx < 0 defines a facet of C,, and let b’ and d’ be two vectors in Rnfl 

given by 

b’=(2(n+l)-13,3,2,-1,-l, -1, -2 ,..., -2), 

d’=((n+l)-7,1,1,0,0,0,-l)...) -1). 

Write 

(V’)TX= C (b:b5_dfd~)Xij. 
lQi<j<n 

We want to show that the inequality 

(v’)Tx Q 0 

defines a facet of C, + 1, i.e. we want to exhibit (“: ‘)- 1 linearly independent roots of 

the vector v’. For this purpose, let 6(S) be a root of the vector v. Without loss of 

generality, we may assume that 1 $S, and so every root of v is also a root of v’. By the 

inductive hypothesis, dim(v) =(!)- 1, and so there exist (;)- 1 linearly independent 

roots of v’; let RI be the set containing such roots. Since (“z ‘) = (“2) + n, we only need 

find n additional roots. For this purpose, let S’ be a subset of [l, n + 11. Since 

(v’)Ts(s)=b’(S)(l -b’(S))-d’(S)(l -d’(S)) 

=(b’(S)-d’(S))(l-b’(S)-&(S)), 

it follows that 6(S’) is a root of v’ if and only if either b’(S’) = d’(S’) or b’(S’) + d’(S’) = 1. 

Let S’ be a subset of [l, n+ l] such that l$S’ and such that n+ 1~s’; set 

S=S’-{n+l>. We have 

b’(S’)=b(S)-2, d’(S’)=d(S)- 1, 
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and so S(S’) is a root of v’ if and only if 

either b(S)=d(S)+ 1 or b(S)+d(S)=4. (11) 

Hence, to find n additional roots 6(S’) of v’, we only need find n subsets S of [ 1, n] - (l} 

satisfying (11). Our choice for such sets is as follows. 

S={2}, S= {3}, S = {2,4), S = (2,5), 

S = {2,6}, S={2,k}, for every k=7 ,..., n, S={2,3,n-1,n). 

Clearly, every set S listed above satisfies (11). Let R2 denote the set of these n new roots 

of v’. Now it is easy to verify that all the roots in RI uRz are linearly independent. 0 

We end this section by exhibiting a class of hypermetric inequalities defining faces 

of C,, which are not contained in the face of C, defined by any triangle inequality. 

Proposition 5.6. Let n be an odd integer greater than or equal to seven, and let b be the 

vector in [w” given by b = (c, c, c, - c, - 1, . . . , - l), where c = (n - 3)/2. Then the face of C, 

dejined by Hyp(b) is not contained in the face of C, deJined by any triangle inequality. 

Furthermore, let d =(l, 1, 1, - 1, - 1, 0, . . . ,O) be a vector in [w”. Then the inequality 

1 (bibj-didj)xij<O 
ij 

is valid over C,. 

Proof. Let i,j, and k be arbitrary distinct elements in [ 1, n]. Clearly, to show that the 

face of C, defined by Hyp(b) is not contained in the face of C, defined by the triangle 

inequality Xjk-Xij-Xik<O, we only need exhibit a root 6(S) of Hyp(b) such that 

Sn{i,j, k) = {i}. If iE{ 1,2,3) then it is easy to verify that the desired root is S({i}u T), 

where T is any subset of { 5, . . . , n} - {j, k} of size c - 1; if i = 4 then it is easy to verify 

that the desired root is 6((1, i}); if i= 5, . . . , n then it is easy to verify that the desired 

root is 6({1,i)uT), where Tis any subset of {5,...,n)-{i,j,k} of size c-2. 

The proof of validity of Cij(bibj-didj)xijbO is similar to the proof of validity in 

Theorem 5.5. 0 

6. The cut cone on seven points 

In 1960, Deza [12,14] proved that all the facet-defining inequalities of C4 and C, 

are hypermetric; C4 has 12 triangle facets and C5 has 40 facets (30 triangle facets and 

10 facets of the type Hyp(1, 1, 1, - 1, - 1) called pentagonal facets). In 1988, Avis and 

Mutt [7] proved using computer that all the facet-defining inequalities of Cs are 

hypermetric; there are precisely 210 of them (60 triangle facets, 60 pentagonal facets, 

60 facets of the type Hyp(2,1,1, - 1, -1, -l), and 30 facets of the type 
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Hyp(1, 1, 1, 1, - 1, -2)). This is not true for C ,: Avis [4,5] and Assouad Cl] were the 

first to prove this. In 1989, Grishukhin [21] proved using computer that all the 

facet-defining inequalities of C7 are (up to switching by a root and permutation) of 

four types: hypermetric inequalities, cycle inequalities, parachute inequalities and 

Grishukhin inequalities; the cut cone C, has precisely 38780 facets [19]. Let S be 

a subset of [1,7]; in this section, for every vector u in R(i), us denotes the vector 

obtained from u by switching a root 6(S) of u. 

