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Many contemporary inter-networked databases simply co-exist and act in isolation. The participating systems are typically heteroge-
neous since they have been developed under different usage models, data modeling formalisms and platforms. Yet there is an ever
increasing demand io create a unified database system in such a way that users can have efficient access to distributed information

resources. In thus paper we present an architectural framework that can assist in building such coherent aggregates of database sys-
tems. Key features of this framework find their origin in disiributed environments such as the OSF's DCE, OMG's OMA, and the

ANSAware However, we augment these features in order to facilitate intricate inter-database operations and negotiation.

Keywords: open distributed databases, distributed development environments, information sysiems inieroperability

1. INTRODUCTION

To function effectively, large organizations have to handle
huge volumes of iformation. To this end, automated
information servers have been deployed at an ever
increasing rate within orgamizations as the most effective
way of dealing with this task. Typically, large companies
(such as banks, corporate organizations, or multi-nation-
als) have developed over time independent databases for
production management, personnel, sales, marketing,
research and development. Although being interconnect-
ed, such databases merely co-exist with each other and are
incapable of working together.

Increasingly the productivity of large scale enterprises
is limited not because of labour or capital investments but
rather by a lack of suitable information. For example, get-
ting new products and services rapidly to market requires
numerous, interdependent decisions by several individu-
als, ranging from managers and senior executives O pro-
duction engineers and workers, who might be located far
apart at corporate headquarters, engineering centers, pro-
duction plants, suppliers and sub-contractors. Decision
making under these conditions 15 a very slow, onerous,
and constantly error-prone process.

Most contemporary inter-networked databases simply
co-exist and act in isolation. The component databases In
this network are typically heterogeneous — meaning that
they are developed under different data modeling for-
malisms and platforms — and are obviously distributed,
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implying that corporate-wide data/information do not
reside at the same physical site or processor. Yet there is
an ever increasing demand to host a larger unified
database on several pre-existing databases of different
sizes and provide capabilities 1n such a way that users can
have efficient access to information resources distributed
throughout a local or worldwide network. In such settings,
each database 1s not only able to communicate with other
systems but it can also use the entire functionality of other
existing databases to interact among each other. Redevel-
opment of these systems in an integrated fashion has
proved too costly in terms of funding, time and organiza-
tional disruption. Making effective use of such a heteroge-
neous network-wide information infrastructure will
require interoperability mechanisms that cope with the
crucial technical problem of reusing existing databases
and application software (i.e. legacy systems and applica-
tions) by means of a high level collaberation between the
system components with no detrimental impact on the
organizations’ current use of databases. By interoperabili-
ty we mean the ability of two or more systems, within a
distributed network, to work together and execute tasks
jointly despite having been developed under different data
modehing formalisms. In such environments, what 1s
needed to resolve the various mismatches is a distributed
infrastructure within which pre-existing systems may be
retrofitted and an information model which describes the
component global structures and semantics and provides
appropriate mappings between them.
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Several of these 1ssues have been partially addressed by
distributed computing environments which aim at trans-
forming a group of independent networked computers 1nto
a single, coherent computing resource which is open to the
dynamic addition or modification of services. Research
activities concentrale on providing a layer of software that
masks differences among a variety of interconnected com-
puting nodes with diversities in hardware components,
programming languages, operating systems, cOmmunica-
tion protocols and security services. This enables the
development of distributed applications that can tap nto a
network’s latent power, using widespread resources such
as CPUs, storage devices and software programs. To facil-
itate interactions among these heterogeneous systems,
efforts have concentrated on providing the necessary
infrastructure within which the development of distributed
applications would be made possible. This infrastructure
is known as middleware and is typically manifested in a
series of integrated software components that are added on
top of the existing operating systems. They typically
include interprocess communication mechanisms and
basic services, such as naming, trading, security, time or
management services that are shared between diverse
incompatible systems. Currently a number of middleware
platforms are being developed by standardization groups,
including the Open Software Foundaton (OSF), and the
Object Management Group (OMG). The most well known
middleware platforms are at this stage the OSEF's Dis-
tributed Computing Environment (DCE)!, the OMG’s
Object  Management  Architecture (OMA)?  and
ANSAware? from Architecture Projects Management Ltd.

The goal of this paper is to critically assess the services
provided by these middleware platforms and determine
their suitability for supporting the interoperation of
autonomous inter-networked databases and applications.
The paper 1s organized as follows: Section 2 outlines the
challenges for advanced interoperability and talks about
the needed underlying technology. Section 3 describes
various approaches taken and presents an architecture for
interoperability. In Section 4, we discuss the additional
requirements that this architecture has to address i order
to work in a diversified and distributed environment of
database systems.

2. ADVANCED INTEROPERABILITY
2.1 Challenges

The dominant paradigm for the next generation of
database systems will involve a large number of heteroge-
neous information brokers {brokers for short) distributed
over the nodes of a common communication network,
Brokers are computerized assistants performing compli-
caled information-intensive tasks with or without human
intervention and guidance. Each broker may support a
clearly discernible work task or job function, automating
what it can and working synergistically with other brokers
by exchanging information, expertise and negotiating on
how 1o solve parts of the common objective. Work tasks
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will be executed by brokers acting autonomously, or col-
laboratively, depending on the resources required to com-
plete the task.

