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Abstract 

Let X be a set of vectors in R". X is said to be a Hilbert base if every vector in R m which 
can be written both as a linear combination of members of X with nonnegative coefficients and 
as a linear combination with integer coefficients can also be written as a linear combination with 
nonnegative integer coefficients. Denote by ~ the collection of the graphs whose family of cuts 
is a Hilbert base. It is known that Ks and graphs with no Ks-minor belong to A e and that K6 
does not belong to ~ .  We show that every proper subgraph of/([6 belongs to A~ and that every 
graph from ge does not have K6 as a minor. We also study how the class A~ behaves under 
several operations. 

1. Introduction 

Let X be a set o f  vectors in ~m. Set 

/ 

So, N+(X)  is the cone generated by X and 7/(X) is the lattice generated by X.  Clearly, 

Z + ( X )  C_ N + ( X ) n Z ( X ) .  The set Z + ( X )  is sometimes called the imeger cone generated 

by X. The set X is said to be a I-Iilbert base i f  equality holds in the above inclusion, 

i.e., i f  

z ÷ ( x )  = R ÷ ( x )  n z(x). 
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Hilbert bases were introduced in [11] to study total dual integrality. Several examples 
of Hilbert bases arising from combinatorial objects are described in [15]. 

Let G -- (I,',E) be a graph. For each subset S _c I,', the cut 6(S) consists of the edges 

ij E E with IS N {i,j} I -- 1. For simplicity, we also denote by 6(S) the incidence 
vector of the cut determined by S; so 6(S)ij -- 1 if IS N {i,j}[--- 1 and 6(S)i  j = 0 

otherwise, for ij E E. Let ~Yc denote the set of all cuts of G. For simplicity, we let 
R+(G) := ~+(gffc) denote the cone generated by the cuts of G, and 2Z(G) :-- Z(gffc) 
denote the lattice generated by the cuts of G. We also set 2e+(G) := 2e+(gKc). 

Let 9f ~ denote the set of graphs G whose family of cuts 9f'c is a Hilbert base, i.e., 
such that 7 /+(G)= ~+(G)gO ~(G). 

We suppose here that the graphs are without loops and without multiple edges. This 
is no loss of generality since, if a graph G has multiple edges and loops, then G E 9f ~ if 
and only if the graph obtained from G by deleting the loops and replacing the multiple 
edges by single edges belongs to AZ. We recall that a graph H is said to be a minor 
of a graph G if H can be obtained from G by deleting and/or contracting some edges. 

In this paper, we show the following results. 

Theorem 1.1. Let G be a subgraph of K6. Then, G E 9~ if  and only i f  G is distinct 

from g 6. 

Proposition 1.2. I f  G belongs to Jt e, then G does not have K6 as a m&or. 

Hence, K6 is the smallest example of a graph which does not belong to 9f ~. To see 
that K6 ~ $f(, consider the vector x defined by Xe = 2 for all edges of K6 except Xe = 4 
for one edge of  K6. Then, x E •+(K6)NZ(K6) but x ~ Z+(K6) ([4]; see also Example 
4.2). In fact, the proof of Proposition 1.2 is based on the fact that this counterexample 

for K6 can be extended to a counterexample for any graph containing K6. The graph 
K6 provides, therefore, a counterexample to a conjecture of [12], stating that the cuts of 
any graph form a Hilbert basis. Actually, a major open question is to decide whether 

K6 is the only minimal (with respect to taking minors) graph that does not belong 
to A, ~, 

Let us now recall several results that we need for the paper. The lattice 7_(G) can 
be easily characterized. Namely, given x E 2 ~e, 

x E 7/(G) if and only if x(C) -- 0 (mod 2) (1) 

for each circuit C of G. (We set x(C) := ~eEcXe for each subset C C E.) On the other 
hand, characterizing the cone ~+(G) or the integer cone Z+(G) are hard problems, in 
general. The following Theorems 1.3 and 1.4 give the characterization of ff~+(G) and 
Z+(G) for the class of graphs with no Ks-minor. Let x E R+(G). Then, x satisfies the 
following inequality: 

Xe - x ( C  \ {e})~<0 (2) 

for each circuit C of G and each e E C. Inequality (2) is called a cycle inequality. 
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Fig. 2. H6. 

T h e o r e m  1.3 (Seymour [18]). Let G be a graph. Then, ~+(G) consists of the vectors 
x E ~_ satisfying the inequalities (2) for all e E C, C circuit of G, if and only if G 
has no Ks-minor. 

T h e o r e m  1.4 (Fu and Goddyn [10]). Let G be a graph. Then, Z+(G) consists of the 
vectors x E ~e+ satisfying the inequalities (2) and the condition (1) for all e c C, C 
circuit of G, if and only if G has no Ks-minor. 

In other words, Fu and Goddyn showed that every graph with no Ks-minor belongs 
to ~g. The proof of this result is based on the following facts: 

- -  graphs with no Ks-minor can be obtained by means of k-sums (k = 1,2, 3) of' 
planar graphs and copies of the graph 118 (shown in Fig. 1) [19], 

- -  planar graphs belong to ~ [16], 
- -  V8 belongs to ~ ,  
- -  ~ is closed under the k-sum operation (see Proposition 2.7). 
In fact, the graph/(5, which is excluded in Theorem 1.4, also belongs to ~'~ [5,7]. 

Let H6 denote the graph obtained by splitting evenly a node in Ks; H6 is shown in 
Fig. 2. From Seymour's splitter theorem [17], every graph with no H6-minor can be 
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obtained by means of k-sums (k = 1,2) of graphs with no Ks-minor and copies of 
/('5. Hence, from Theorem 1.4 and Proposition 2.7, we deduce that every graph with 
no H6-minor belongs to Yr. Note, however, that the graph H6 also belongs to g (by 
Theorem 1.1; see also Example 2.8). 

The proof of Theorem 1.1 relies mainly on the following Theorem 1.5. However, 
this result does not imply immediately that every subgraph of/(6 belongs to off, since 
we do not know whether g is closed under deletion of edges (we have only a partial 
result; see Proposition 2.3). 

Theorem 1.5. The graph K6\e (obtained by deleting an edge from K6) belongs to $ff. 

The full characterization of the class ~ seems to be a hard problem. One reason 
for that may be that we could not prove that 9f ~ is closed under deletion of edges. 
Another major difficulty for showing that a given graph G belongs to 9¢f is that the 
cone I~+(G) is not known in general (i.e., if G has a Ks-minor). For instance, for 
showing that K6\e belongs to 9f ~, we need first to find the linear description of the 
cone R+(K6\e) (which we did using computer). 

On the other hand, the dual problem, i.e., the characterization of graphs whose family 
of cycles is a Hilbert base, is completely solved. Namely, the family cdc of cycles of 
a graph G is a Hilbert base if and only if G does not have the Petersen graph Pl0 as 
a minor [1]. Note that describing the cone R+(cd~) is 'easy'; indeed, for any graph G, 
the cone I~+(~G) consists of the vectors x E R~+ satisfying the inequalities (2) for all 
e E C and all cuts C of G [16]. Hence, for a graph G with no Pl0-minor, the integer 
cone 2~+((gc) is characterized by the inequalities (2) and the parity condition (1), for 
each e E C and each cut C of G. 

One may ask the same questions at the more general level of binary matroids. 
Let ~t' be a binary matroid on a set E with family of cycles cd~. The question of 
characterizing the matroids whose family of cycles forms a Hilbert basis is raised 
in [12]. 

The following result is shown in [10]: The integer cone 7/+(cd~) consists of the 
vectors x E RE+ satisfying the inequalities (2) and the parity condition (1), for each 
e E C and each cocircuit C of ~g, if and only if ~ / d o e s  not have F~ (the dual Fano 
matroid), R10, J[*(Ks) (the cographic matroid of Ks), or Jt'(Pl0) (the graphic matroid 
of P10), as a minor. The proof of this result is based on Seymour's decomposition 
for matroids with no F.~, R10 minor, and on the fact that the result holds for graphic 
matroids (the above mentioned result of [1]), for cographic matroids (Theorem 1.4) 
and for the Fano matroid FT. Note that the exclusion of the minors F~, R10 and 
• /-t'*(Ks) ensures that the cone R + ( ~ )  is 'easy', i.e., is completely determined by the 
inequalities (2), for C cocircuit of ~¢ ([18]). 