Below we give a list of 36 facet defining inequalities of CT; they are split into four 

groups. 

(1) The first group consists of the following ten hypermetric facet-defining inequali- 

ties: 

(Hl): HYPU, 1, -1,O,O,O,Q 

(H2): Hyp(l,l, 1, - 1, - l,O,O); 

(H3): Hyp(l,l, 1, 1, - 1, - 1, - 1); 

(H4): Hyp(2,1,1, - 1, - 1, - 1,O); 

(H5): Hyp(-2,1, 1, 1, 1, -l,O); 

(H6): Hyp(2,2, 1, - 1, - 1, - 1, - 1); 

(H7): Hyp(-2,2,1,1,1,-1,-l); 

(H8): Hyp( -2, -2,1,1,1,1,1); 

(H9): Hyp(3,1,1, - 1, - 1, - 1, - 1); 

(HlO): Hyp(-3, 1, 1, 1, 1, 1, - 1). 

Note that inequality (H5) arises from inequality (H4) by switching the root 

a({ 1,4,5}); (H7) arises from (H6) by switching the root 6( { 1,4,5}); (H8) arises from 

(H6) by switching the root 6({3}); (HlO) arises from (H9) by switching the root 

&{2,3,4)). 
(2) The second group consists of 16 inequalities obtained from the following three 

cycle facet-defining inequalities by switching: 

(Cl): Cyc(1, l,l, 1, 1, - 1, - l), 

(C2): Cyc(2,2,1,1, -1, -1, -l), 

(C3): Cyc(3,2,2, - 1, - 1, - 1, - 1). 

Let aT.x < 0, uTx < 0, and wTx < 0 denote inequalities (Cl), (C2), and (C3), respective- 

ly. Switching roots of inequalities (Cl), (C2), and (C3), yields the following (noncycle) 
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inequalities: 

(C4): (U(l))TX 60, 

(C5): (u 11,yx <o 3 

(C6): (u lL2.61)TX<0, 

(C7): (&))TX < 0, 

(C8): (u(3))Tx 60, 

(C9): (u ‘1J))Tx 60 > 

(ClO): (u {3,4))Tx < 0, 

(Cl 1): (U{l,4,5))TX GO, 

(C12): (@‘4’5))TX<o; 

(C13): (W@))TX 60, 

(C14): (w (2,4))Tx < 0, 

(C15): (w 11,4))Tx 60, 

(C16): (w fL4,51)TX<@ 

(3) The third group consists of a parachute inequalilty and its two switchings. This 

parachute inequality is the inequality 

(Pl) .DTX <o, 

where the vector P=(Pl2, . . ..P17. ...;P67)T is given by 

(O,-l,-l,-I,-l,o; 1,0,-l, -1,-l, 1,0,0,-l, 1,0,-l, l,o; l)T. 

Switching roots of the inequality (Pl), yields the following two inequalities: 

(P2): (p(3,‘))Tx 60, 

(P3): (P U,3A))TX<~ 1 9 

The graphs P1, P2 and P3 in Fig. 1 are the supporting graphs of the vectors p, p(3,7), 
and pU,3A), respectively: a plain line ij corresponds to an edge ij with weight equal to 

1, a dashed line ij corresponds to an edge ij with weight equal to - 1. 

(4) The fourth group consists of the Grishukhin inequality and its six switchings. 

The Grishukhin is the inequality 

(Gl): gTx<O, 

where the vector g=(gl2, . . . ,g17; ...;g67)T is given by 

(l,l, 1, -2, -l,o; l,l, -2,o, -1; 1, -2, -l,o; -2,o, -1; 1, 1; -l)T. 
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P 
1 

6 

Fig. 1. 

The graph in Fig. 2 is the supporting graph of the vector g: a plain line ij corresponds 

to an edge ij with weight equal to 1, a dashed line ij corresponds to an edge ij with 

weight equal to - 1, a double dashed line ij corresponds to an edge ij with weight 

equal to -2. 

Switching roots of the inequality (Gl), yields the following six inequalities: 

(G2): (g(l))Tx ~0 1, 

(G3): ( g(1.61)Tx < 0, 

(G4): (9 w5.7yx<() 2 

(G9 (9 
U,3.51)TX<o 

9 

K-w: (9 
(L3.69TX<o 

9 

(G7): (g(1’2’S))Tx,0, 
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Inequality (C3) was found by Avis [4,5]; Assouad [ 1,3] found the inequalities (Ci) 

(i’l, . . . ,6,13) and the inequalities (Pi) (i= 1,2,3). Inequality (Pl) is called parachute 

inequality since it belongs to the class of parachute inequalities introduced in [17]; 

inequality (Gl) is called Grishukhin inequality since it was found by Grishukhin along 

with its six switchings [20,21]. 