This scenario takes mto account that mformation flows
and work processes may cover the totality of enterprises
of a large organizauon. It aims at information systems
which support users in effectively performing complicated
information-intensive tasks efficiently and (ransparently,
using the most appropriate information and computing
resources (e.g. processing, knowledge and data) available
in large computer networks, A clear requirement Is (0 pro-
vide the appropriate architectural and management sup-
port for allowing diverse autonomous databases 1o
collectively operate as a unified whole 1n such a way that
the fact of distribution and heterogeneity among the com-
ponent databases can be made transparent to applications
and users. In such a system each database 1s not only able
to communicate with other databases but 1t can also use
the entire functionahty of other databases to interact with
each other on a fine grain level. Potential contributions 1o
the paradigm of interoperable databases from individual
fields are considered in subsequent sections.

2.2 Contributing technology

In recent years, object-oriented technology has been used
with considerable success in the design and implementa-
tion of many application contexts which are exceedingly
demanding as regards thewr representational power and
modeling versatility. These include Artificial Intelligence,
Computer-Aided Design and Manufacturing, CASE tools,
user interfaces, office information and multi-media sys-
tems. Any time that an application involves not only the
accurate structural but also the behavioral representation
of a set of entities, object-oriented programming is the
natural candidate development styie.

We view the object-oriented approach as the central
ingredient facilitating the selective fusion of the various
enabling technologies into a coherent architectural frame-
work for distributed processing?. Here, we mention briefly
the reasons that support this viewpoint. The next genera-
tion distributed database systems go far beyond the expe-
riences gained in various other fields (such as software
engineering, object-oriented programming languages,
object-oriented database, and multidatabase systems) i at
least two ways:

emphasis 1s placed on the semantic aspects of
interoperable systems

the immediate goal 1s the direct use and subse-
quent integration/interoperation of existing lega-
cy systems (1.e. existing systems often developed
using obsolete technology) in the context of dis-
tributed computing rather than examining the
reusability 1ssues within the confines of the
object-oriented paradigm.

Object-oriented technology facilitates interoperation by
providing a natural model for the development of dis-
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tributed platforms. Distributed components can only com-
municate with each other using messages addressed (o
well defined interfaces, and distributed components can
only communicate by means of locally defined procedures
which enable them to intercept messages sent to and
understood by them. Object-oriented programming, dis-
tributed or not, carries this model down to the level at
which the components of a distributed system are seen at
different levels of granularity and abstraction. Objects at a
coarse granularity level may range from representing indi-
vidual application abstractions to systems or nodes in a
distributed environment; whereas fine-grained objects
may represented individual data items*®.

The main benefits of the use of object-oriented technol-
ogy in distributed 1nformation system design are that
objects represent a natural framework for system modular-
ization, accommodation of the construction of complex
entities with shared subcomponents, and provide flexible
module interconnection capabilities beyond the structures
attainable 1n conventional data models. In fact, the charac-
teristics of distributed object data management are not
only natural but also orthogonal to the object-oriented
paradigm>. In summary, object-oriented database technol-
ogy provides several important features for integrating
heterogeneous components to form multidatabase systems
in which the individual components retain their autonomy
but can also be interoperable.

In this context a number efforts have taken place to pro-
duce generic technology that provides flexible, efficient
and transparent interoperability between a variety of het-
erogeneous interconnected component databases systems
using the object-oriented paradigm. Such configurations
are normally referred to as multidatabase or federated
database systems. Current advances in multidatabase tech-
mmgy have shown the applicability of object-oriented
data models for the purpose of integrating diverse compo-
nent data sources and supporting interoperabilityé: 7. In
fact, the technical approach to object-oriented mult-
@a{abase interoperability is based on an amalgamation of
object-oriented database concepts and distributed data
management methodologies.

} 3. MIDDLEWARE FACILITIES FOR
DISTRIBUTED COMPUTING

Most successful architectural approaches to distributed
computing are based on the popular client/server model!-%
8 In this model a server provides some set of services on
one machine which can be invoked by a variety of clients
which may run on different machines. The client initiates
a distributed activity which the server carries out as if 1t
were local to the client program. Distributed file service 1s
a typical example of the client/server model whereby a set
_of servers provide access to a collection of files for clients
which need to operate on these files.

3.1 Distributed computing approaches

The aim of distributed environments is (o provide the
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infrastructural support, e.g. tools, utilities, languages and
libraries, that is required to integrate a wide range of
computer system types and support the development and
operation of distributed applications. Currently a number
of standards organizations and vendors have concentrat-
ed on developing the required infrastructure and ser-
vices. The most important activities nclude the
OSF/DCE!, the ANSAware?, and the OMG/CORBA?’
Below, we provide a brief description of each of these
platforms and then we examine them in the light of the
infrastructure required to support the management of dis-
tributed information.

DCE is based on the client/server paradigm and pro-
vides a set of services that support the development,
maintenance and use of applications 1in a heterogeneous
distributed computing environment. Communication
between distributed application components is realized
through synchronous remote procedure calls (RPC) span-
ning several address spaces. Within a single address
space concurrency is provided by means of multi-thread-
ing. A directory service and a distributed file service
provide data access transparency through distributed
name management. A securily service manages authenti-
cation and authorization. Clock synchronization across a
network 1s enabled by a distributed time service. The
current components it offers include remote procedure
calls (RPC) that programmers can use for structuring
client/server systems using point-to-point communica-
tion. Other features include thread service, a directory
service, cell support, a time service, a Security service
and a distributed file system service. The DCE’s RPC
support encapsulation in that a server’s data is accessible
only via a specific set of operations, t.e. the server’s
iterface. |

ANSAware is an architecture which aims to enable
application components to work together despite diversity
of programming languages, hardware, operating systems
and network protocols. ANSAware 1s based on the
client/server model and utilizes RPCs for communication.
The ANSA computational model places emphasis on the
principles of abstraction and encapsulation. ANSAware
uses the concept of trading to pass information about ser-
vices from service providers to potential service con-
sumers. Other features include thread service,a distributed
processing language for interacting with processes, a
security service and a distributed file system service. It is
expected that both OSF/DCE’s and ANSAware’s long
term plans will include support for object-oriented envi-
ronments.