On the other hand, the binary matroids ~ '  for which the lattice 7/(cd~¢) is completely 
determined by the parity condition (1) are characterized in [14]. 

The paper is organized as follows. In Section 2, we study how the class ~ behaves 
under several operations, namely, under contraction and deletion of edges, under the 
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k-sum operation, and with respect to switching. In Section 3, we give the proof of 
Theorem 1.5, i.e., we show that the cuts of K6\e form a Hilbert base; Section 3.1 con- 
tains the description of the cone ~+(K6\e). In Section 4.1, we present the description 
of the cones R+(H6) and R+(H6 + e); in Section 4.2, we give the proof of Theorem 
1.1 and, in Section 4.3, we prove Proposition 1.2. 

2. Operations 

In this section, we group several results showing that the class 9f ~ is closed under 
some operations, namely, under contraction of an edge, under deletion of an edge with 
some additional conditions, and under the 1-, 2-, 3-sum operations. We also give a 
result on 9f ~ related to the switching operation; see Proposition 2.9. 

Let G/e (resp. G\e) denote the graph obtained from G by contracting (resp. deleting) 
the edge e. 

Proposition 2.1. I f  G E ovf, then G/e E ~uf for each edge e of G. 

Proposition 2.2. Assume that G/e E ~f~ for some edge e of G. f i x  E R+(G)M 2~(G) 
and Xe = O, then x E 7/+(G). 

Propositions 2.1 and 2.2 can be easily checked directly. In fact, as was pointed 
to us by Grishukhin, the proof relies essentially on the fact that the cone •+(G/e) 
can be seen as a face of the cone ~+(G). Namely, let e be the edge uv, where 
u, v E V, and let Nu,v denote the set of nodes of G that are adjacent to both u and v. 
Then, the cone R+(G/e) is obviously in one-to-one correspondence with the cone 
~+(G)N {x E RE: xui--xvi--x~ = 0 and x ~ i - x , i - x ~  = 0 for all i E Nu,o}, which is a 
face of the cone R+(G). Proposition 2.2 follows immediately, as well as Proposition 2.1 
(indeed, if the generators of a given cone form a Hilbert basis, then the same property 
holds for any face of this cone). 

We now turn to the case of deletion minors. We can prove an analogue of 
Proposition 2.1 only if we make some additional assumptions on the graph G. Consider 
the following properties: 

v E {0, 1 , -1}  e, (3) 

vT6(s) E 27/ for all cuts 6(S) of G (4) 

for each inequality vTx<~O defining a facet of R+(G). Each cycle inequality (2) clearly 
satisfies the properties (3) and (4). 

Proposition 2.3. Let G be a graph satisfying (3) and (4)for each inequality vrx<~O 
defining a facet of R+(G). I f  G E ~ ,  then G\e E ~ for each edffe e of G. 
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Proof. Let y E ~+(G\e) fq Z(G\e). We show that y E Z+(G\e).  Let x E R e, where 

xf  = y f  for each edge f ~: e of G and xe remains to be determined. Clearly, x E ~+(G) 
if and only if 

Xmax ~ Xe ~Xmin, (5 )  

where Xmax = max(-vTy/VelVe < O, vTz<~O defining a facet of R+(G)) and Xmi n = 

min(-vVy/Ve[Ve > O, vVz<~O defining a facet of R+(G)). Moreover, x E Z(G) if and 
only if 

Xe has the same parity as y(C \ {e}), (6) 

where C is an arbitrary circuit of G containing e. By (3), Xmin,Xmax E 77. Hence, if 

Xmax < Xmin, then Xmax -4- 1 ~Xmi n and we can choose Xe satisfying the above conditions 
(5) and (6). If Xrnin = Xmax, then we set Xe = Xmax = Xmin. W e  ver i fy  that Xe has indeed 
the correct parity. For instance, Xe = vVy, where vTz<~O defines a facet of R+(G) 
and ve = -1 .  Define x ~ E R E by setting x r f = y f  if f is an edge of G distinct from 
e, and g = 0 (resp. Xe ~ = 1) if y(C \ {e}) is even (resp. odd). Clearly, x' E Z(G). 
Therefore, using (4), we deduce that vTx ~ is an even integer, implying that xe has 

the same parity as X~e, i.e., as y(C \ {e}). Therefore, we can choose Xe in such a 
way that x E ~+(G) fq ~_(G). Since G E of ,  we have that x E Z+(G), implying that 
y E 7/+(G\e). [] 

Note that the above proof shows, in fact, that the following weaker form of 

Proposition 2.3 holds. 

Proposition 2.4. Let e be an edge of  a graph G. Suppose that, for each inequality 
vTx<~O defining a facet of  R+(G), Ve E {0, 1,-1},  and vT6(S) E 27/for all cuts 6(S) 
of G. Then, G\e E of  whenever G E of. 

Example 2.5. Every graph on at most 5 nodes belongs to of.  Indeed, K5 E o f  [5,7] 
and every proper subgraph of K5 belongs to off (by Theorem 1.4). 

Let us point out that K5 satisfies the properties (3) and (4); indeed, its facets are 
defined by the triangle inequalities: xij -x ik  -xjk<<.O, for i,j,k E V(Ks), and the 
pentagonal inequality: x12 +x23 +Xl3 +x45 - ~,~.2.3 xjj <~ 0 for any labeling of the nodes 

j=4,5 

of Ks as 1,2,3,4,5 [5,7]. 
Let Gt = (Vt, Et) be a graph, for t = 1,2. When the subgraph induced by I"1 N I"2 is 

a complete graph on k := ]Vj M I"21 nodes, the k-sum of GI and G2 is defined as the 
graph G = (V,E) with V = 111U Vz and E = E l  UE2. 

Proposition 2.6 (Barahona [2]). Let G be the k-sum (k = 1,2,3) of two graphs G1 

and G2. Then, a system of  linear inequalities sufficient to describe the cone ~+(G) 
is obtained by juxtaposing the inequalities that define the cones R+(G1 ) and R+(G2) 
and identifyino the variables associated with the common edges of  G1 and G2. 
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In particular, G satisfies property (3) (resp. (4)) i f  and only i f  Gl and G2 satisfy 

property (3) (resp. (4)). 

Proposition 2.7. Let  G be the k-sum (k = 1,2,3) o f  two graphs G1 and G2. Then, 

G E . ~  i f  and only i f  G~ E ~ f  and G2 E J~. 

Proof. We give the proof in the case k = 3; the cases k = 1,2 are similar but easier. 
Set Vt A V2 := {u ,v ,w} .  We first suppose that G1, G2 E ~,~ and we show that G E ~F. 
Let x E ~+(G) n 7/(G). The projection xt of x on R e' belongs to ~+(Gt) f-) 7/(Gt), 
for t = 1,2. Since Gt E J*~'~, then xt E 7/+(Gt), for t = 1,2. Say, xt = Y']Ac,~c6(A), 
x2 =- }--]s~.~ 6(B), where ~¢ is a multiset of cuts of Gt, i.e., repetition is allowed in 
s~¢, and ~ is a multiset of cuts of G2. We can suppose, without loss of generality, 
that w f [ A , B  for all A E ~¢, B E ~ .  Let ,do (resp..d~, ~¢~, ~ 3 )  denote the multiset 
consisting of all members 6(A) of ~¢ such that u, v ~ A (resp. (u E A, v ~ A), (u ~ A, 

v E A), (u,v E A)).  Define similarly S0, ~ l ,  S2, and S3. Hence, 

X(Ul)) : XI(UV ) : X2(Ul))= I d , l +  1~21 = I s ,  l +  1~21, 

x ( u w )  = x , ( u w )  : x 2 ( u w )  = Id, l+ 1 31 = [S l÷ IS31, 

x(vw)  = x l ( vw)  = x2(vw) : 1~21 + Id3[ = I~zl + Is31, 

yielding that IS,I = (x(uv) + x(uw) - x(vw))/2, 1 21= Is21:(x(uv) + x ( v w ) -  

x(uw)) /2  and 1~31 = IS3[--(x(uw) + x ( v w ) - x ( u v ) ) / 2 .  since I~kl = I~kl, we can 
order the members of d k  as Al . . . . .  Al.~Ckl, and those of ~k as, BI . . . . .  Blo~Ckl, for each, 

k = 1,2,3. Then, x = EAe.~'o 5(A) + EBe~o ~(B)+ ~k:1,2,3 (~1~<i~<1,;/,~ ] t~( Ai U Bi)). 
This shows that x E 7/+(0). Hence, G E ~ .  

