
J. SYSTEMS SOFTWARE 205 
1991; 16:205-218 

Clustering PROLOG Programs for Distributed 
Computations 

Patrick 0. Bobbie 
Division of Computer Science, University of West Florida, Pensacola, Florida 

Mike Papazoglou 
Department of Computer Science, Australian National University, Canberra, Australia 

A knowledge base (KB) is a collection of factual infor- 
mation pertaining to the objects of specialized domains 
or application areas. KB information may be acquired 
and represented using language paradigms which are 
based on formalisms of predicate calculus. Usually, 
the domains are not necessarily distinct due to the 
interrelatedness of the components of the problem or 
interdependency of the objects. Therefore, this inter- 
dependency could generate long search paths or refer- 
ences to the KB objects, particularly for large KB data. 
However, KB data can be reorganized into groups or 
clusters using some common relational information of 
the data objects. The reorganization process isolates 
the data into clusters and localizes the interdepen- 
dency within the clusters. Therefore, the clusters offer 
opportunities for mapping the data into distributed or 
parallel processing environments to facilitate computa- 
tional efficiency. This article focuses on methods for 
structuring, partitioning, and clustering logic-based KB 
data (rules and facts) for distributed computations. 

1. INTRODUCTION 

Knowledge-base (KB) systems have emerged as a tech- 
nology to support systems (software and hardware) that 

rely on expert knowledge, imprecise or incomplete 
data, and deductive or inference mechanisms. The sup- 
port is a welcome advantage, however, the trade-off is 

the added time required for accessing the KB layer for 
information to solve a given problem. Thus, the overall 
computational efficiency of the supported system de- 

Address correspondence to Patrick Bobbie, Div. of Computer 
Science, University of West Florida, II000 University Parkway, 
Pensacola, FL 32514. 

pends largely on the speed of processing the underlying 

KB data. 

The objectives of distributing and processing KB 
data are to reduce search time, increase data availabil- 

ity through redundancy, promote system modularity, 
and take advantage of a network of computers. To 
achieve these goals, a direction of artificial intelligence 
(AI) research has focused on exploiting parallelism in 
KB systems and the distributability of AI computations. 
In this article, we focus on methods for clustering 

PROLOG KB data objects to facilitate distributable 
computations [ 11. We discuss methodologies for match- 

ing the attributes or relationships of the data objects 
from which to develop clusters. The clusters serve as 

units of distributable data objects suitable for efficient 

computations on a network of computers. 

The next section presents an overview and the limita- 
tions of the clustering methods. Following the overview 
is a discussion of methods for data representation, 
analysis, structuring, and decomposition. Lastly, we 

discuss methods for clustering partitions of the data 

objects. The discussions are reinforced by an example 
that epitomizes a software system developed to trans- 

form PROLOG KB data into clusters. 

1.1 Methods 

One of the approaches for improving the efficiency and 
performance of KB computations is to exploit paral- 
lelism in domain knowledge. Other techniques for at- 
taining efficiency include taking advantage of paral- 
lelism in hardware, employing the run-time support of 
underlying (distributed) operating systems, or reorga- 
nizing KB data by analyzing the language constructs 

0 Elsevier Science Publishing Co., Inc. 
655 Avenue of the Americas, New York, NY 10010 01641212/91/$3.50 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6460327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


206 1. SYSTEMS SOFTWARE 
1991; 16:205-218 

Patrick 0. Bobbie and Mike Papazoglou 

used for knowledge representation. We take the latter 
approach. 

Languages such as concurrent PROLOG [2] and 
ACTOR-based systems [3] provide a linguistic format 
for representing and expressing parallelism in KB data. 
Although a language such as standard sequential PRO- 

LOG does not provide constructs for expressing paral- 
lelism, it has an easy-to-understand, expressive format 

for KB data representation. PROLOG is a logic pro- 

gramming language with three constructors: rules, facts, 
and queries. One approach to the detection of paral- 
lelism in PROLOG programs is to analyze the rules, 
facts, and queries for features that suggest the interde- 
pendency of the constructors. Several mechanisms cur- 
rently in use involve insertion of additional language 

constructs in the program to convey semantics of paral- 
lel evaluation. Among these mechanisms are AND- 
parallelism, OR-parallelism, and argument-parallelism 

141. 
We focus on standard PROLOG representation of 

KB data. Specifically, we exploit a different kind of 
parallelism, namely parallelism due to clustering of 
rules, facts, and queries. By definition [ 11, a PROLOG 

rule is a procedure with a lefthand-side predicate name 
(optionally parametrized) and a righthand side (body) 

of one or more conjunctive and/or disjunctive goals (or 
subgoals). A subgoal is either a simple fact or the 
predicate name (optionally parametrized) of another or 
the same (for recursion) rule. 

prolog-rule (definition): 

predicute-name([parameters]):- 
subgoaf-name, ([parameters]), . . . , 
subgoal-name, _ l ([parameters]), 

[(if (condition) then 
subgoal-name, ([parameters]), . . . , 
subgoal-name, + m ([parameters]) 

[else /* optional else-part */ 

subgoal, + m + I ([parameters]), . . , 
subgoal, ([parameters])] 

),] /* zero or more disjunctive subgoals */ 
subgoal-name,, + I ([parameters]), 

[predicate-name ([parameters])]. /* for recursive 
rules */ 

The clustering process discussed here involves a 
syntactic analysis of predicate and subgoal names to 
determine the dependencies of rules on subgoals. We 
restrict the analysis to simple subgoals or facts in the 
body/definition of the rules. Thus, the predicate names 
of other rules that appear in a rule’s definition are 
transformed into “remote activations” in distributed 

settings. Therefore, it suffices to analyze only rules and 
facts for dependencies. 