The OMG’s CORBA archilecture specifies an applica-
tion integration framework that provides interoperating
object-oriented tools and services. The overall architecture
consists of a backplane, called the object request broker,
which provides the basics for object distribution and a col-
lection of ‘plug-in’ object services. The object request
broker provides the mechanisms by which objects make
and receive requests and responses, while the basic ser-
vices include a repository for type information, support
for object creation and deletion as well as a persistent
object store.
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3.2 Underlying infrastructure

As databases serving different communities are designed,
butlt and commissioned without much regard for other
such systems 1t would be impracitical to assume complete
integration at the schema level. The proposed approach is
to allow for information sharing of related data objects on
the basis of partial schema unification without the need
for a global view of the data that is stored in the different
components. Partially unified schemas compnise schema
elements from component database systems distributed
across the network. Consequently. a distributed informa-
tion environment comprises an evolving collection of par-
tially unified schemas spread across the network and
managed in a completely decentralized manner. Informa-
tion sharing and cxchange is achieved by a common mini-
mal object-oriented data model describing the structures,
constraints and operations on the shared data (and conse-
quently the various partially unified schemas in the net-
work) and directly supporting higher-level information
units and the inter-relationships across system boundaries.

To achieve this. databases are wrapped with an object
‘shell” providing an interface supporting the conumon data
model. The interface is automatically generated from
object-oriented type definitions defining the common data
model, and the transfation {rom the common (o the local
data model, and vice versa, 1s achieved by structure-driven
mappings relying on an object-oriented extension of syn-
tax-directed translation schemes”. In addition the func-
tionality of each database is extended to that of a real
information broker able (o accept client requests for ser-
vices and locate the endpoint where these requests can be
executed in a synergistic manner. In this way independent
autonomous databases are made able to converse with one
another, while new applications may be developed around
the information broker programming metaphor!® 11
Object wrappers provide virtual homogenenty as well as
easc of inter-broker communication and increased modu-
larity.

Internetworking 1s achieved between clusters compris-
ing logically closely coupled schema parts, e.g. products,
customers., distributors, etc, and their associated applica-
tion programs. Each cluster (or database coalition) 1s fair-
ly independent of the others and 1s organized to best suit
the constraints placed upon it. Data (i.e. object) sharing
can be achieved by each cluster choosing the facilities to
export to other interconnected clusters; these clusters in
tarn select the facilities to use (import). This type of feder-
ated system promotes pecr to peer rather than hierarchical
structures. Moreover, the concept of selective export and
import of data and services provides autonomy for
scaling®.

The main component of a client/server-oriented multi-
database (CSOMB) architecture i1s the information broker
as shown in Figure 1. lts responsibility is to mediate com-
munication between client databases and servicing
databases and applications. Each database may fulfil mul-
tiple roles, 1.e. i could be both the client as well as the
provider of data and services. The client interface can be a
hibrary of routines which allows a client database to inter-
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act with server databases and applications through the bro-
ker. This interaction 1s normally in the form of a request,
e.g. query or transaction. The application interface at the
server side configures the server environment (object
implementation) to the broker environment to allow meth-
ods invoked by clients to be bound (o operations of
servers. As the broker has to coordinate all the processing
transparently, other components such as repositories,
directories or dictionaries are required in the architecture.
They provide information such as the i1dentity and inter-
faces of the server database and apphcations in order to
allow the broker to locate and invoke operations on the
applications.

The following ttems are provided by the conventional
platforms introduced above. In this section we will review
them in some detail within the broader context of
client/server object management architectures required for
the management of distributed database systems.

3.2.1  Communication Mechanisms

Conventional architectural approaches allow clients and
servers to communicate with each other by using Remote
Procedure Calls. RPCs channel client requests to the
appropriate server, convert data to and from forms
required by the different kinds of hosts and manage all the
low-level aspects of communication by providing network
transport independence, network connection management
and some form of recovery from server failures. To accel-
erate performance RPC server stubs may use threads to
aliow the creation, management and synchronization of
multiple threads of control within a single process to han-
dle multiple client requests simultaneously.
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RPCs are provided by both the DCE and ANSAware
distributed computing frameworks. In a sense these two
environments are based on an object model as servers
encapsulate (computational) resources accessible through
a restricted set of operations. A process holding a refer-
ence Lo an object becomes then the client of that object.
Chients hold an opaque relerence (o an object and use the
interface of the object to invoke operations applicable to
that object. The internal structure of the object consists of
its local state, operations executing on the local state and
the run-tume environment for that object and is provided
by the server.

The above approach s shightly different from that sup-
ported by the Common Object Request Broker Architec-
ture (CORBA) of the OMG which provides a collection of
generic message passing mechanisms which allow objects
to exchange messages across networks. At the communi-
cation level, message passing can be performed by RPC-
like location independent object tnvocations with objects
residing on different nodes.