Conversely, let us assume that G E ~ .  We show that G1 E-~.  Let y E ~+(GI ) N 

7/(G1). So, y = Y~s 2s6(S)  for some scalars 2s~>0, where the cuts ~(S) are taken in 
Gl with w ~ S. Set x = ~-]s 2s6(S),  where the cuts fi(S) are now taken in the graph 

G. Hence, Xiw = O, xiv = Yvw, Xiu = Y~w for each node i E V2 - Vl, and xij = 0 for 
all nodes i , j  E V2 - VI. This observation permits to check that x ( C )  E 2Z for each 
circuit of G, i.e., x E Z(G).  Therefore, x E 7/+(G) since G E ~f. This implies that 
y E 7/+(G!). Hence, Gl E ~ .  [] 

Example 2.8..As an application of Proposition 2.7, we obtain that the graph K6 - P 3  
(i.e., K6 with a path on three nodes deleted) belongs to A "~ (since it is the 3-sum of 
K4 and K5 and K4,K5 E ~f~, as mentioned in Example 2.5). By Propositions 2.3 and 
2.6, we deduce that the graph obtained by deleting an edge from K 6 -  P3 still belongs 
to ~ .  In particular, the graph H6 + e (i.e., H6 with one more edge among its nodes) 
belongs to 3tf. (//6 is shown in Fig. 2 and H6 + e in Fig. 7.) Then, H6 too belongs 
to ~ since all the inequalities defining facets of H6 + e satisfy (3) and (4) (see 
Section 4.1 ). 
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We conclude this section with a result related to the switching operation. Given 
a cut 6(14) in G and v E R E, define v ~(~ E ~E by (v6(~))e = -re if 6(A)e = 1 and 

(v6(A))e = Ve if  6(A)e = 0, for all edges e E E. Then, the mapping r6(~) : R £ ~ R e 
defined by r~(A)(v) = v 6(A) + 6(A), for all v E R e, is called a switching mapping. It is 
well known that any switching mapping r6(~) preserves the cut polytope [3]. 

Switching also preserves the cone R+(G) in the following sense [5]. Suppose that 
the inequality vTx<~O is valid for R+(G) and that vT6(A) = 0; then, the inequality 
(V6(A))TX~<0, obtained by switching wTx<~O by the cut 6(A), is valid for R+(G). 
Moreover, (V6(A))Tx <~0 defines a facet of R+(G) if and only if vTx <~ 0 defines a facet 
of R+(G). 

In other words, if ~ is a face of ~+(G) with ~ := {6(Al) . . . . .  6 ( A / ) }  denoting the 

set of nonzero cuts lying on ~ ,  then the set ~ ' )  := {216(A1 )+~--]2~<i~<t ,~it~(AiZXAl )[ 
21,2~ . . . . .  J.t~>0} is also a face of ~+(G), obtained by switching the face ~ by the 
cut 6(A~ ). 

We now give a result which will be very useful for showing that some given graph 
G belongs to ~ .  For this, we need two more definitions. Given x E ~+(G), we define 
its minimum ~+-size s(x) by 

s(x):=min(s~c_vCCSlX=s~cv°tS6(S)withall~s>~O 

and, given x E 7/+(G), we define its minimum 7~+-size h(x) by 

h(x):=min(s~-~cvO~SlX= ZOts6(S) withall~sET/+ ) .  
_ s c _ v  

As above, let ~ be a face of R+(G) and let ~ = {6(A~) . . . . .  6(At)} denote the set 
of nonzero cuts lying on ~ .  We consider the following two properties: 

If x E R+(G) fq 7/(G) and x E ~ ,  then x 6 2V+(G) (7) 

If x E R+(G) N 7/(G) and x E ~,~, then s(x) E 7/; moreover, 

El<i<~t2i = s(x) for each decomposition x = ~~l<~i<~t~i(~(.4i) with 
2i~>0 for l<~i<~t. 

(8) 

Proposition 2.9. Assume that the face ~ has the property (7) and that both faces 
and ~gAI) have the property (8). Then, the face ~6(A~) has the property (7). 

Proof. Let z E R+(G) fq Z(G) such that z E o~-6(a~). We show that z E Z+(G). By 

assumption, we have that z=216(Al)+~-]2<~i<~t2i6(AiLL41) for some scalars 
21 . . . . .  2t~>0. Since 0~-6~,41) has the property (8), we have t h a t  ~l<~i<~t 2i = s(z) E 7/. 

Set y : =  ~~2<<.i~t ,~i6(Ai). Hence, y E ~ .  Since ~- has the property (8), we deduce 
that Y~2<~i<~t 2i = s(y)E 7/. Note also that y = r~(A,)(z)+ 6(A1)(s(z)- 1). Moreover, 
y E 2V(G); indeed, z E 7/(G) which implies obviously that r6(A,)(z) E 7/(G). 
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Therefore, from the property (7) applied to ~ ,  we deduce that y E 71+(G), i.e., 

y = El<~i<~tO~i(~(,4i) for some nonnegative integers cq. Moreover, ~l<~i<~tO~i = s ( y ) .  

Then, from z = r~A,)(y)+ ~(Ai ) ( s ( z ) -  1), we obtain that z = ~-~2~i<~t ~i~(Ai)+ 
5(Al)(s(z) - s(y)). This shows that z E 7/+(G), since s(z) - s(y) = 21 E Z+. [] 

3. The cuts of  K6\e form a Hilbert base 

In this section, we show that the cuts of K6\e form a Hilbert base. Let G6 denote the 

graph on the nodes 1,2, 3,4, 5, 6 whose edges are all pairs except the pair (5,6), i.e., 

G6 = Kr\e for e = 56. We present the description of the facets of the cone ~+(G6) in 

Section 3.1 and we show that G 6 E ~ in Section 3.2. We use the following notation 
throughout: For b E R n, the vector Q(b) E R(~) has ijth entry bibj, for 1 ~<i < j<~n. 

3.1. Description o f  the cone ~+(G6) 

The facets of R+(G6) are grouped into three classes. 

(a) The first class is composed of 48 trianole facets; they are induced by the cycle 
inequalities (2), where C is one of the 16 triangles of  G6, namely, C -- (i , j ,k)  for 
l~<i < j < k~<4, C = (i,j, 5) and C = (i , j ,6)  for l~<i < j~<4. There are 23 nonzero 

cuts lying on each triangle facet. 

(b) The second class consists of  20 pentagonal facets. They are induced by the 
inequalities 

Q(bl,b2,b3,b4,bs,b6)Tx :--- ~ bibjxi j  <~ 0, 

I ~i<j<~6 

where b = (bl . . . . .  b6) is one of the sequences (bi = bj = - 1 ,  bk ---- 1 for k E 
{1,2,3,4,5} \ {i,j}, b 6 = 0) for l~<i < j~<5, or (b~ = bj = - 1 ,  bk = 1 for k E 

{1,2,3,4,6} \ {i,j}, b5 = 0) for i < j,  i ,j  E {1,2,3,4,6}. There are 19 nonzero cuts 
lying on each pentagonal facet. For instance, the vector Q(1,1, 1 , - 1 , - 1 , 0 )  is shown 

in Fig. 3. We use the following notation: a plain edge ij represents a component +1 
for the /j-coordinate and a dotted edge represents a component - 1 ,  while no edge 

means a component 0. 

1 2 

4 5 

. 6  

Fig. 3. Q(1,1,1,-1,--1,0). 
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Fig. 4. wl. 