The result from the analysis is a set of k-ary tuples: 
[predicate-name, subgoal-name,, . . . , subgoal- 
name,], depicting the relations between the KB rules 

and facts. The cardinality of different k-ary tuples 
varies and depends on the number of independent facts 
in a rule’s body. The tuples are then transformed into a 

binary matrix where the row indices are represented by 

the predicate names of the rules and column indices are 

represented by the subgoal names of the facts. There- 
fore, the matrix is described by a rule-fact dependency 
relation. The cell-entries of the matrix are 1s and OS, 

where 1 indicates the existence of a dependency rela- 
tion and 0 is the absence thereof. The matrix is then 
decomposed into submatrices where each submatrix is 
equivalent to a partition of the KB rules and/or facts. 

1.2 Limitations 

Our methodology requires each matrix model to be 
characterized by a single binary relation. Thus, it is 
necessary to construct a matrix for each conceivable 
binary relation that might be defined over the objects 

being modeled. Also, when the objects under discus- 
sion are weakly related, the matrices are significantly 

sparse and, as such, alternative decomposition schemes 
which are computationally efficient and less costly may 
be used. However, for large systems with several inter- 
related objects, our modeling strategy is cost effective 

and brings structure to bear on the systems. 
The matrix-based approach is also best suited for 

modeling and partitioning knowledge bases which are 

static over a reasonable period of time. Thus, when 
minor and short-term additions and deletions (or dy- 

namics) of rules or facts do not warrant repartitioning 

and reclustering, the approach is certainly cost effec- 
tive. With dynamically-changing knowledge bases (like 
all conventional data bases), the rules or facts must be 

reclustered to reflect the new relationships. With our 
methods, dynamic repartitioning and reclustering is 

feasible and, during such a process, the changing por- 
tion(s) of the KB must remain frozen, or locked, from 

user access. This problem is not unique, however, with 
our approach. Several systems, e.g., operating systems 
and conventional data bases, require periodic garbage 
collection, backups, recovery, maintenance of dangling 
pointers and processes, and dynamic updates during 
system operations. 

1.3 Summary 

The rationale for using matrix models as a knowledge 
analysis tool is twofold. The first reason is a conse- 



Clustering PROLOG Programs I. SYSTEMS SOFTWARE 207 
1991; 16:205-218 

quence of earlier research in using matrix-model parti- 
tioning schemes to group entities based on common 
relational attributes [5]. The second reason is that, in 
general, matrices are relational structures which serve 
as useful tools for information processing. Other kinds 
of matrix-based tools have been used for knowledge 
analysis [6, 71. 

For very large knowledge bases, two levels of clus- 
tering are necessary. First, the knowledge base is ana- 
lyzed at an abstract level and reorganized into topics, 
areas, species, classes, or domains of interest (depend- 
ing on the problem domain). Second, the objects in 
each group are analyzed and modeled as discussed in 
the following sections. Consequently, each group pro- 
duces object clusters, and the entire KB is also struc- 
tured as a network of group clusters. The clustering 
methods and algorithms discussed in the following sec- 
tions are fully developed and implemented. Currently, 
we are applying the techniques to cluster and search 
large PROLOG KF3 and other kinds of knowledge-base 
data sets for performance measurements and evalua- 
tion. The experiment is being conducted on an g-node 
T800 Transputer system. 

2. KNOWLEDGE REPRESENTATION 

In addition to logic-based models, knowledge bases are 
represented using models based on frames, object-ori- 
entedness, semantic networks, or entity relationships. 
The focus here is on the logic-based model and an 
example is presented to motivate the discussions. Fig- 
ure 1 is a listing of logic-based KB information pertain- 
ing to the family data, health plan, rank, and retirement 
provisions for employees of a company. The KB also 
includes information about the impact of violating the 
company’s policy. 

The data is represented in PROLOG format and is 
made up of rules (or conditions) for maintaining certain 
status or benefits in the company. (It is assumed that 
the reader has an introductory knowledge of PROLOG 
as a programming language.) For example, to be an old 
employee, one must earn over a 50,000-unit salary. To 
receive pension benefits, an employee must be earning 
over a 50,000-unit salary at the time of retirement, be 
eligible for retirement (i.e., over 60 years old), and 
have never violated the company’s policy. In addition, 
the IU3 includes a set of concrete data (factual informa- 
tion) about three of the employees, viz. John, Peter, 
and Tom. The factual data are used to check employ- 
ees’ eligibility status for pension and health options. Of 
significant corporate concern are rules and facts per- 
taining to the selection of a management planning team 
and participants in a decision-making process. 

2.1 An Example of KB Data Clustering 

In this section, we present a simple scheme for cluster- 
ing PROLOG KB information. In later sections, a more 
elaborate implementation approach will demonstrate the 
applicability of the methods. Unlike structure-oriented 
models, e.g., frames and the object-based paradigms, 
logic-based models lack structural features for compo- 
nent clustering. However, a structure can be brought to 
bear on logic-based data by clustering the rules, facts, 
and queries. 

For example, in Figure 1, the facts and queries may 
be partitioned into four clusters based on the bound 
arguments: “john,” “peter,” “tom,” and the remain- 
ing facts which are not associated with the three argu- 
ments. Thus, the bound arguments form a basis for 
isolating the facts. On the other hand, the scope of the 
unbound arguments, e.g., T, X, and Y, is locally 
confined to the definitions (righthand side) of the indi- 
vidual rules. The unbound arguments, therefore, do not 
isolate the rules to aid in the construction of rule 
clusters. Nonetheless, a less efficient way to achieve 
sets of distributable clusters is to make four copies of 
the rules, in addition to the four clusters of the facts 
and queries. Consequently, the following combinations 
become distributable units of the data in Figure 1: the 
first copy of the rules and the cluster related to ‘ ‘john," 
the second copy and the cluster related to “peter,” the 
third copy and the cluster related to “tom,” and the 
fourth copy and the “other” cluster containing the 
remaining facts. 