In contrast to RPCs which require that value parameters
are passed to the call, interoperable databases are based on
the concept of message passing. Message passing allows
references from client objects (o be passed to server
objects remotely. Parameters may range from single
objects to object aggregations. For example, the ORB ser-
vices requested to achieve this type of functionality are
completely transparent to the chient. Chients do not need to
know where the objects reside on the network, or how
they communicate or are implemented.

3.2.2  Interface Definitions

Interface definitions are used 1 both DCE and
ANSAware to tie the server and client application code
together. Interface definitions are written in an Interface
Dehnition Language (IDL) used to describe the operation
signatures that the interface offers and data types occur-
ring as parameters and results of interface operations.
CORBA follows a similar approach by requiring that all
object interfaces are described 1n a declarative nterface
definition language with a syntax resembling C++. In fact,
all three approaches support similar IDL semantics. Their
differences are purely syntactic.

Although these environments provide facilities {or the
automatic conversion of data formats across different dif-
ferent hardware platforms they do not cater for type con-
versions between related data types at the client and
server levels. Interoperability 1n the context of distributed
databases requires that mutual understanding not only at
program or system level but also at the data-type level!Z.
The ORB comes somehow closer with the concept of an
object adaptor which tries 1o align various types of object
implementations. This concept has to ulumately be
extended to allow for legacy systems and applications to
be part of a network information system and will be
examined in a later section.

Database systems rely on the existence of some form of
IDL to provide interoperation among a variety of diverse
data models. This form of IDL should include not only
structural but also semantic information to alleviate the
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problems introduced by the heterogeneity of data models.
Of particular interest is the work conducted in developing
meta-models for describing existing schemas from diverse
data models!3-15, In Papazoglou er al.!3, a strategy 1s out-
lined for developing an intermediate model used to cap-
ture meta-schema information for a given database
schema in a format that i1s independent of the underlying
technology. An instance of the intermediate model meta-
classes can be constructed for a specific schema with
some form of enrichment provided from a domain expert.
The intermediate model i1s capable of representing high
level concepts such as containment, inheritance, aggrega-
tion, association, various {ypes of references and con-
straints. The major thrust of the intermediate model 1s to
capture sufficient semantic detail of the elements of a
database schema to facilitate automatic transformation of
this schema into an equivalent schema m a different data
model.

3.2.3 Naming and Trading Facilities . ===
Naming refers to the way the various entities within a
complex of computing systems are referenced. In DCE the
directory service allows distributed applications to store
and find imformation about resources available in a dis-
tributed computing environment. The directory service
provides a hierarchical naming scheme whereby a cell
directory service (white pages method) provides the nam-
ing facilities of nodes grouped by some administrative
domain — called cells — and a global directory service to
control the naming environment between different cells.

ANSAware’s approach to naming.is provided by means
of the trading facility. The ANSAware trader (i.e. locator
and broker of services) allows clients to locate the ser-
vices that they request. The trader stores information
about service providers in a structure which is amenable
to queries by potential service consumers. A trader has the
task not only to enable clients to locate appropriate
servers but also to bind a client to the server’s interface. A
yellow page scheme 1s used by the trader to describe the
functions of the services. |

DCE and ANSAware have a different approach to
binding. Clients communicate with traders via import
requests while traders are updated by servers via export
requests. In DCE the directory service locates the node
that offers the interface, then the node identifies the ser-
vice 1o be used and binding can occur. In ANSAware the
trader combines the ability to select an interface with a
node and endpomnt immformation required to establish a
binding!%. The trader’s import operation is normally used
for this purpose. The CORBA also provides for naming
facilities which are managed by the ORB. They are simi-
lar to the facilies provided by the ANSAware traders.
The main differences are that the ORB differentiates
between static and dynamic interfaces. The ORB also
manages the binding between client and server objects.

All of the above approaches suffer from the same limi-
tation. They all assume that complete description of the
services available throughout a distributed environment
are specified a priori and do not normally change. This 1s
an unrealistic assumption when considering a network
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with large numbers of databases each contributing a large
number of data items. Accordingly, interoperable databas-
es should extend the approaches taken in the above sys-
tems. A request for interoperable database operations has
to be resolved by identifying all the candidate systems (o
participate in the materialization of the requests. Recently
work has been conducted in creating dynamically clusters
of database nodes. in a database network, centered around
areas of interest. Searches are not based upon simplistic
‘string-matching’ but rather on faking mto account numer-
ous types of inter-relationships between individual
database systems!t’.

Assuming that the client/server model is followed,
requests are dispatched in a naming server facility that
will be able 10 resolve resource references partially. The
remaining references may have to be delegated to other
appropriate name server facilities (based on how their
areas of mutual interest are inter-related) throughout the
network. In this manner, naming requests have to be prop-
agated according to a policy (i.e. to the logically closer
name server) and once this cycle of operations ends the
initiating server will know the addresses of the object
resources throughout the operational network (see Figure
2).

3.2.4  Static and Dynamic Invocation Support

One important point to make is that the DCE and
ANSAware offer a static invocation model in the sense
that their entities are assumed to be permanent and are
published within the directory/trader. In this way therr
IDL declarations compile into stub files which allow
clients to invoke stub routines on known largel cnlities.
However, in several situations applications may nced to be
able to make calls to objects without necessarily having
compile-time knowledge of their interfaces. This results in
a form of dynamic 1nvocation interface whereby a client
names the request’s target object and rehies on a request
broker, such as the ORB, to supply the necessary argu-
ments to the request at run-time. Such dynamic types of
interface are provided only by CORBA. Again interopera-
ble databases come far closer to the approach offered by
CORBA as they require both static and dynamic object
management. Type checking of objects is also required in
this environment and should be managed in a manner sim-
ilar to that of CORBA which offers an interface repository
for this purpose.