(c) The third class consists of 56 facets, which are grouped into 4 switching classes. 
Set 

wTx : :  Xl6 "~ X46 -'1- X45 -- XI5 "['- X23 --  ~ Xij. 
i-2.3 

j -4.5,6 

The vector wl is shown in Fig. 4. The inequality wTix<<,O is valid for the c o n e  • + ( G 6 ) .  

There are exactly 13 nonzero cuts satisfying the equality wTx = 0, namely, the cuts of 
the set 

d j  :-- {fi(A) [ A = 1,4,6,14,15,24,26,34,36, 124, 125,134, 135}. 

(For simplicity, we use the following notation throughout this section: we denote 
the set {1,4} by the string 14, similarly for the other sets.) The set d l  is linearly 
independent. Hence, the inequality WTX <~ 0 defines a simplex facet of R+(G6). Observe 
that the inequality wTx <~ 0 arises as the sum of the pentagonal inequality: Q ( 0 , -  1 , -  1, 
1, 1, 1 )Zx ~<0 and of the triangle inequality: Xl6- x15-x56 ~<0, which both define facets 
of the cone R+(K6). 

For each 6(,4) E ~ j ,  the inequality (w~<A~)Tx~<0, obtained by switching the in- 
equality w~x <~ 0 by the cut 6(,4), defines another (simplex) facet of R + ( G 6 ) .  We show 
in Fig. 5 the vector w~ ~4). In fact, Figs. 4 and 5 show the two possible patterns for the 
coefficients of the switchings of w~. 

By permuting cyclically the nodes of (1 
wT2x<~ O, w~x<<.O, WTaX<~O, defined by 

wT2 X : :  X26 -~- Xl6 -[-- X15 - -X25 -t- X34 --  

wTx .= X36 -[-- X26 ~- X25 -- X35 -~- X14 --  

WT4 X :~--~ X46 -~ X36 -~- X35 --  X45 -'1- X12 --  

,2,3,4), we obtain three more inequalities 

Xi], 
t~3,4 

1~1,5.6 

i=[,4 
j=2.5.6 

i=1,2 
/=3.5,6 
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6 

5 • . . . . . . ~  

4 

6{4} Fig. 5, w I . 

6 

4 

6 

, . 

Fig, 6. w2, w3, w4, 

6 

3 

Each of them yields, via switching, 14 other facets of ~+(G6). We show in Fig. 6 
the vectors w2, w3 and w4. Let d i  denote the set of nonzero cuts satisfying the equality 
wTi x = 0, for i = 2,3,4; they are easily obtained from ~¢1. 

We refer to the facets of ~+(G6) induced by the inequalities wTix<~O and their 
switchings (w~A))TX<~0, for A E ~¢i, i -- 1,2,3,4, as the special facets of I~+(G6). 
We call the facet induced by w~x<~O the main special facet of ~+(G6). 

We checked, using computer, that the above triangle facets, pentagonal facets and 
special facets constitute all the facets of R+(G6), Hence, ~+(G6) has 48+20+56 = 124 
facets in total. We conclude with an observation. 

Remark 3.1. (i) If vTx<~0 defines a triangle facet, then vTf(A) E {0,--2} for all cuts. 
(ii) If vTx~<0 defines a pentagonal facet, then vT6(s) E {0,--2} for all cuts except 

two cuts for which vT6(s) = --6. Namely, vTfi(ij) = vT6(hkl) = - 6  for the pentagonal 
inequality Q( b )Tx <~O with bi = bj --- --1 and bh = bk = bt = 1. 

(iii) If vTx~<0 defines a special facet, then vX6(S) E {0 , -2}  for all cuts except 
four cuts for which vTfi(S) = --4,--6. Namely, for the main special facet, w~fi(45) ~- 
w~6(146) = - 4  and w~fi(23) -- w~6(123) = -6 .  (One deduces easily for which cuts 
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every other special facet takes value - 4  or - 6  using permutation and switching; for 
instance, w~6(15)= w2T6(126): --4 and wT~(34)= W~6(234): --6.) 

3.2. The Proof o f  Theorem 1.5 

In this section, we show that G6 belongs to ~ ,  i.e., that 7/(G6)M R+(G6)_c 7/+(G6). 
Our proof is by contradiction. We suppose that there exists y E Z(G6) A ~+(G6) \ 
2Z+(G6) and we take such y for which the sum )-'~eee(6~)Ye is minimum. Our goal 
is to show that no such y exists. This is done by a careful analysis of the possible 
locations of the point y within the cone R+(G6). Clearly, y satisfies: 

y -- (~(A) ~ ff~+(G6) for all cuts 6(A). (9) 

(For, if not, then y - 6(A) E 7/+(G6) by the minimality of y, which would imply that 
y E 7/+(G6).) Let o~ denote the smallest face of R+(G6) that contains y, let ~ denote 
the set of nonzero cuts lying on ~ ,  and let ~e" denote the set of vectors v for which 
the inequality v~x<~O defines a facet of ~+(G6) such that vTy = 0. The proof can be 
sketched as follows: We show in Claim 3.5 and Corollary 3.7 that o~- is not contained 
in any pentagonal or special facet. Hence, y may lie only on some triangle facets. 
This fact, combined with the observation from Claim 3.3, permits to exclude many 
cuts from the set ~.  We can show, in fact, that ~IC_{6(A)[A = 12, 13, 14,23,24,34}. 
A direct argument permits then to conclude that y E ~'+(G6), in contradiction with our 
assumption. 

From now on, y is a nonzero vector of Z(G6)Nff~+(G6)\Y-+(G6), which satisfies (9). 
We shall use throughout the following notation: For distinct i , j ,k, we set y([ij]k):-- 
yij - yik - Yjk. We start with some easy observations. 

Claim 3.2. ye~> 1 for all e E E(G6). 

Proof. This follows from Proposition 2.2 and the fact that every contraction minor of 
G6 belongs to ~ .  [] 

Claim 3.3. For each cut 6(A) E ~, there exists an inequality vTx <~ 0 definin9 a facet 
o f  ~+(G6) such that (vTy : --2, vT f (A)  E {--4,--6}) or (vT y : --4, vT f (A)  = --6). 

Proof. As y -  6(A) ~ ~+(G6), there exists an inequality vTx....<0 defining a facet of 
~+(G6) such that v T ( y -  6(A)) > 0. Hence, O>>.vTy > vT6(A) with vTy<-~ --2 (else, 
vTy = vT6(A) = 0 as 6(A) E ~).  One can conclude using Remark 3.1. [] 

Corollary 3.4. Every cut o f  ~ is o f  the form 6(A), where A belon#s to the set 
{5,6}U{12, 13, 14,23,24,34}U{15, 16,25,26,35, 36,45,46}U{56}U{ 123, 124, 134, 156} 
U {125, 126, 135, 136, 145, 146}. (We have #rouped tooether the sets accordin9 to the 
symmetries o f  G6. ) 
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Proof.  By Claim 3.3, O(i) ~ 0~ since no inequality vTx<<,O defining a facet o f  ~+(G6) 

satisfies: vT6(i)-- - 4 , - 6 ,  for i = 1,2,3,4 (see Remark 3.1). [] 

Claim 3.5. The vector y does not lie on any of  the special facets. 

Proof. Let ~ 0  denote the main special facet of  ~+(G6) , defined by the inequality: 

w~x<<,O. We show that ~ 0  has property (7). For this, let z E [~+(G6)N 77(G6)N ~ 0 ;  

so, z = ~-~6t,4)e.~ cta6(A), for some scalars ~A >t0 and z satisfies (1). We show that all 

~,4's are integers: 

• Since z([1612) = -2~24 E 277, we deduce that ~t24 E 77. Similarly, ~34,cqz4 E 77, from 

z([1613),z([1215) E 277. 

• From z([1614) E 277, (X 4 + (X24 + ~X34 E 77, implying that 0~ 4 E 77. 

--  z([1214) E 277, 0~36 + ~XI2 4 -- ~X4 ~ 7/ and, thus, <X36 ~ 7/. 

E 277, (X24 + 0~36 + 0~12 4 + (X125 E 77, implying t h a t  ~ 5  E 77. 