Let L denote the set of the 36 inequalities listed above. Grishukhin [21] proved 

that every facet-defining inequality of C, is switching or permutation equivalent 

to some inequality in L. We now show that the list L is (up to permutation) 

complete. 

Theorem 6.1. Every facet-defining inequality of C, is permutation equivalent to some 

inequality in L. 

Proof. We only need verify that every inequality obtained by switching a root of some 

inequality in L is also in L. For this purpose, let S and S’ be two subsets of [1,7]; 

clearly, (0’)” = v “” for every vector v in R (i), where SdS’=(S -S’)u(S’- S). It follows 

that every inequality obtained from some inequality (v’)‘x d 0 by switching a root of 

us belongs to the family of all the inequalities (v’)‘x < 0 obtained from the inequality 

vTx<O by switching all the roots 6(S) of u. 

First, consider an arbitrary hypermetric inequality Hyp(bl , . . . , b,), and let 6(S) be 

one of its roots; assume that CiEsbi =O. It is easy to verify that switching 

HYP@I , . . . , b,) by 6(S) yields the hypermetric inequality Hyp(b;, . . . , bh) with b; = - bi 

if icS and b:=bi if i$S. Now it is easy to verify that every switching of an (Hi) 

(i= 1,2,3,4,6,9) is permutation equivalent to one of (Hi), i= 1, . . . , 10. 
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Secondly, consider an arbitrary cycle inequality Cyc(b, , . , b,, . . . , b,) with cycle 

C=(l , . . . ,f), and let 6(S) be one of its roots such that CisSbi= 1. Recall that 

b 1 ,..., b,->O>b,+, ,..., b,, thatf> 3, and that E(C) stands for the edge set of the cycle 

C. It is easy to show that switching Cyc(b,, . . , b,) by 6(S) yields the inequality 

C xij+ 1 

ijsd(S)nE(C) ijsE(C)-S(S) 

(12) 

with b:=-bi if ieS and bi=bi if i&S. Since b;,...,bL=l, (12) is the sum of two 

inequalities one of which is the hypermetric inequality Hyp(b;, . . . , bh) and the other 

one is a ‘switched’ cycle. We simply write (12) as 

Hyp(b;,...,bb)- - 
( 

c xij+ C Xij 60. 
ijod(S)nE(C) ijEE(C)-b(S) 1 

Now consider the cycle inequality (Cl); set 

RI = {{I}, (21, (31, (41, (5)); 

~~={{3,4,5,6,7},(l,4,5,6,7},(1,2,5,6,7},(1,2,3,6,7},(2,3,4,6,7}}; 

R3 ={{1,2,6), {1,2,7}, (2,3,6}, {2,3,7}, {3,4,6}, (3,4,7}, (495, f-9, (4,5,7}, 

{1,5,6},{1,5,7}}. 

It is easy to verify that the set R of all the roots of (Cl) is the union of all sets 6(S) 

with S in Uf= 1 Ri, and that every switching of the inequality (Cl) by a root in R yields 

an inequality that is permutation equivalent to one of the following three inequalities: 

HYPU, 1, -1, -1, -l,l,l)-(%z --23+X34+X45-X15), 

HYP(-1, -l,1,1,1,1, --l)-_(Xl2--23+X34+X45-X1~), 

which are not permutation equivalent (they are (C4), (C5), and (C6), respectively). 

A similar proof holds for (C2) and (C3). 

Thirdly, consider the parachute inequality (Pl); set 

Ri =({3}, {6}, {3,5}, {4,6}, {2,4,6}, (3,597)); 

Rz = ({4}, {5}, (2961, (3,619 (3971, {2,3,5,7}, (294,697)); 

R3 = ({Z 51, {4,7}, {2,5,7), {2,4,7}, {2,5,6}, {3,4,7}, (2,4,5,7}}. 

It is easy to verify that the set of all the roots of (Pl) is the union of all sets 6(S) with 

S in lJ;= 1 Ri [17], and that every switching of the nequality (Pl) by a root 6(S) with 

S in Ri (i= 1,2,3) yields an inequality that is permutation equivalent to inequality (Pi) 

(i= 1,2,3); in addition, inequalities (Pl), (P2), and (P3) are not permutation equivalent. 
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Finally, consider the Grishukhin inequality (Gl); let R denote the set of all its roots. 

Set 

Ri ={{l}, (21, (31, (411, 

R, = { { 1,6,7}, (296971, {3>6> 71, {4,6,7}}, 

R3 = { { 1,619 (3,619 (2,713 {4,7)}, 

Rq={(2,4,5},(1,3,5}), 

R,={(l,3,6},{2,4,7}), 

& = { { 1,4,5}, (394,519 Cl, 2951, {2,3,5>>. 