Although a redundancy is introduced by these combi- 
nations, the trade-off is a potential improvement on the 
efficiency of processing the KB data. The improvement 
is a result of simultaneously processing the ‘ ‘john," 
“peter, ” “tom,” and “other” clusters on separate, 
multiple computers. In this example, these bound argu- 
ments are uniquely defined in each of the four clusters. 
Hence, minimal or no interprocessor communication 
overhead would be incurred with respect to the facts. 
(Assuming that the primitives not, fail, and greater 
are considered as subgoals and replicated in each clus- 
ter. The notorious cut (!) operator translates to a 
“remote activation, ” if present in a rule; see later 
sections.) Additionally, since each processor’s problem 
space is reduced to a fraction of the entire KB data, the 
likelihood of minimizing the overall computational time 
increases. 

2.2 Analysis and Modeling 

Unfortunately, clustering ICE3 data by simply grouping 
the facts and queries according to the bound arguments 
is inefficient and could lead to less optimal perfor- 



208 I. SYSTEMS SOFTWARE 
1991; 16:205-218 

family(X) :- spouse(X,Z), 

father(Y,X), 

mother(Y,Z), 

age(Y,A), 

not(greater(A,21)). 

/* children over 21 are not dependents */ 

senior_executive(T) :- 

old_employee(X) :- 

junior_executive(X) :, 

planningteam :- 

trainees(Z) :- 

manager(T), 

not(trainees(T)), 

planning_team(T). 

salary(X,Y), 
greater(Y, 50K). 

not(old_employee(X)), 

family(X), 

college(X), 

conferences(X), 

not(fired(X)). 

old_employee(K), 

family(K), 

college(K). 

rig&L), 

not(greater(L,30)), 

ppc_insured(Z), 

not(family(Z)), 

not(old_employee(Z)). 

family_healtt_plan(F) :- family(F), 

ppc_insured(F), 

not(retirement(F)) 

single_health_platt(S) :- not(family_heaNplarNS)). 

medicaid_plan(M) :- pension-support(M), 

not(ppc_insured(M)). 

ppc_insured(P) :- has_health_plan(P, Y), 

provider(Y), 

patient-preferred(Y). 

f&(Z) :- violate_policy(Z). 

retirement(Y) :- ageU,W, 
old_employee(Y), 

greater(X.60). 

pension_support(X) :- retirement(X), 

old_employee(X). 

not(fired(X)). 

salary(peter, 35K). 

age@eter, 39). 

has_health_plan(tom, blue-cross) 

spouse(peter, lurlyene). 

father(kofi, peter). 

spouse(john, Sharon). 

father(joshua, tom). 

spouse(tom, lucy). 

father(kwame, tom). 

has_health_plan(john, hmo). 

patient_preferred(blue_cross). 

salary(john, 70K). 

salary(tom, 30K). 

age(tom, 55). 

provider(blue_shield). 

patient_preferred(blue_shield). 

provider(hmo). 

provider(blue_cross). 

provider(blue_cross_blue_shield) 

age(john, 65). 

violate_policy(peter). 

?- pension_support(tom). 

?- pension_support(john). 

?- planning_team(john). 

?- junior_executive(peter). 

?- family(john). 

?- family_health_plan(tom). 

mother(kofi,lurlyene). 

mother(kwame,lucy). 

mother(joshua,lucy). 

mother(amma,sharon). 

child(tomjoshua). 

child(peter,frimpomaa). 

Patrick 0. Bobbie and Mike Papazoglou 

Figure 1. Logic-based data representation. 

mance. In addition, if the number of rules is signifi- problems in the KB data. Therefore, if the KB data is 
cantly large, redundancy becomes a bottleneck in terms large, a formal, viable alternative must be employed to 
of modifications, additions, and deletions. A large de- cluster the rules and subgoals. In our approach, the 
gree of redundancy could also cause inconsistency clusters are constructed by first analyzing the rules and 



Clustering PROLOG Programs 

subgoals and then using the results of the analysis to 
structure the rules and subgoals as matrix models. The 
analysis involves dete~ination of the dependency of 
the predicate names (rules) on the subgoals in the 
righthand-side definitions. We outline the procedure for 
analyzing the rules below. 

2.2.1 Rules with oniy conjunctive subgoals. First 
of all, a set of unary tuples composed of the predicate 
names (head of the rules) is compiled. The predicate 
names of disjunctive rules are represented by aliases for 
the partitioning purposes. Each tuple is uniquely identi- 
fied by one predicate name. The names of the facts or 
subgoals (subgoal names) to the right of the rules are 
appended to the tuples in the set to form k-ary tuples (k 
may vary). A matrix is then constructed such that the 
rows are labeled by only the predicate names in the 
tuples, because the rules depend on the subgoals. The 
columns are labeled by the subgoal names in the tuples. 

Second, we employ the ~go~~rn given in Figure 2 
to structure the rules and subgoals as a matrix model. 
For example, in Figure 1, the predicate name 
senior-executive matches only the subgoal name man- 
ager in its definition. Since the predicate names trainees 
and planting- team represent other rules, they are not 
matched. The predicate name famiiy_hearth-bran 
matches no subgoal names since family, ppc_insured 
and retirement are predicate names. The predicate 
names family matches all five of its subgoals: spouse, 
father, mother, age, and greater. Consequently, the 
following tuples (the predicate names and tuple ele- 
ments-subgoal-names-represent the row and column 
indices of the matrix, respectively) are produced as the 
result of the analysis: 

[senior_executive, (manager)] 

[famiry _ hearth _&an, { > ] 

[ family, (spouse, father, mother, age, greater)] . 