27/, tx 6 + ~x36 + (x124 -1- tXl25 ~ 77, implying t ha t  ~x 6 ~ 7/. 

• From z([1213) 
• From z(2136]) 

• From z([1216) 
• From z(1123]) 

• From z(1135]) 
• From z([1412) 

• From z(1134]) 

- z(1134]) E 277, 
E 277, ~q + ~q4 + 

- z (1125] )  E 277, 

0~14 -- 0t34 -- 0tlZ5 E 77, implying that ~14 E Z. 
0~124 E 77, i.e., cq E Z. 

0t26 -- Gtl E 77, i.e., ot26 E 77. 
E 277, ~l + ~15 + 0~34 + 0~125 E 7/, i.e., ~15 E 7/. 

• From z(2[14]) E 277, ~14 + (x26 -q- ~Xl34 E 77, i.e., ~t134 E 7/. 

• Finally, z(1124]) E 277, i.e., ~l + cq5 + ~x24 + ~x135 E 77, i.e., ~135 E 7/. 
Hence, the main special facet o~0 has property (7). Moreover, f ro  has property (8); 

indeed, s(x) = (x14+x16+x46)/2  for any x E o~0 (since the triangle (1 ,4 ,6)  cuts all the 
cuts o f  ~¢1 ). It is easy to see that every switching ~ s )  of  ~ 0  by a cut 3(B) E s~¢1 O" 0 
also has property (8). Therefore, by Proposition 2.9, the face ~-~(B) has property (7). 

Hence, by symmetry,  every special facet has property (7). This shows that the vector 
y cannot lie on any special facet. [] 

Let ff denote the face of  ~+(G6)  which consists of  the vectors x E •+(G6) satisfying 

the pentagonal equality: Q(1,1, 1, -- l, --1, 0)Tx = 0 and the three triangle equalities: 

x(1145]) = 0, x(2145]) = 0 and x(3145]) = 0. The set of  nonzero cuts lying on 
f~ is 

~ := {6(A) I A = 6, 14, 146, 15, 156,24,246,25,256,34,346,35,356}.  

Note that the only cuts lying on the pentagonal facet defined by Q ( 1 , 1 , 1 , -  1 , -  1,0)Tx 

~<0 but not on ff are 6(,4) for A E {1,2,3, 16,26,36}. 

Claim 3.6. The vector y does not lie on the face ft. 

Proof.  Suppose, for contradiction, that y E ~.  Then, y = ~-~6~)e~t, ~A6(A) for some 
scalars ~>~0 .  We can assume that 0~<a.~ < 1 for all 3(A) E ~ j .  (Else, if ~A>~I for 
some A E ~ ,  then y -  fi(A) would still belong to the cone R+(G6), contradicting (9).) 
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/3 S :=  5 S "q- 5SU{6 } for S E S, ~ :---- {14, 15 ,24 ,25 ,34 ,35} .  

Let/(5 denote the subgraph of  G6 induced by the nodes: 1,2, 3, 4, 5 and let Yr5 denote 
the projection of  y on the edge set of  Ks. Then, 

Yr5 = Z / 3 s 6 ( S )  and y --  566({6})  + E 5s~(S) + (/3s - 5s)6(S U {6}). 
S E . ~  SE:,~' 

As a consequence, 

esE{O,  1} for a l l S E 5  e. 

(This follows from the fact that Yx5 lies on a simplex facet of  I~+(Ks), namely, the one 
defined by the pentagonal inequality: Q(I, 1 , 1 , -  1 , -  1 )Tx ~<0, and the fact that/('5 E 
~ .  Alternatively, this follows from the fact that y(4[ i j ] ) ,y (5[ i j ] )  E 2/7 for l~<i < 
j~<3.) The following conditions on the 5s's and /3s'S can be derived from the parity 
condition ( 1 ): 
• As y(6145]) = 256 E 27/, we deduce that 

56 ~--- O, Y46 + Y56 ---- E ~S- ( 1 0 )  

S E , ~  

• From y(6[/j])  E 2/7, for 1 ~<i < j~<3, we obtain that 

514 d-  0~15,524 "1- 5 2 5 , 5 3 4  + 535 E { 0 ,  1} .  (1 1) 

• From y(i[46]) E 27, for 1 ~<i~<3, we obtain that 

515 -{- /324 - -  524 + /334 - -  534 E /7, 

525 -~ /314 - -  514 -~- /334 - -  5 3 4 , 5 3 5  -~- /314 - -  514 q'- /324 - -  0~24 E 7/.  (12)  

• From y(6[i4]) E 2Z, for 1 ~<i~<3, we obtain that 

514 -~ /~25 - -  525 -~-/335 - -  535 E 7/,  

524 "-[- /315 - -  515 + /~35 - -  5 3 5 , 5 3 4  + /315 - -  0~15 + /325 - -  525 E /7. (13)  

We now distinguish two cases depending whether some/3s is equal to 0 or not. In both 
cases, we find that y belongs to /7+(G6), which contradicts (9). 

Case A: /3s = I for all S E 5 p. Then, y46+Y56 = 6 and Y12 = Yl3 = Y23 = 4, 
y 1 4  = y15  = Y24 = Y25 = ) '34  ----- Y35 = 3 ,  ) '45 = 6 .  M o r e o v e r ,  

Y16 ---~ 

Y26 = 

Y36 = 

y46 = 

Y56 = 

4 + Oil4 -]- 515 - -  524 - -  525 - -  534 - -  535 ,  

4 - 514 - -  0~15 + 524 -'1"- 525 - -  534 - -  535 ,  

4 - 5~4 - 5z5 - 524 - 525 d-  534 + 535 ,  

3 + 0~14 - ~15 --I- 524 - 525 + 534 - 535 .  

3 - 0~14 -J¢- 515 - ~24 -I- 525 - 0~34 -J¢- 535.  
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From (11), we know that the three sums: ~14 + a15,~24 + ~25,~34 + ~35 belong to 
{0, 1}. This gives (up to symmetry) the following four possibilities: 

Case AI: al4 + ~15 = G(24 q-  ~25 = ~34 + ~35 ~--- 0. Then, y = ~SE.~e es6(S) E 7/+(G6). 
Case A2:0~14 q- ~15 = 1 a n d  ~24 q- ~25 = ~34 q- ~35 = 0. Then, Y16 = 5, Y26 ~- Y36 = 3 

and y46 E {2,4}. By symmetry between the nodes 4 and 5, we can suppose that 

y46 ~- 2. Then, y = 6(146) + 6(15) + 6(246) + 6(256) + 6(346) + 6(356) E 2~+ 

( G 6 )  

Case A3:at4 + a~5 = a24 + a25 = 1 and a34 + ~35 = 0. Then, Y16 ~- Y26 = 4, Y36 ~- 2 
a n d  y46 E {1,3,5}. By symmetry, we can suppose that Y46 C {1,3}. 

- -  If Y46 = 1, then y = 6(146) + 6(15) + 6(246) + 6(25) + 6(346) + 6(356) E 7 /+(G6) .  

- -  If Y46 = 3, then y = 6(14) + 6(156) + 6(246) + 6(25) + 6(346) + 6(356) E 7 /+(G6) .  

Case A4:~14 -]- ~15 = ~24 q'- ~25 = ~34 -~- ~35 ~--- 1. Then, Y16 = Y26 = Y36 = 3 and, up 
to symmetry, Y46 = 2. Then, y = 6(14) + 6(156) + 6(246) + 6(25) + 6(346) + 6(35) E 

7 /+(G6) .  

Case B: Some es is equal to 0. Say,/~14 = 0. Then, ~14 ~- 0 and, using (11), ~ = 0. 

From (11 ) and (12), we deduce that ~24 + ~5, ~34 + c~35, :¢25 + ~34 - -  ~34 E {0, 1 }. If one 
of these three quantities is equal to 0, then ~24 ~--- 0~25 = ~34 = 0~35 = 0 ,  which implies 
that y = ~ s ~  es6(S) E 7/+(G6). Otherwise, the above three quantities are equal to 1, 

which implies that ~25 = ~34 := • and ~24 = ~35 = 1 - ~  for some 0 ~< ~ < 1. Moreover, 

using (12), (13), £24 ~" ~25 = /334 = /~35 = 1. Hence, y ----- ~(6(25) + 6(246) + 6(34) + 
6(356)) + (1 - ~)(6(24) + 6(256) + 6(346) + 6(35)). Therefore, Ye = 2 for all edges 
except y23 = y45 = 2, in which case y = 6 (246)+  6 (25 )+  6 ( 3 4 ) +  6(356) E 7/+ 

(G6) .  [ ]  

Corollary 3.7. y does not lie on any pentagonal facet. 