The combination of the above facilities results in pro-
viding the basic communication protocol and interface
mechanisms which shield the users from the hetero-
geneities of multi-vendor systems (at both the hardware
and software levels) and allows them to work on a higher
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Requesting ist Contacted | =~ Last Contacted
Chent | Server Server
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Figure 2 Inter-server organization
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level of abstraction or on a logical as opposed to the phys-
ical level. However. programmers must still deal with
intricate details of RPC services, synchronizing threads
and providing for the recovery of data. Arguably although
the current type of muddleware as offered by DCEL,
ANSAware and CORBA provides some broad communi-
cation services it does have lots of limitations and requires
several improvements, which will be covered in the
rematinder of this paper.

3.3 Core facilties for the management
of distributed objects

We use the term nucleus to denote the core of a distributed
object-oriented environment in which non-traditional
applications can be developed, and autonomous and het-
erogencous database systems can be integrated. An impor-
tant feature of the nucleus 1s that it is independent of any
supported database system and programming language.
The most salient features of this nucleus for distributed
objects include the management of persistent storage;
management of nucleus object memory; network commu-
nications; the control of distributed computations and con-
current access to objects; as well as some form of basic
object protection (Figure 3). Its purpose is to redefine
applications, services and databases, 10 an object space
larger in scope than the environment m which they were
originally developed. This system provides the mecha-
nisms that prepare an object to participate in its environ-
ment such as defining objects, locating objects, handling
messages between objects, and binding methods (o
objects.

The nucleus 1s a distinct layer on top of the operating

Distributed Application Development

Security Services View Management

Coordination, Negotiation & Trading

- ] :
Virtual Object Persistent Concurrency
Memory Storage Control
Msg. Passing Threads
_ i

Client—Server Framework

Figure 3 Core functionality
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system which allows applications (objects), running under
different operating systems, to communicate with each
other. In effect, the interfaces to these applications
(objects) become a higher level operating system. For
instance, an application can be limited to the local envi-
ronment as well as transcended (o the nucleus environ-
ment by using the nucleus’ representation of interface
definitions. The mterface definitions shield other users
from having to know about the implementation details and
the operating environment of the application.

Some of the features of the nucleus have already been
described 1n the previous sections. In this subsection we
extend the basic functions discussed above with additional
features specific to database systems interoperation cur-
rently not provided by the the OSF/DCE, ANSAware and
CORBA.

Object Persistence

With the application centered approaches to distributed
computing such as DCE, ANSAware and CORBA the
lifetime of objects — with the exception of files — is bound
by the duration of the programs that create and run them.
In interoperable databases, it is a requirement that several
objects outlive the programs that created them. Such
objects are called persistent objects and when not in use
are stored in secondary memory. Accesses (o these objects
result in automatically fetching them from storage and
making them available in virtual memory in an appropri-
ate mode. Accordingly, the virtual object memory compo-
nent of the nucleus 1s responsible for implementing
transparent access to to distributed persistent objects and
for all the other aspects of object management including
object creation, low-level object naming, object location,

remote imvocations and the mapping and unmapping of

objects to and {rom the secondary storage. This approach
has been suggested by the Commando distributed applica-
tion platform!s,

Management of Data Replicas

It is often the case that data are partially replicated due (o
the pre-existence of the component systems. It i1s always
possible that a virtual object may comprise several parts
some of which may be replicated. The virtual object mem-
ory component should therefore be in a position to man-
age replicated objects (or object portions) in a consistent
manner by enforcing simultaneous updates to all the data
replicas.

Both read and write operations have to happen in a
transparent manner and the users should not be aware of
the actual sites that are involved in the processing of their
requests. DCE offers a distributed file system that could
constitute the basis for building interoperable databases in
the framework of a DCE cell. However, pure filing struc-
tures are far from sufficient in such environments and
need to be enhanced with layers of higher database func-
tionalities. ANSAware maintains strong emphasis on the
distributed processing and not distributed data.

A server resident CORBA core could maintain infor-
mation about correlated and replicated data in its vicinity
in terms of its naming services. This would provide a fun-
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damental manner of accessing and updating dispersed
data. Issues of exact update propagation methods, unifica-
tion of fragments (destruction), creation of new fragments
and appending data are yet to be designated with specific
methods.

Concurrent Access to Objects
To mmprove distributed application performance through
parallelism the concept of threads 1s used by both DCE
and ANSAware. Threads provide for concurrent process-
ing within a shared distributed address space. Threads are
used by RPC server stub routines for handhing multiple
asynchronous non-blocking remote client invocations.
However, thread programming Is quite intricate as pro-
grammers should protect shared resources (such as pieces
of data), schedule and synchronize activities and recover
from errors. The notion of threads 1s currently not sup-
ported by CORBA. Threads can provide for-extended
flexibility as they may allow ORB objects to-accept sever-
al invocations, T UL

In a database environment the execution of -an activity
may result 1in a nested invocation of methods on objects.
Each invocation may take place on anynode in the sys-
temn. At each invocation the referenced object 1s located
and, if necessary, loaded into virtual memory at some
node. An activily may create one or more-parallel subac-
tivities within the same apphication. Therefore 1t is
required that two levels of concurrency are provided: (i)
between activities belonging to the same application; and
(1) between execution threads belonging to independent
applications. Such support 1s currently not provided by
any of the distributed computing platforms that we exam-
ined.