2.2.2 Rules with both conjuctive and disjunctive 
subgoals. The algorithm in Figure 2 works for rules 
defined in terms of both conjunctive and disjunctive 
subgoals. The following discussion demonstrates that 

J. SYSTEMS SOFTWARE 209 
1991; 16:205-218 

the clustering methods are invariant to rules with both 
conjunctive and disjunctive subgoals. To this end, we 
introduce three new rules {Figure 3) to the KB data in 
Figure 1. Figure 3 shows the two new rules, 
family-health-plan and family, which are altema- 
tives (or disjunctive) to the rules in Figure 1. The new 
rules are aliased as family_heafth_planl and famiiyl, 
for the purposes of the analysis. The third rule, excep- 
tion, is defined to satisfy the procedure call in the two 
new rules. An analysis of the new rules produces the 
following additional tuples: 

[family_health_planI, 

~has_h~th_plan, violate_policy)] 

[ exception, ( } ] 

[ familyl, 

f spouse, age, greater, has- heal~_plan , child) ] . 

Consequently, if these new rules were part of the KB 
data in Figure 1, the resultant matrix (Figure 4) will be 
augumented with a new column indexed by “child” 
and three new rows indexed by “family- 
health-plan1 ,” “exception,” and “familyl.” The new 
column and row indices are derived from the additional 
tuples . 

In both cases, the resultant matrix is relational be- 
cause of the dependency relation. The matrix is also 
binary because the entries are 1s and OS. The matrix is 
then decomposed into submatrices, where each subma- 
trix is equivalent to a partition of the KB rules and 
facts. Next, we discuss the specifics of the decomposi- 
tion algorithm using the data in Figure 4 as a starting 
point. 

3. DECOMPOSITION AND REORGANIZATION 

In the following, we describe the algorithm for decom- 
posing and reorganizing PROLOG KB data objects to 
1) complement the analysis and modeling procedures 
already discussed, and 2) motivate its applicability. The 
procedure begins by computing the total number of 
nonzero entries in each row and column in the matrix. 
Consequently, a new matrix is constructed from the 

Figure 2. Algorithm for modeling KB rules and 
facts as a binary matrix. 

match0 (f* input: tupte$sets of predicate-names and subgoal-names (facts) and the KB data */ 

for each predicate-namq in a tuple ( 

for each subgoal-nameJ [ 

if the subgoal-nameJ (of some fact) is in the tuple or body of predicate-name1 

then set Maaix[I,J]-entry to 1 else set Matrix[I,J]-entry to 0 



210 J. SYSTEMS SOFTWARE 
1991; 16:205-218 

Patrick 0. Bobbie and Mike Papazoglou 

family_health_plan(T) :- exception(T,Y), /* alternative to rule in Figure 1 */ 

(if Y = yes then I* aliased as family_kalthplanl ‘/ 

not(violate_policy(T)), /* disjunctive subgoal */ 

assert(has_health_plan(T, hmo)) 

else 

medicaid_plan(T), 

assert(has_health_plan(T, blue-cross)) 

exception(T,X) :. retirement(T), not(family(T)), X= yes. I* 0~ both taa& rules */ 
Figure 3. Rules with conjunctive and disjunc- 
tive subgoals. 

family(M) :- exception(M,E), /* alternative to rule in Figure 1 */ 

(if E =yes then I* aliased asfamiiyl “I 

child(M,K), age(K,A), /* disjunctive subgoal */ 

greater(A.21). not(spouse(M,V)) 

else 

reuact(has_health_plan(M,_)), !, fail 

). /* this rule allows single adults with older kids to be viewed as a 

family */ 

rearrangements. The size of the example used in moti- 
vating the specifics of the algorithm might not seem to 

warrant the trouble. The usefulness of the algorithm, 
however, is proven in situations where very large KB 
data has to be clustered for efficient, distributed pro- 

cessing. 

3.1 The Decomposition Algorithm 

Before the steps of our algorithm are discussed, an 
explanation of three characteristics or states that a 

binary matrix could assume during its decomposition is 
in 

1. 

2. 

3. 

order. 

A row or a column may have no nonzero entries. 

An entry (I, J) may be the only nonzero element in 
a row I, but the corresponding column J may have 

one or more nonzero entries. The converse is also 
true. 

All rows and columns may have two or more 
nonzero entries. 

3.1.1 Step 1: Algorithm. The first step deals with 
the rearrangement of rows and columns of the matrix in 
states 1 and 2. To achieve this rearrangement, the 
number of nonzero entries in each row and column is 
totaled (see the rows and columns labeled SUM in 
Figure 4). The indices of rows and columns with SUMS 
equal to zero (or successively reduced to zero) are 
moved to the bottom rows and righthand columns of the 
new matrix, respectively. The indices of rows and 
columns with SUMS equal to one are moved to the 

main diagonal of the new matrix, along with the lone 
entries. Once the entries are moved, the corresponding 
row and column indices are deleted from the old ma- 
trix. 

The deletion could cause the nonzero entries of other 

rows and columns to be deleted as well (due to state 2). 

Therefore, the SUMS of the rows and columns affected 
by the deletion are adjusted or reduced by one on each 
occurrence. The first step is repeated for both rows and 
columns until the old matrix assumes state 3. If at the 
end of Step 1 each row and column is already marked 
(i.e., entry is selected), the algorithm skips to Step 3 

(discussed later). Appendix A shows the pseudocode of 
Step 1. The matrix in Figure 4 is the input to Step 1. 
Figure 5, the revised matrix, shows the results of Step 
1 where the marked, or selected, row and column 
entries are marked “ + ’ ’ . Also, the deleted rows and 
columns (“ = “) under the “deleted” labels and the 
successive adjustments of SUMS are indicated under 
the labels “ sum- 1. ’ ’ The “sum-l” entry of the column 

labeled “great” illustrates successive reductions of 
SUMS from 4 to 3 to 2. 