Proof. There are, up to symmetry, two pentagonal facets to consider, namely, those de- 
fined by the inequalities Q(1, 1,1,-1,--1,0)Tx~<0 and Q(1, 1,-1,1,--1,0)Tx~<0. Note 

that the second one arises by switching the first one by the cut 6(34). 

Suppose first that Q(1,1, 1 , - -1 , - - l ,0)Ty = 0. Then, y = ~6(A~e~ ~A6(A) for some 
scalars 0~<~A < 1, where ~ C _ ~  U {6(16),6(26),6(36)} (recall that 6(1),6(2), 

6(3) ~ ~ by Corollary 3.4). From y(i[45]) E 2Z, for i = 1,2,3, we obtain that 

~i6 E 7/ and, thus, ~i6 ~--- 0 ,  for i = 1,2, 3. Hence, y lies on the face f#, contradicting 
Claim 3.6. 

Suppose new that Q ( 1 , 1 , -  1 , 1 , -  1,0)Xy = 0. Then, y = ~ 6 t A ) ~  ~A6(A) for some 

scalars O<~aA < 1, where ~C_:~3 ,~  U {6(16),6(26),6(46)} and ~?~3,, = {6(A) [ 

A = 6, 13, 136, 15, 156,23, 145,25, 134,34, 125,45, 123} denotes the set of  nonzero cuts 
lying on the switching ff~(34) of f~ by 6(34). Again, from y(i[35]) E 27/, for i = 1,2,4, 

we obtain that 0~i6 = 0 ,  for i ----- 1,2,4. Hence, y lies on the face ~ 6 ( 3 4 ) .  Note that the 
proof of Claim 3.6 shows that the face c~ has the property (7). Moreover, both faces 
c~ and ~6(34~  have the property (8); indeed, s(x) = (x45 + x46 q- x56)/2 if x E ~ and 
S(X) = (X35 Jr-X36 q-X56)/2 if X E f#~(34). Therefore, by Proposition 2.9, the face (~fi(34) 

also has the property (7). Hence, y E ~ + ( G 6 ) ,  contradicting (9). [] 



272 M. Laurent/Discrete Mathematics 150 (1996) 257-279 

From now on, we can suppose that y does not lie on any pentagonal or special 
facet, i.e., the set ~ of the facets of R+(G6) that contain y consists only of triangle 
facets. We conclude the proof in the following way. In the following Claims 3.8-3.11, 
we show that 

:~ C{6(A) I A = 12, 13, 14,23,24,34}. 

Therefore, y = ~126(12) + ~t136(13) + 0q46(14) + 0~236(23) + ~246(24) + 0~346(34) for 
some normegative 0Cs. Using the fact that y([ij]k) E 2Z for 1 ~<i < j~<3 and k = 4,5, 
we deduce that the ct's are all integers, which contradicts (9). This terminates the proof 
of Theorem 1.5. 

Claim 3.8. The cuts 6(5),6(6),6(56) do not belong to ~1. 

Proof. Suppose that 6(5) E ~ .  By Claim 3.3, there exists an inequality urx<<,O defin- 
ing a facet of R+(G6) such that ua'6(5) E { - 4 , - 6 }  and uTy > uT6(5). There are four 
possibilities for u, namely, u = w~ (4), w2 ~v5), w3 ~(2) and w4 ~C3), for which U T6(5 )  = -4 .  
By symmetry, it suffices to consider the case u = w~ 4). Hence, we have that (W~4))Ty = 
--2. On the other hand, we know from Corollary 3.4 that 6(1) ~ ~.  Hence, there ex- 
ists v E f/" such that vT&(1) < 0; it is necessarly a triangle inequality and there are, 
up to symmetry, the following three triangle inequalities: x(1123])~<0, x(1125])~<0, 
x(1 [26]) ~< 0 to consider. 

(i) Suppose that the inequality x(1123])~<0 belongs to f/~, i.e., y(1123]) = 0. After 
rearranging the terms, we obtain that y(1123])+ (w~(4))Ty = Q(-1,1,  1, 1,0,--1)Ty + 
y(5[14])+y(5123]). But, Q(-1,1,1,1,0,--1)Ty~<0, y(5[14])~< --2 and y(5123]) ~< - 2  
(indeed, the inequalities x(5[ 14]) ~< 0 and x(5123]) ~< 0 do not belong to f /  since they 
are not satisfied at equality by 6(5)). Hence, y ( l [23] )+ tw 1 ) y ~  - 4 ,  contradicting 
the fact that y(1123]) = 0 and (w~(4))Ty = --2. 

(ii) Suppose that y(1125]) = 0. Then, y(l[25])+(W:(4))Ty = O(-1,1,  1, 1 ,0 , -1)Ty+ 
y(5[13]) + y(5[14])~< - 4, yielding again a contradiction. 

(iii) Suppose that y(1126]) --- 0. Then, y(l[26])+(W:(4))Ty = y(6134])+y(5124])+ 
y(1 [2315) ~< -- 4, yielding a contradiction. 

So, we have shown that 6 ( 5 ) ~ .  Similarly, 6 ( 6 ) ~ ,  implying that 6 ( 5 6 ) ~ .  [] 

Claim 3.9. The cuts 6(123),6(124),6(134),6(156) do not belong to ~1. 

Proof. Suppose, for instance, that 3(123)E ~ .  By Claim 3.3, there exists uTx~O 
defining a facet of •+(G6) such that uT6(123) E { - 4 , - 6 }  and ury > u1"6(123). 
The possibilities for u are two pentagonal facets and four switchings for each spe- 
cial facet wi, i = 1,2,3,4. By symmetry, it suffices to consider the cases (i) uTx = 
Q(I, 1, 1, --1, --1, 0)rx ~< 0, (ii) u = Wl, (iii) u = w~ O) (for which uT3(123) = --6), 

. ~ (15)  ----- w ~ ( 6 )  and (iv) u = w 1 , (v) u (for which uT6(123) = -4) .  
(i) Suppose that Q ( 1 , 1 , 1 , - 1 , - 1 , 0 ) T y =  0. Since 6(5) ~ ~ (by Claim 3.8), let 

v E f/" such that vr6(5) < 0; it is the triangle inequality x(5[i4])~<0, for i = 1,2,3. 
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Suppose, for instance, that y (5[14] )=  0. Then, y (5[14] )+  Q(1,1,1, -1 ,  --1, 0)Ty = 
y(4123]) + y(5[13]) + y(5[12])~< - 6, yielding a contradiction. 

(ii) Suppose that wTy E {--2,--4}. Since 6(6) ~ ~ ,  there exists v E "U such that 
vV6(6) < 0; it is one of the triangle inequalities x(6[14])~<0, x(6124])~<0 (or x(6134]) 

~<0). But, y(6[14]) + wXy = y(6123]) + y(2145]) + y([14135)<~ -- 6 and y(6124]) + 
w~y = y(6123]) + y(3145]) + y([61152)~< - 6, yielding a contradiction. 

(iii) The case when (w~O))Ty C {--2,--4} is identical to the case (ii), exchanging 

the nodes 5 and 6. 
. 6(15) x T . .  (iv) Suppose that twl ) y = - 2 .  As in (ii), we can suppose that y (6[14] )=  0 

or y(6124]) = 0. But, y(6[14]) + (w~OS))Ty = Q( -1 ,1 ,1 , -1 ,1 ,0 )Vy  + y(6[12]) + 

y(6[13])~< - 4 and y(6124]) + (w~(ls))Xy = y(4135]) + y([2316) + y(115216)~< - 4, 
yielding a contradiction. 