4.  ADDITIONAL DATABASE
INTEROPERATION

REQUIREMENTS

Higher level cooperation among distinct pre-existing
databases involves a number of intertwined issues. These
include additional functional as well as organizational
requirements. Two important organizational requirements
that the middleware facilities must satisfy are autonomy
and openness. The term autonomy characterizes the ability
of a component database system 1o continue executing
local operations and running already developed applica-
tions unaffected from any external functionality — preserv-
ing, thus, Immvestments in application software. This
implies that each component system has complete authori-
ty over s local operations and existing applications
chooses the local services that other systems may invoke
and does not rely on an external database system for suc-
cessful operation. Openness implies the ability 1o extend
or reconfigure the system by adding new or removing
existing components. In the following subsections, we
identify a number of 1ssues that have to be addressed if
flexible and open interoperable systems are to be realized.

As an example consider a large, geographically distribut-
ed multinational car manufacturing corporation. The corpo-
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ration 1s composed of a large number of regional and market-
based operating divisions, which have historically been rela-
tively autonomous. Over time, these operating divisions have
developed and deplioyed a number of systems customized in
both structure and content for their specific needs. These sys-
tems and their contained data are ‘owned’ by the operaling
divisions, which are sensitive to any changes, either in func-
tionality or ownership, proposed by the corporate organiza-
tion. The corporate organization, however, has its own set of
information needs, such as setting and meetung long-term
corporate goals and ascribing accountability for various
activities. The information required by the parent organiza-
tion is available in the operating divisions’ collective
database systems, but it is neither homogeneous nor directly
controllable. Dynamic, ongoing tasks like tracking markets
are difficult at the corporate level when a large number of
individual reports from operating divisions must be compiled
and merged into a cohesive statement of corporate activity.
Often this information is time-critical, and by the ume the
report is assembled manually the information no longer has
value. The mformation thus may have a single owner and
retention strategy, it is useful 1n multiple ways, and 1s
accessed via differing retrieval mechanisms.

4.1  Distributed query processing

In response to a client request the middleware system
locates the desired information and executes the appropri-
ate type of function (1.e. query or update) by translating,
interpreting and synthesizing the individual results which
it presents to the user. Each node in the network may orig-
inate and submit global queries or transactions (queries or
transactions with both a local and remote component) 10
the middleware platform, and receive and answer queries
from remote nodes in the system.

The objective of the object query facility of the middle-
ware is to provide efficient access to a variety of distribut-
ed objects on the basts of their structural and behavioral
properties. Therefore, an important property of the query
language 1s that it is a natural extension of an object-ori-
ented language and treats objects uniformly no matter
whether they are local or distributed. In other words the
data language for distributed applications should provide
uniform syntax and semantics of query and programming
language statements.

Based on our running example a meaningful distributed
query may be to obtain the total product-related revenues
for small business customers in Germany, The Nether-
lands, Belgium, France and the UK over the past year,
reported according to the relative sizes of cities and towns
without inclusion of service revenues or other income
related sources.

4.2  Virtual integration of data
During query execution a distributed database system pro-

vides 1ts client systems with the impression of a single
logically integrated database system, where 1n fact there
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may be many data sources with a high degree of data
redundancy and data replication.

A central 1ssue in supporting interoperability 1s achiev-
ing compatibility among the different data types support-
ed by the diverse database systems in the network. This
will enable remote data objects and their associated proce-
dures used 1n one database (o be shared by others despite
differences in data representation. The objective is to be in
a position to partially unify, or combine, schema types
from diverse database systems.

DCE and ANSAware utilize mostly the notion of mar-
shaling as offered by the Remote Procedure Calls to allow
for limited format conversion. Thus, these systems hide
such differences as byte orders, floating point precisions
or array accessing mechanisms. This type of format con-
verston i1s not sufficient in an environment of diversified
database systems.

Interoperable database systems cross organizational and
technological boundaries. At these boundaries not only
names, but data types and queries will have to be translated
and checks should be made on the validity of interactions.
It 1s mmportant that the middleware uses a transparent
addressing and language scheme in such a way that tech-
nology boundaries remain invisible (o operations. We use
the term technology boundaries to imply the existence of
different data modeling facilities and formalisms, e.g. rela-
tional, hierarchical, CODASYL, object-oriented, etc,
which underlie the various systems in the network.

Middleware facilities should provide type compatibility
at the specification level thereby alleviating differences in
representation for abstract as well as simple data types. In
this way when (wo interoperating component systems
communicate or share a common data object they do so by
having consistent views of the properties of the object
they mutually rely upon. Type conversions are required
for translating the heterogeneous data objects to and from
a single universal representation. In this regard, only the
CORBA specifications provide a mechanism to assist in
data conversion/integration, viz. the object adaptor. The
additional requirement for interoperable databases is par-
tial data schema translation and the return of error codes
so that users do have an understanding of underlying
problems. Issues of exporting and importing objects
become relatively straightforward by having the servers
indicate rules of bridging the various data discrepancies.
Using the running example this may mean that that the
operating divisions of our multinational corporation in
France and ltaly may use different systems such as rela-
ttonal vs. CODASYL which requires data type, schema,
and language conversions. They also use different mone-
tary units which also implies that the necessary conver-
stons should be made.