3.1.2 Step 1: Example. Two sets of rule-fact pairs 
are selected from Figure 4 to form candidate, main 
diagonal partitions in Figure 5. The first set of rule- 
facts pairs comprising (senior_executive,manager), 
(junior_executive,conference), (planning_team,col- 
lege), and (fired,violate_policy) is formed when Step 1 
is applied to the SUMS of rows in Figure 4 (see 
Appendix A). The second set, comprising (ppc-in- 
sured,has_health_plan), (old_employee,salary), and 



Clustering PROLOG Programs J. SYSTEMS SOFTWARE 211 
1991; 16:205-218 

Figure 4. Initial matrix model. 

sum-l 

(family,s~use) is formed when Step 1 is applied to the 
SUMS of columns in Figure 4 (see Appendix A). 

The respective row and column indices are deleted or 
not considered further in Step 2, and the corresponding 
entries are rearranged on the main diagonal of the new 
matrix as shown in Figure 6. The undeleted rows and 
columns constitute the inner square submatrix, which is 
further partitioned in Step 2. In practice, the result 
manifests the strength of the dependency relations and 
the effect of Step 1 in grouping the pairs of rules and 
facts into partitions. Note also that Step 1 is conserva- 
tive because it avoids the elimination of several other 
entries by first selecting single, nonzero entries in the 
rows and columns (see Appendix Prologue). 

3.1.3 Step 2: Algorithm. The input to this step is 
the remaining rows and columns of the inner, boxed 
submatrix in Figure 6. The new SUMS of the remaining 
nonzero entries are the values under the labels “sum-l” 
or SUMS of Figure 5. In general, the second step 
requires the rearrangement of the remaining column 
and row indices with more than a single nonzero entry. 
The aim is to move additional nonzero entries onto the 
main diagonal in order to obtain a maximum number of 
1s on the main diagonal-the criterion for maximal 
decomposition discussed in the Appendix. Each of the 
remaining nonzero entries which have not been previ- 
ously marked is selected such that the aggregate sum of 
the corres~nding row and column SUMS is the min- 

ima. Ties are broken arbitrarily. (By analogy, the 
aggregate sums represent the total number of other 
edges which would be eliminated from the equivalent 
bipartite graph if the target one is selected; see Ap- 
pendix.) Hence, the entry that incurs the smallest loss 
is preferable. 

Once an entry is selected, it is moved onto the main 
diagonal of the new matrix along with its row and 
column indices. The process is repeated until the new 
main diagonal is completely filled with the maximum 
possible entries. The step completes the process of 
establishing the decomposition criterion. Appendix B 
shows the pseudocode of Step 2. 

3.1.4 Step 2: Example. The rows and columns, or 
(drows,dcols) pairs, that are selected in Step 2 are 
marked “ + ” (Figure 6). The marked entries are moved 
onto the main diagonal. The main diagonal entries 
serve as a pivot for transitioning from rows with non- 
main diagonal entries to other rows containing pivotal 
entries. Hence, the length of the main diagonal deter- 
mines the efficiency of grouping the rules and facts into 
inde~ndent partitions. 

Table 1 shows the data structures and results of Step 
2. Triplet tuples are constructed from the entries of 
each row in the inner submatrix (step [3], Appendix B). 
A triplet is a tuple of the following structure: (row-in- 
dex, column-index, aggregate-of-SUMS). Table 1 shows 
the TRIPLET tuples for each row of the inner subma- 



I. SYSTEMS SOFTWARE 
1991; 16:205-218 

Patrick 0. Bobbie and Mike Papazoglou 

Figure 5. Effect of Step 1 on the initial matrix 
model. 

trix. For example, the triplet (trainees, age, 4) is se- 

lected arbitrarily to represent the row indexed by 
trainees because both triplets under the row have equal 
values of aggregate-of-SUMS. The triplet 
(retirem,age,4), is also selected arbitrarily to represent 
the row indexed by retirem for the same reason (see 
step [5], Appendix B). 

The MINSET column of Table 1 indicates the se- 
lected triplets for each row. Because the triplets of the 

rows indexed by trainees and retirem are tied in both 
the column-index, age, and the aggregate-of-SUMS val- 

ues, one is chosen arbitrarily and the other triplet (i.e., 
for the row retirem) is replaced (steps [8] and [9], 
Appendix B). Therefore, the next triplet for the row 
retirem with the minimum aggregate-of-SUMS value, 
(retirem,great,4)**, is selected to replace (retirem, 
age,4) (step [8], Appendix B). In Table 1, the MAIN- 
DIAG column shows the final selections or (drow,dcols) 

pairs for forming the main diagonal of the inner subma- 

Table 1. Resulting Data of Step 2 

ROW TRIPLET MINSET MAINDIAG 

trainees (trainees,age,4) (trainees,age,4) (trainees,age,4) 
(trainees,great,4) (retirem,great,4) 

retirem (retirem,age,4) (retirem,age,4)-replaced 
(retirem,great,4) (retirem,great,4)** 

trix (rearranged according to steps [lo] [ll], Appendix 

B). 