(v) The case when (w~(6))Ty = --2 is identical to the case (iv), exchanging the 

nodes 5 and 6. [] 

Claim 3.10. The cuts 3(125),3(126),3(135),3(136),3(145),3(146) do not belon9 
to ~. 

Proof. Suppose, for instance, that 6(146) E ~.  By Claim 3.3, let urx<~O define a facet 
of •+(G6) such that uT6(146) E {--4,--6} and uTy > uT6(146). So, uXx<~O is the 
pentagonal inequality Q( 1, - 1, - 1,1,0,1 )Xx <~ 0, u = w~ (is), for which u T6(146) = - 6 ,  
or u = wl, for which uT6(146) = --4. (The case when u is one of two switchings of 

w2, w3, or w4 follows by symmetry.) 
(i) Suppose that Q(1, - 1 ,  -1 ,1 ,  0,1)Ty E { - 2 , - 4 } .  Since 6(6) ~t~,  there exists 

v E ~ such that vX6(6) < 0; we can suppose that it is one of the inequalities x(6[12]) 
~<0 or x(6[14])~<0. But, y(6[12]) + Q ( 1 , - 1 , - I ,  1,0, 1)Ty = y(2146]) + y(6123]) + 
y(3[14])~< --6 and y (6 [14] )+Q(1 , -1 , -1 ,1 ,0 ,1 )Xy  = y(6123])+y(2[14])+y(3[14])<~ 
- 6 ,  yielding a contradiction. 

(ii) Suppose that (w~15))Ty E {--2,--4}. From the fact that 6 (5 )~  ~ ,  we know 

that one of the inequalities x(5[li])~<0 (i = 2,3), x(5123])~<0, x(5[i4])~<0 (i = 2,3) 
belongs to ~e-. But, y(5[12])+(w~lS))Xy --- Q(1 ,1 ,1 , -1 ,0 , - -1)Ty+y( l [35] )+y( [1415)  

~< -- 6, y(5123]) + (W~OS))Ty = y([2316) + y([2314) + y(15146]) ~< -- 6 and y(5124]) + 
(w~(15))Xy _ y([2316) + y([3514) + y(15146])~< - 6, yielding a contradiction. 

(iii) Suppose that wTy = --2. From the fact that 6(6) ~ ~ ,  we can assume that 
one of the inequalities x(6[12])<~0, x(6[14])<~0, x(6124])~<0 belongs to ~ .  But, 
y(6[12]) + w~y = y(2146]) + y([2316) + y([1215) + y(3145]) ~< - 4, y(6[14]) + wTy = 
y([2316) + y(2145]) + y(314115)~ -- 4 and y(6124]) + w~y = y(3145]) + y([2316) + 
y([16125)~< - 4 ,  yielding a contradiction. [] 

Claim 3.11. The cuts 6(15),6(16),6(25),6(26),6(35),6(36),6(45),6(46) do not be- 
lon9 to ~. 

Proof. Suppose, for instance, that 6(45) E ~ .  Then, there exists uTx<<,O defining a 
facet of II~+(G6) such that uX6(45) E {- -4 , -6}  and uXy > uT6(45); it is (up to 



274 M. Laurent/Discrete Mathematics 150 (1996) 257 279 

symmetry) Q(I, 1, 1,-1,--1,0)Tx~<0, (W~(6))Tx~0, for which uT6(45) = -6 ,  or wVlx 
~< 0, for which uT6(45) = --4. 

(i) Suppose that Q(1,1,1, -1 ,  -1 ,  0)Ty E { - 2 , - 4 } .  We can suppose that 
x([1415)~<0 belongs to -/F (since 6(5) ~ / ~  and using symmetries). But, y([1415) + 
Q( 1, 1, 1, - 1, - 1,0)Zy = y([ 12]5 ) + y([ 13]5 ) + y([2315 ) ~< - 6, yielding a contradiction. 

(ii) Suppose that (w~(6))Ty E { - 2 , - 4 } .  We can suppose that x([1415)~<0 or 
x([2415)~<0 belongs to ~r'. But, y([1415) + (W~(6))Ty = Q(-1,1,  1,-1,0,  1)Ty + 
y([1215)+y([ 1315) ~< --6 and y([2415)+(w~ t6))Ty = y(4136])+y([2315)+y(15126]) ~< - 
6, yielding a contradiction. 

(iii) Suppose that w~y = -2 .  We can suppose that x([1415)~<0 or x([2415)~<0 
belongs to ,/r. But, y([2415)+w[y = Q(-1,  1, 1 , -  1,0, 1)Ty+y([1315)+y([1215)<~ --4 
and y([2415) + w[y = y([2315) + y([61152) + y(3146])~< - 4, yielding a contradic- 
tion. [] 

4. The role of K6 in the class 

In this section, we give the proofs of Theorem 1.1 and Proposition 1.2, i.e., we 
show that every proper subgraph of K6 belongs to ~¢g, and that every graph belonging 
to ~ has no K6-minor. For the proof of Theorem 1.1, we need to know the explicit 
description of the facets of the cone R+(H6 +e),  where H6+e is the graph H6 with one 
added edge; see Fig. 7. We present this description in Section 4.1; we also give there, 
for information, the description of the cone ~+(H6). We give the proof of Theorem 1.1 
in Section 4.2 and the proof of Proposition 1.2 in Section 4.3. 

4.1. Description of  the cones ~+(H6) and ~+(H6 + e) 

We consider the graphs H6 and//6 + e from Figs. 2 and 7. So, H6 + e is obtained 
from H6 by adding the edge e = 46 and H6 + e  = K6\{12, 13,56}. We checked, using 

1 6 

5 3 

Fig. 7. H6 + e. 
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5 3 

Fig. 8. u. 

computer, that the cone R+(H6 + e) has 49 facets in total. They are grouped in two 

classes. 
• The first class consists of the 9 × 3 + 2 x 4 = 35 facets that are defined by the cycle 

inequalities (2), where C is one of the 9 triangles ( i ,4 , j )  (i = 1,2,3; j = 5,6), 
(2,3,i) (i = 4,5,6), or of the two circuits (1,5,2,6) and (1,5,3,6). 

• The second class consists of 14 facets, that are all switching equivalent. Set 

uTx :~XI6 --XI5 q-X23 '~- X45 '~X46 -- ~ Xij. 
i--2, 3 

)--4.5,6 

The vector u is shown in Fig. 8. The inequality uTx <~0 defines a facet of ~+(H6 + e). 
There are exactly 13 nonzero cuts satisfying the equality uTx ---- 0; namely, the cuts of 
the set 

~¢u := {6(A) 1,4 -- 1,4,6, 14, 15,24,26,34,36, 124, 125,134, 135}. 

Hence, for each 6(A) E ~u, the inequality (ua~a))Tx <~ 0 defines a facet of ~+(H6 + e). 
Observe that all the inequalities defining facets of R+(H6 + e) satisfy both conditions 
(3) and (4). 

For information, we also give the description of the facets of ~+(H6). The cone 
~+(H6) has 46 facets in total. Besides the facet defined by the inequality xl6/>0, they 
are grouped in two classes. 
• The first class consists of the 6 × 3 + 4 x 4 = 34 facets that are defined by the 

cycle inequalities (2), where C is one of the 6 triangles (i,4,5) ( i - -  1,2,3), (2,3,i) 
(i = 4,5,6), or one of the 4 circuits (1,2,4,6), (1,5,3,6), (1,6,3,4) and (1,6,2,5). 

• The second class consists of 11 facets, that are all switching equivalent. Set 

wTx :=  2X16 +X23 -q-X45 --X26 --X36 -- ~ Xij • 
/=1,2,3 
j=4, 5 

The vector w is shown in Fig. 9 (the double edge indicates the coefficient 2 for the 
variable xl6). The inequality wTx <~0 defines a simplex facet of ~÷(H6). There are 10 
nonzero cuts satisfying wTx = 0, namely, the cuts of the set 

d , .  := {6(A) 1,4 --- 1,6, 14, 15,26,36, 125, 124, 134, 135}. 
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Fig. 9. w. 