An additional problem that must be solved before one
can successfully unify schemas is that of semantic incom-
patibilities. In contrast to structural heterogeneity, this
type of heterogeneity refers to the differences in the
meaning and use of data that make it difficult to identify
the various implicit associations that exist between similar
or related data objects in different component systems.
For example, although the database systems in operating
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divisions in Germany and Italy may use the term ‘luxuri-
ous car’ they may have different classifications and inter-
pretations. Recently, a lot of work has been conducted in
this area and some results have been already reported!? 20,

4.3  Scalability

Over time, the operation of multiple databases is expected
to demonstrate dynamic behavior with individual systems
joining or departing from server clusters. Obviously, these
meta-data changes have to be reflected on the information
repositories of the server sites. DCE internals allow for
update of cell directory information and can deal with
such changing situations. ANSAware’s Node Manager
also provides mechamisms for modifications of the ser-
vices provided by the node. CORBA’s core through its
dynamic invocation interface may offer alternative ser-
vices to the ones already compiled for a particular core.
However, this falls short of the needs of an ever changing
and adapting interoperable database environment.

We consider that the set of static interfaces in the COR-
BA core should be possible to be updated dynamically
over time to cater for dynamic database attachments. In
this way, it should be possible to alter the repositories on
the fly — and not at initiation time ~ and furnish the ele-
mentary mechanisms to carry out such operations at the
SCrVErs.

4.4 Negotiation

Given that the knowledge that 1s contained in each com-
ponent system is incomplete and that component systems
may have conflicting goals, negotiation is required to alle-
viate conflicts and formulate partial solutions in a collec-
tive manner. Negotiation has been proposed as a scheme
for resolving inter-agent conflicts and exchanging pieces
of wnformatton among agents. Negotiation 1s the mecha-
nism used by autonomous systems to resolve inconsistent
views and reach agreement on how they can work togeth-
er in order to cooperate effectively?!- 22, Both DCE and
ANSAware offer only very low-level facilities in support
of negotiation. Actually what they offer are facilities
enabling clients to choose appropriate servers without pri-
or knowledge of the server objects. This is achieved main-
ly by the use of a centralized directory service. The DCE
environment provides no explicit negotiation mechanism
among the participating nodes other than the yellow pages
of the local directory. ANSAware provides the mecha-
nism of the rrader for furnishing service interfaces to sites
that are not aware of the existence of these interfaces. The
trading happens via export requests qualified with type
names, property and value pairs, and types imports. The
CORBA core offers no such service explicitly and lets the
developers specify their own 1n the core.

The sharing and exchange of information in interopera-
ble databases is a two staged approach. First the informa-
tion providers should be located. This 1s normally the task
of an information broker which may use a combination of
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directory services, yellow pages and thesaurt to facilitate
the finding of the relative information. Then once the rela-
tive information sources have been identified, sharing and
e¢xchange of information will eventuate. As it 1S not possi-
ble to store global information about an entire application
al every site, negotiation 1s required when the system has
no knowledge how to handle parts of a request. This
implies that negotiation in interoperable databases 1s a
necessity due to the large amount of data involved and its
corresponding retrieval and processing overheads. Negoti-
ation has to be an integral part of the organization of
servers since it can be an excellent vehicle for achieving
cost effective operations through cooperation. Negotiating
requests are finally delegated to servers that have access
to all pertinent data for a specific request. Figure 2 reflects
this situation.

Consider, for example, the situation where a query has

been made in the operating .division in Germany and
requests information about prices.of mufflers.and differ-
entials of Italian origin. It is reasonable to assume that
such information 1s not available locally, in-which case
the database client in Germany would start a negotiation
phase by asking the server in Italy to provide it with the
right type of information. The information that will be
passed between two nodes must not only contain struc-
tural descriptions but also the context of use of the indi-
vidual data items as well as access privileges (i.e. if they
can be further broadcasted, changed and so on).

It is now commonly accepted that negotiation should be
restricted to only a relatively small set of systems;
requires a common language in which the negotiations
can be couched; requires a common framework, 1.e. an
abstraction to the solution, to which the participants con-
tribute; and also requires models of other systems and a
unified negotiation protocol?s,

4.5 Management of distributed
transactions

Most of the database requesis bear a transactional nature
and they require substantial management across the vari-
ous distributed resources. An assumption made often 1s
that every site that maintains data run a local transaction
manager that has to be coordinated with various other
managers 1nvolved in the realization of a transaction.

Most of the work 1n the area of multidatabase systems
has relied on the existence of conventional (short) transac-
ttons; assumes the existence of a two-level nested transac-
tion model for the processing of remote data; and adheres
strictly to the classical ACID (Atomicity, Consistency,
Isolation, Durability) paradigm for network-wide transac-
tion management?%-26, This model of multidatabase trans-
action processing introduces several hmitations. Often
multidatabase transactions resuit in long-lived transac-
tions which may lock local database resources for unac-
ceptably long periods of ume delaying significantly the
termination of conventional short transactions submitted
at these sites (and which are outside the scope of the mul-
ti-databases).
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These deficiencies have been pointed out and solutions
have been suggested 1n the research work conducted on
the area of non-conventional database transaction man-
agement for MDBS and distributed object-oriented sys-
tems27-29,

To achieve database interoperability at the transaction
level it 1s desirable to have more flexible and fine-grained
transaction models that have to accommodate along with
the traditional jobs, nested and long transactions. Nested
transactions extend the flat transaction structure by allow-
ing a transaction to invoke atomic transactions as well as
atomic operations. They allow the potential internal paral-
lelism to be exploited. They also provide finer control
over failures by limiting the effects of fatlures to a small
part of the transaction. This implies that if a sub-transac-
tion is unnecessarily delayed it may be rescheduled or one
may opt for executing an alternate transaction with similar
or near similar effects. Consider again, for example, the
situation where a transaction has been made in the operat-
ing division in Germany and requests among other infor-
mation about automobiles information about prices of
mufflers and differentials of Italian ornigin. If the execu-
tion of this transaction detects that the Italian site’s
database i1s not available, it might be sensible to 1ssue an
alternate subtransaction requesting prices of mufflers and
differentials of French origin 1n the hope that the user may
evenlually resort to French differentials. This model of
transactions provides added flexibility for a client/server-
ortented multi-databases and we consider it as an integral
part of interoperable systems. It 1s our strong belief that
future interoperable database systems will rely on the use
of special purpose scripting languages to support transac-
tion programming.