3.1.5 Step 3: Algorithm. The last step involves 
moving nonzero entries outside the main diagonal of 
the new matrix to cluster around the main diagonal. We 
construct a transitive closure of these entries such that 
there is a transition from the rows containing the 
entries, through the main diagonal entries (pivots), to 

the rows of the pivotal entries. As the entries are 
moved into the transitive closure sets, the correspond- 
ing row and column indices are rearranged in the new 
matrix to produce groups of row and column indices 

that constitute the partitions. An optimal partitioning is 
indicated by having all partitions on the main diagonal. 
The transitioning steps given in Appendix C are applied 
to the nonzero entries not lying on the main diagonal of 
Figure 6. The arrows in the figure illustrate the transi- 

tioning process for the inner submatrix. Table 2 illus- 
trates the data structures and associated values of the 
transitioning steps of Step 3. 

3.1.6 Step 3: Example. In Table 2, the column 
labeled TRANSET lists the row indices that were copied 
from one TRANSET set into others. The ROWSET set 
is composed of other row indices that establish the 
transitivity (or closure) principle (step [5], Appendix 
C). Thus, the ROWSET column contains row indices 



Clustering PROLOG Programs J. SYSTEMS SOFTWARE 213 
1991: 16:205-218 

Figure 6. Result after Step 2 (with a boxed 
‘ ‘ inner ” submatrix). *, SUMS not considered 
at Step 2. 

Table 2. Transitioning Steps of Step 3 and the 
Resultant Partition 

INITIAL TRANSET ROWSET DENSITY GROUPSET 

Part (Ai 
trainees { trainees1 * (retirem] 2 
retirem { retirem} 1 trainees] 2 li 
Port (B) 
retirem { retirem, {trainees} 4 { retirem, 

trainees} trainees} 

*(TRANSET entry(k) of “trainees” in Pan (A) copied to TRANSET 
of “retirem” in Part (B). 

for establishing transitions from one TRANSET set to 
other TRANSET sets. For example, part A of Table 2 
shows the row index trainees copied into the 
TRANSET set of rei~re~ following the transitivity 
principle. The DENSITY values are 2 in both cases 
(the same values under the column labeled SUM in 
Figure 6). The TRANSET set {retirem,trainees} or 
retirem in Part B of Table 2 is added to the GROUPSET 
set as a group with a total DENSITY of 4. 

In practice, Step 3 groups the row indices (KB rules) 
using the main diagonal entries as the pivot to deter- 
mine the transitivity. The resultant partitions of 
GROUPSET set are used to finally rearrange the row 
and column indices of the matrix. The DENSITY is 
used (step [l I], Appendix C) in a heuristic sense to 
place the partitions on the main diagonal. The DEN- 

SITY also facilitates merging the partitions into clus- 
ters. Figure 7 shows the partitions, indexed by the rules 
and facts, and blocked out on and below the main 
diagonal. The nonzero entries marked “ 1”” are the 
ones lying outside the partitions. These outlying entries 
are merged with the diagonal partitions to form clus- 
ters. The resultant clusters are fact independent after 
the merging procedure. Next, the methods for forming 
fact-independent clusters are discussed. 

4. FORMING DISTRIBUTABLE CLUSTERS 

The predicate and subgoal names indexing the three 
diagonal partitions of Figure 7 form the respective 
clusters Cl, C2, and C3 in Figure 8. The cluster C4 is 
formed by clustering the four rules [pension_ 
support, m edicaid, single- health -plan, 
family_health_pfun] lying below the three diagonal 
partitions and having no subgoal dependencies. The 
cluster Cl is formed by clustering the rules 
[ senior_executive,ptanning_team,fired, junior_ 
executive] and the subgoals managers, college, vio- 
late-policy, and conference. 

The subgoal names indexing the nonzero entries 
lying outside the main diagonal partitions are placed in 
the clusters C2 and C3, respectively, because the sub- 
goal names are either adjacent to or below the C2 and 
C3 partitions. For example, cluster C3 is formed by 



214 1. SYSTEMS SOFTWARE 
1991; 16:205-218 

Patrick 0. Bobbie and Mike Papazoglou 

sum-l 

Figure 7. Result after Step 3: three partitions 
on the main diagonal. *, Not considered 
further; l”, outlying nonzero entries. 

clustering the rules [ ppc_insured, old-employee, 
family] and the subgoals has-health-plan, salary, and 

spouse, plus the outlying subgoals patient-preferred, 
provider, mother, and father. Similarly, the subgoal 

name [greater] is added to C3 because rules old-em- 
ployee and family depend on greater (see outlying 
entries in Figure 7 and shown in Figure 8). 

In Figure 8, the subgoals are labeled FACT parti- 

tions and placed below the rules (labeled RULE parti- 
tions). The crossed-out lines indicate remote activations 

among the rules. The arrows indicate the dependency 
on the subgoals before merging the partitions (cluster- 

ing). The bottom half of Figure 8 shows the four 
fact-independent clusters after merging the facts. 

4.1 Distributed Query Execution Map 

Figure 9 shows a cluster-load map for executing the 
five distinct queries in Figure 1. Each row in Figure 9 
represents one of the rules in the KB. The query 
execution map is constructed at the time of loading the 
KB clusters (fragments) into the available processors 
for distributed computations. The entries of Figure 9 
indicate which cluster contains a given rule. It is not 
relevant to indicate the facts which are needed for 
completing the execution of a rule since the partitioning 
and clustering procedures established this requirement a 
priori. Thus, no facts would be migrated during the 
execution of rules. 

Although there are rule-rule dependencies (as indi- 

cated in Figure 8 by the crossed-out lines), it suffices to 

indicate in Figure 9 which cluster contains an originat- 
ing rule, as shown under the column labeled “orig.” 

Thus, knowing the originating rule, parallel remote 
activations are performed using a message-passing 
scheme or accesses to a shared memory. The queries in 
Figure 1 (marked “*” in Figure 9) are distributed for 

execution by a controller (program on a host computer). 
The controller uses the map to load clusters into avail- 
able processors and initiates the necessary remote acti- 

vations. In this example, three slave processors are 
loaded with separate clusters for parallel query execu- 

tion. In the context of the techniques discussed thus far, 
the degree of parallelism is simply measured by the 
total number of overlapped executions among the pro- 

cessors. Hence, the degree of parallelism or overlapped 

executions, obtained using four processors in this ex- 
ample, is 3.75 (including the computations of the host 
computer). 