For each 6(A) E ~w, the inequality (w6(A~)Xx<~O defines a facet of ~+(H6). (Note 
that the inequality wXx <~ 0 arises by summing the inequality urx <~0 and the triangle 

inequality x16 - xl4 - x46 4 0 ,  both defining facets of the cone •+(H6 + e).) 
Remark that the property (4) is closed under deleting edges (since the facets of 

R+(G\e) arise from those of E+(G) by projecting out the variable Xe). However, this 
is not the case for the property (3). For instance, the facets of R+(H6 + e), or of 
R+(K6\e), have the property (3), but not those of R+(H6). 

4.2. Proof of  Theorem 1.1 

Let D be a nonempty subset of edges of K6 and let G = K6\D denote the graph 
obtained by deleting D from K6. We show that G E ~ff. This is the case if [D] = 1 by 
Theorem 1.5. 
• If IDI = 2, then G E ~ ;  this follows from Theorem 1.5 since all the facets of K6\e 

satisfy (3) and (4). 
• If IOl - -  3, then we are in one of the following cases: 

(i) D = K1,3 (e.g. O = {12, 13, 14}), 
(ii) D=P2UP3 (e.g. D =  {12,13,56}), 

(iii) D = P4 (e.g. O = {12,23,34}), 
(iv) D = C3 (e.g. O = {12,23, 13}), 

(v) O =P2 UP2 UP2 (e.g. O = {12,34,56}). 
In the cases (iii)-(v), G E ~ since G has no Ks-minor.In the case (i), G E 

since G is the 2-sum of K3 and K5 (recall Example 2.8). In case (ii), G E ~'~ since 
G arises by deleting an edge from K6 - P 3  which is the 3-sum of K4 and Ks. 
• Suppose that ]DI = 4. If G is a subgraph of K6 - P4, then G E ~ since G has no 

Ks-minor. Else, we are in one of the following cases: 
(i) D = KI,4 (e.g. D = {12, 13, 14, 15}), 

(ii) D=KI,3 UP2 (e.g. D =  {12,13,14,56}), 
(iii) O =P3  UP3 (e.g. O = {12,13,46,56}). 
In the case (i), G E ~e since G is the 1-sum of K5 and K2. In the cases (ii) and 

(iii), G E 3r~ since G arises by deleting an edge from the graph H6 + e (see Fig. 7) 
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whose facets all satisfy (3) and (4) (see Section 4.1 ) and H6 + e belongs to our (see 

Example 2.8). 
• Suppose that IDI/> 5. Then, G is a subgraph of K5 or of K6 - P 4 ,  implying that 

G E ~ .  
This concludes the proof of Theorem 1.1. [] 

4.3. Proof o f  Proposition 1.2 

We start by recalling some facts on the antipodal extension operation (see, e.g., [9]). 
Given x E R(~) and ct E R, define the antipodal extension y = ant~(x) E ~(g) of x by 

y~j=xij if l<~i <j<~n,  

Yl ,n+l  ~-~ ~,  

Yi,n+ l = Ot - -  X l i  if 2 <~ i <<. n, 

It is easy to see that, if x E R+(K~) and x = ~ s c ( 1  ...... } ash(S) with ~s>~0, then 

ant~(x) = ~,Sll~S as6(S) + ~f~sllq~s 6(S U {n + 1}) + (a - ~--~s 7s)6({n + 1}) and, con- 
versely, if ant~(x) E R+(K~+I ), then every decomposition of ant~(x) as a nonnegative 
combination of cuts has the above form. Hence, we have the following result. 

Proposition 4.1 (Deza and Laurent [91). (i) ant~(x) E ~+(K,+I ) i f  and only i f  x E 
~+(K~), ot E ~+ and ~>~s(x). 

(ii) ant~(x) E 7/+(K,+1) i f  and only if x E 77+(K~), ot E 77+ and ot>>.h(x). 
(iii) ant~(x) E 7/(Kn+l) if  and only i f  x E Y_(K,) and ct E 7/. 

Note that Proposition 4.1 remains valid under the following conditions: G is a graph 
with node set {1 . . . . .  n} and with the node 1 being adjacent to all other nodes of G, 
G' is the graph obtained from G by adding a new node n + 1 adjacent to all nodes 

of G, x E R e(c), and y = ant~(x) E ~E(6') is defined by Ye ---- Xe for e E E(G) and 
Yi,n+l = ~ - - X l i  for all nodes i of G. 

Proposition 4.1 provides a useful tool for constructing counterexamples for the 
Hiibert base property. Indeed, if we can find x E R+(Kn)M 7/(K,) and ct E 77 such that 
s(x)<~o~ < h(x), then ant~(x) E R+(Kn+I)M77(K~+1) \ 7/ +(Kn+l). We now present such 
an example. 

Example 4.2. Consider the vector xn E R(~) defined by (xn)ij -- 2 for all 1 ~<i < j<~n 
and set a,+l =ant4(x~). So, all components of a,+l are equal to 2 except (a,+l)l.~+t =4.  
Clearly, s(xn) = n ( n -  1)/Ln/2J fn/2] since xn can be written as a nonnegative com- 
bination of cuts using only equicuts, i.e., cuts with [n/2J fn/2] edges. Moreover, for 
n ~ 5 ,  h(x~) = n since x, = ~l~<i~<, fi(i) is the only way of writing x~ as an integer 
nonnegative sum of cuts [6]. Hence, for n i> 5, s(xn)<<.4 < h(x~), and we deduce from 
Proposition 4.1 that a~+l E Z(K~+I) M R+(K~+I) \ Z+(K~+I). 

One can also show directly that an+l q[ 7/+(K~+1) by checking that an+l  --  t~ (A)  ([ 

R+(K~+1 ) for all cuts 6(A). Indeed, a~+1-6(A) violates either the pentagonal inequality 
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Q ( 1 , 1 , 1 , - 1 , - 1 , 0  . . . . .  O)Xx~<O, or the inequality Q ( 2 , 1 , 1 , - 1 , - 1 , - 1 , 0 , . . . , 0 ) T x ~ < 0  

(for a suitable labeling of the nodes), which both define facets of R+(Kn+l) if n~>5. 
Explicit decompositions of xn and an+l are as follows. Let gn denote the set of the 

equicuts of Kn. Then, 

2 
x n = - -  ) ~(s), 

Cn 
6(S)Eg. 

2( Z 6(S)+ Z 6(SO{n+l}))+(4_s(xn))6({n+l}) ' 
an+l ~- ~n 6(S)Eg., IES 6(S)Eg., IriS 

n-2 n--2 where Cn = ~.,'(n/2-1 ) if n is even and cn = 2((n_3)/2], , if n is odd. 

Therefore, the cuts of K6 do not form a Hibert basis, as the point a6 from 
Example 4.2 belongs to 7/(K6) fq ~+(K6) \ 7/+(K6). It is shown in [13] that the cuts 
of K6 together with the 15 permutations of a6 form a Hilbert basis. Moreover, all 
elements of Z(K6) fq ~+(K6) \ Z+(K6) are described; up to permutation, they are of 
the form a6 +~6({i}), where ~ E Z and i E {2,3,4,5}. For n~>7, several other classes 
of vectors belonging to R+(Kn)fq Y(Kn)\  Y_+(Kn) are constructed in [8], in particular, 

using other extension operations. 

Claim 4.3. Let G be a 9raph which contains K6 as a suboraph. Then, G does not 

belon9 to ~'ff. 

Proofi By assumption, the edge set E of G contains the edge set E(K6) of a K6 
subgraph. Define a E R e by ae = 2 for all edges e E E except ae --- 4 for one edge 
e E E(K6). Then, a E Z(G) fq R+(G), but a ([ Z+(G). Indeed, a E R+(G) since a is 
the projection of an E R+(Kn) (n is the number of nodes of G); a ¢ Y+(G) since its 
projection a6 on ~E(K6) does not belong to Z+(K6). This shows that G ~ ~ .  [] 

Proposition 1.2 now follows easily. Indeed, suppose G has a K6-minor, i.e., G\D/ 
C = K6 for some disjoint subsets C and D of the edge set of G. Then, G/C does not 
belong to 3¢g since it contains K6 as a subgraph (by Claim 4.3) which implies that 

G ¢~ ~ (by Proposition 2.1 ). 
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