It is easy to verify that R is the union of all sets 6(S) with S in lJF= 1 Ri, and that every 

switching of the inequality (Gl) by a root in R yields an inequality that is permutation 

equivalent to one of (Gi) (i= 2, ,7). 0 

Theorem 6.2. Everyfacet-dejining inequality of C7 collapses to some triangle inequality. 

Proof. By Theorem 6.1, we only need verify that every inequality in L collapses to 

some triangle inequality. For this purpose, recall that for every partition rc of [l, 71 

and for every vector u in R(i), the vector uA is the rc-collapsing of u. 

First, consider an arbitrary hypermetric inequality Hyp(bi, b2, . , b,), and observe 

that, for every nonnegative integer n greater than or equal to three, Hyp(bi, bZ, . . , b,) 

collapses to a triangle inequality if and only if the set [l, n] can be partitioned into 

three subsets, say Vi, V2, and I’s, in such a way that 

1 bi= c bi= - 1 bi=l. 
icV1 icV2 icV3 

Now it is easy to verify that all hypermetric inequalities in L collapse to some triangle 

inequality. 

To show that every cycle inequality in L and all its switchings collapse to some 

triangle inequality, set 

ui = u(i), n* = &2), U3=UW.6), 

vl=V(‘), 02=u(3), u3=p.51, u4=u1394), u5=p.4.51, u6=uc3.4.51, 

WI = wt2j, w2 = w(2.41, w3 = wUv41, w4= w(1.4.5). 

Now it is easy to verify that the inequalities 

(u”)~x<~, with ~={{1},{3},(2,4,5,6,7)}, 

(v”)~x<<, with rc={{1},{4},(2,3,5,6,7)}, 

(w”)~x<O, with ~~={{2},{3,4,5},{1,6,7)}, 
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and the inequalities 

(uT)~x<O, with rc={{1>,{3},{2,4,5,6,7}}, 

(~l)~x<O, withn={{6},{7},{1,2,3,4,5}}, 

(u”~)~x<O, with 7c={{6},{7},{1,2,3,4,5}), 

(v?)~x<O, with~={{4},(5},(1,2,3,6,7}}, 

(uZ)~X<O, with71=({4},(5},{1,2,3,6,7}}, 

(u”~)~x<O, with 7x={{4},{5},{1,2,3,6,7}}, 

(uS)~X<O, with ~~={{4),{5},{1,2,3,6,7}}, 

(GITx<O, with ~={{4},{5},{1,2,3,6,7}), 

(u”~)~x<O, with 7c={{4},{5},{1,2,3,6,7}}, 

(~‘i)~x<O, with 7r={{4},(5},{1,2,3,6,7}}, 

(~f)~x<O, with ~=~(4},(5},(1,2,3,6,7)}, 

(w;)~x<O, with rr={{4),{5},{1,2,3,6,7}}, 

(w:)~x<O, with rc={{4),{5),{1,2,3,6,7}) 

are triangle inequalities. 
To show that the inequalities (Pl), (P2), and (P3) collapse to some triangle inequal- 

ity, set 
p1 =p(3,7), p2=p(1.3.61~ 

Now it is easy to verify that the inequality 

(P’)~x GO, with n= { (41, {5}, { 1,X 3,6,7}}, 

and the inequalities 

(P’i)TxGo, with ~={{4~,~5j,(1,2,3,6,7jj, 

(P~)~x<O, with 7c={{4},{5},{1,2,3,6,7}} 

are triangle inequalities. 
Finally, consider the inequalities (Gi) (i = 1, . . . ,7). Set 

91 = g(l), g2 =g’ls@, g3 =gfL’Z7), g4,gu.3*5), g5=gUv34, 

gs=gw'5~~ 

Now it is easy to verify that the inequality 

(g”)Tx<O, with ~={(1>,{3},(2,4,5,6,7}} 
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and the inequalities 

(g;)Tx<O, with rc={(6),{7},{1,2,3,4,5}}, 

(g;)Tx<O, with ~={{2},{3},{I,4,5,6,7}}, 

(sf)TxQO, with ~={{2},{4},{1,3,5,6,7}}, 

(g”6)Tx<0, with ~={{3},{4},(1,2,5,6,7}} 

are triangle inequalities. 0 

We do not know any facet-defining inequality of C, which does not collapse to 

some triangle inequality. Moreover, we do not know any facet-defining inequality of 

C, which does not admit a purification; in other words, every facet-defining inequality 

that we know has an expansion that is pure and facet-defining. In particular, the 

facet-defining inequality (Gl) admits a purification; the graph in Fig. 3 is the support- 

ing graph corresponding to this pure inequality: a plain line ij corresponds to an edge 

ij with weight equal to 1, a dashed line ij corresponds to an edge ij with weight equal 

to -1. 
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