5. CONCLUSION 

We have presented a methodology for analyzing, struc- 
turing, partitioning, and clustering KB data for dis- 
tributed processing. We have demonstrated the applica- 
bility of these strategies and discussed a mechanism for 
constructing non or minimally-interfering clusters of 
rules and facts. Noninterfering clusters suggest an op- 



Clustering PROLOG Programs I. SYSTEMS SOFTWARE 215 
1991; 16:205-218 

Figure 8. Clustering of rule and fact parti- RULE 

tions. parwons 

RULE 
parIl”o”S 

FACT 
partitions 

Figure 9. Distributed query execution map (cluster-processor 
matrix). *, queries of Figure 1. 

portunity for distributed processing with minimal or no 
interprocessor communication overhead. To this end, 

we have also discussed a method for constructing a 

pSlO~_SUppt. 

single_health_plan 

manager. college. 

violate_policy. conference &water, age 

+ 
I Replicate & Mergcl 

ppc_insured, family, 

query execution map for assigning clusters to available 
processors to facilitate distributed computations. 

ACKNOWLEDGMENT 

We thank Ross Huitt for his assistance in developing the 
PROLOG program-dependency analysis tool. We also thank 
the referees for their comments and suggestions on earlier 
drafts of this article. This work was partly supported by a 
grant from the National Science Foundation under the Re- 
search Experience for Undergraduates (REU) Program. 

REFERENCES 

L. Naish, Automatic Generation of Control for Logic 
Programs, Technical Report 83-6, Department of Com- 
puter Science, University of Melbourne, Melbourne, 
Australia, 1983. 
E. Y. Shapiro, A Subset of Concurrent PROLOG and its 
Interpreter, ICOT Technical Report TR-003, Institute for 
New Generation Computing, Tokyo, 1983. 
G. Agha, ACTORS: A Model for Concurrent Com- 
putation in Distributed Systems, The MIT Press, Cam- 
bridge, MA, 1986. 
.I. S. Conery , Parallel Execution of Logic Programs, 
Kluwer Academic Pub., Norwell, MA, 1987. 



216 J. SYSTEMS SOFTWARE 
1991; 16:205-218 

P. 0. Bobbie and J. E. Urban, A Model for Understand- 
ing Complexities of Developing Large-Scale Software 
Systems, IEEE Computer Society International 
Workshop on Tools for AI, Herndon, VA, 1989, pp. 
16-23. 
P. 0. Bobbie, K. M. Ford, and E. G. Rodgers, Auto- 
mated Elicitation of Software Requirements Specifica- 
tions-An AI Approach, in Advances in ArtlQicial In- 
telligence Research (M. B. Fishman, ed.), Vol. II, JAI 
Press, Greenwich, CT, 1990. 
R. Braun, Expert System Tools FOR Knowledge Analy- 
sis, AZ EXPERT 22-29 (1989). 

APPENDICES: THE DECOMPOSITION 
ALGORITHM 

Prologue 

In theory, each nonzero entry of a binary matrix is 
equivalent to an edge in a bipartite graph [Al ,A2]. A 
bipartite graph is a simple graph constructed from two 
sets of nodes in which nodes in one set are connected to 

nodes in the other set by edges (an onto-mapping). 
Several edges may emanate from or terminate at a 
single node. In practice, a bipartite graph is constructed 

from two sets of binary related elements, e.g., rules 
versus subgoals or rules versus rules. A nonzero entry 
in a binary matrix is an indication of a relation between 
two index elements, e.g., rule X depends on subgoal Y 
and will have the (X,Y)-entry set to 1. Isomorphically, 
the nonzero entry is represented by an edge between X 

and Y in a corresponding bipartite graph. 
A bipartite graph may be matched [Al] using a 

systematic procedure to remove edges from the graph 
into a set (edge set) without having any pair of edges in 

the set coming from a common node. The ideal case is 
when the edge set contains the largest possible number 

of such edges, indicating a maximal matching. When 
an edge between two nodes is removed from the graph 
into the edge set, the two nodes are eliminated along 
with all other edges currently connected to the nodes. 
The additional disconnected edges are candidate edges 
that could be removed (if they were still connected) into 
the edge set to maximize the set’s cardinality. There- 

fore, a prudent removal of an edge must be made to 

ensure maximal matching. 
Maximum matching is a precondition for obtaining 

perfect matching. Isomorphically, the edges in the edge 
set represent the nonzero entries that are formed on the 

Appendix A: Step 1 

[l] compute SUMS as the sum of the non-zero entries of each row and column of the matrix M. 
[2] for each row, (or col,) do 

r31 if SUM of row1 (or col,) = 0 

Patrick 0. Bobbie and Mike Papazoglou 

main diagonal of an equivalent binary matrix. Hence, 
the number of such nonzero entries must be as large as 

possible to guarantee an optimal decomposition or par- 
titioning. Thus, the initial choice is to remove edges 
which do not eliminate several other potential edges or 
to start with lone nonzero entries in the rows and 
columns of the binary matrix (Appendix A). 

The parallel between bipartite graphs and binary 
matrices is that the two are isomorphic. Thus, the two 
sets of nodes in the graph constitute the row and 
column indices of the matrix. The edges connecting the 

nodes in the graph represent the nonzero entries of the 
matrix. 