Equally important is to cater for recovery mechanisms
that are going to help the overall system’s recovery. Log-
oriented methods may not be the best option to be
deployed in the servers and, after all, not all resources
may demonstrate any recovery capabilities. Thus flexible
mechanisms for recovery management should also be
investigated. Both DCE and ANSAware provide very lim-
ited support for transaction management while the COR-
BA-core specifications do not deal with this issue at any
significant level, since it is believed to be level higher
than that of the core.

4.6  View management

An interoperable database system is a highly sophisticated
environment comprising a large mass of complex and
inter-related data items and a series of partially unified
schemas. In fact the data in the system is composed of
aggregations of data 1tems some of them at a fine grained
granularity. The user or developer of this environment
will be more effective if they deal with global abstractions
of the large complex set of distributed data. The concept
of view allows the construction of global abstractions that
describe a unified structure and behavior over a large set
of objects, some of which may be distributed?. 31,

Most conventional approaches to object-oriented
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databases suggest either the use of query language expres-
sions for defining views or the usage of special language
features. Queries can be used to define virtual classes
populated by selecting existing objects from schema
classes and by creating new objects. The extent of these
view classes 1s usually not stored explicitly but rather
computed from the view defining query upon request.
Some approaches treat the virtual classes as stand alone
objects or attach them directly to the root of object-orient-
ed schema. Other more ambitious approaches either clas-
sify the wvirtual classes derived by query language
statements 1nto one schema or reorganize the database by
introducing hierarchies of virtual classes created through
generalization or specialization. In all cases, views are
semantics preserving since they introduce only new infor-
mation as computed attribute values, e¢.g. by merging
existing attributes, or by hiding attributes32. 33 and import-
ing existing schema types-2.

View management 1s an important aspect of interopera-
ble databases as 1t allows users and developers to 1gnore a
huge object space and focus only in these parts of an
application which are of 1nterest to them. For example, if
a user of any of the operating division 1n the multinational
corporate organization of our running example is continu-
ously interested in information about mufflers and differ-
entials 1gnoring other parts of automobiles it is natural to
assume that a view extracting these two products from
their surrounding environment possibly combining them
into a single entity may be created.

4.7  Security and authorization

The RPC communication in DCE 1s based on a security
service which provides authentication and authorization
services to help protect resources against illegitimate
access. Apphication clients and servers run a distributed
authentication protocol in conjunction with security
servers which validate their identity. ANSA and CORBA
have not yet introduced any security concepts into their
environments.

Authentication 1s a must in a diversified environment
of multiple cooperating systems. Certain users can access
selectively resources throughout the network. There must
be mechanisms in place to ensure that user access legiti-
macy. ANSAware provides no authentication and security
while DCE offers authentication and authorization mecha-
nisms. In DCE an access control list 1s maintained for all
the chents that are authorized to access the various cell
resources. The CORBA-core specification makes no
explicit provision for security and authorization although
such mechanisms could be built within the core.

S. SUMMARY

'The next generation of database systems are characterized
as dynamically reconfigurable aggregations of multicom-
ponent systems and applications. As these heterogeneous
open databases grow and expand their functionality, effi-
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cient integration capabilities and trading functions are
needed to keep track of available information and process-
ing services and match client requests with appropriate
service offerings. The architectural paradigm for such sys-
tems will concentrate on client and server components
comprising current generation systems and pre-existing
applications collaborating over high bandwidth communi-
cations media.

Integration concerns will focus around providing an
expandable set of software modules and services that can
be used for building systems that use diverse problem-
solving methods and incorporate various pre-existing
components of independently or complementary devel-
oped technologies to collaboratively solve a problem. The
ability to efficiently develop interoperable databases from
a software engineering point of view relies significantly
on our ability to reuse or reengineer existing application
code, 1.e. programs and schema definitions, database ser-
vices, as well as the development of environments and
high level tools for composition and integration of these
parts.

The activity aims at designing generic concepts and
core mechanisms that enable the integration of heteroge-
neous nformation resources and processing components
to interoperable databases while obviating the need to
modify the body of individual component systems. A cen-
tral component of this research consists in the design of a
distributed object management system to underlie the
development of an open, distributed architecture. The core
technology necessary for achieving transparent interoper-
ability is based on client/server architectures for improved
performance, and makes use of object-oriented technolo-
gy {0 altain wide-scale interoperation. The broader goal of
the distributed object management system is to provide
application inter-operation through a common approach to
(ransaction, naming, sharing and service trading. Interop-
erability will be provided by means of object-oriented
extensions to heterogeneous systems which are capable of
exchanging messages, requesting services and coordinat-
ing receipt of responses. Particular emphasis has to be
placed on 1mporiant software design and engineering
issues such as reusabtlity of existing systems and applica-
tions software,adaptability of component systems, and
system extensibility,
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