The first two steps of the three-step decomposition 
algorithm are based on the matching principle of bipar- 
tite graphs [Al ,A2]. The third step is an extension to 
the matching principle. A descriptive, pseudocode of 

the steps are presented in Appendices A to C with focus 
on the applications detailed in Sections 1 to 4. The 

matching principle establishes a maximum decomposi- 
tion criterion (i.e., to obtain a maximum number of 
nonzero entries on the main diagonal). 

There is a significant number of bipartite graph- 

matching algorithms with varying degrees of complex- 
ity. Specifically, our methods are based on maximum 
matching algorithms. Among the maximum matching 

algorithms are the Hungarian Trees algorithm which 
takes 0( 1 V 1 1 E ( ) steps overall, for I/ vertices and E 

edges (represented as 1s in our binary matrices); the 
Tutte Matrix Condition procedure which has a com- 
plexity of 0( IV I 3), where V is the cardinality of the 
vertex set; and the integer programming model, which 

suffers from NP-completeness [A2,A3]. The algorithm 
discussed in this paper has an overall worst-case run- 

ning time of 0( IV, I I V, I ), where V, and V, are the 
cardinalities of the row and column index sets, respec- 

tively. 

REFERENCES 

Al. 

A2. 

A3. 

F. Harary, Graph Theory, Addison-Wesley, Reading, 

MA, 1969. 

J. McHugh, Algorithmic Graph Theory, Prentice- 

Hall, Englewood Cliffs, NJ., 1990. 

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, 
Introduction to Algorithms, The MIT Press, Cam- 
bridge, MA, 1990, p. 1028. 



Clustering PROLOG Programs 1. SYSTEMS SOFTWARE 217 
1991; 16:205-218 

WI 
]3.bl 
]41 

then move row, (or col,) to bottommostrow (or rightmostcol) of M’ (new) 
else 

if SUM of row, (or col,) = 1 
then 

/*move M[row, ,col,] (or M[row, ,col,]) as follows: 
J is the corresponding column or row */ 

move row, (or col,) to toprow (or rightcol) of M’ (new) 
move the corr. col, (rowJ) to leftcol (or bottomrow) of M’ 
delete row, and col, (or col, and rowJ) from M 
subtract 1 from SUMS of all rowx (or col,) where 

M[row,,col,] = 1 (or M[row,,colx] = 1 
end /* the “or” parts of the steps are applied to SUMS of columns */ 

Appendix B: Step 2 

[ 1] recompute the SUMS of rows and columns of the inner submatrix (see Figure 3~). 
[2] for each row, do 

131 for each non-zero entry in col, do 

L3.11 compute SUM-VALUE = SUM of row, + SUM of col, 

]3.21 form a TRIPLET set (row,,col,,SUM-VALUE) /* for all J */ 
end 

end 
[4] for each row1 do /* the number of triplets for each row, = the number of its non-zeros */ 

PI for each TRIPLET set do 

[61 if a TRIPLET set is empty 

@aI then add row, to bottommostrow and col, to 
rightmostcol of M ’ (new matrix) 

]6.bl else 
select a triplet from TRIPLET set with the minimum SUM-VALUE 

and add it to MINSET set -- ties are broken arbitrarily 
delete the selected triplet from the TRIPLET 

endif 
end 

end 
/* Form a MAINDIAG set of (row,column)-pairs from the candidate triplets of MINSET set 

in increasing value of the corresponding SUM-VALUES */ 
[7] while MINSET is not empty do 
PI if two or more triplets in MINSET have the same col, 

then replace the triplets whose aggregate sum of the 
SUM-VALUES (in row,‘s TRIPLET sets) is the 
maximum, by re-executing steps [4]-[6.a] for the affected rowt’s 

endif 

[91 if there are no ties in the SUM-VALUES 

19.4 then select a triplet with the minimum SUM-VALUE 

]o.bl else 
select one arbitrarily 

endif 
end 

[lo] move the (row ,column)-pairs from MAINDIAG set to the inner submatrix of M ’ 
[ 1 l] move all non-zero entries from M to M ’ (the non-zero main-diagonal is formed). 

Appendix C: Step 3 

[l] consider only the inner submatrix (e.g., the boxed out submatrix in boldface in Figure 3c) 
[2] form an INITIAL set of the row indices, a TRANSET set (initially of row indices) for each 



218 1. SYSTEMS SOFTWARE 
1991: 16:205-218 

Patrick 0. Bobbie and Mike Papazoglou 

row], a ROWSET set (initially empty) for each rowr, and a GROUPSET set (initially empty). 
[3] set a pointer1 to INITIAL, pointer2 to ROWSET set, and pointer 3 to the GROUPSET set 

/* Form ROWSET sets (composed of row indices) for each row such that */ 
[4] for each row, in the inner submatrix do 

VI for each non-zero entry in col, (not on the main diagonal) do 
scan (up or down) the col, to the main diagonal 
add the index of rowx containing the main diagonal entry to 

ROWSET of rowr 
end 

end /* arrows in Figure 3c illustrate steps [4] and [5] */ 
[6] for each INITIAL set of row, and the corresponding TRANSET and ROWSET sets do 
]71 for each row1 do /* determine a transitive closure */ 

[gl if there is a match (intersection) between the ROWSET of row, 

and any TRANSET set of other rowx’s 

]g.al then 
[Ka. l] if there is a match (intersection) between the ROWSET set of 

the matched rowx’s and TRANSET set of row, 
[8.a. 1. l] then 

copy TRANSET set of row1 into TRANSET 

sets of the rowx’s 
endif 

]g.bl else 

]91 

1101 

[ill 

1121 

1131 

endif 

copy TRANSET set of row, into GROUPSET set 
set pointer3 to next slot in GROUPSET set 

delete TRANSET set of rowr 
set pointer1 to the next row1 (if not the last but one) 
set pointer2 to the next rowx (if any) 

end 
end 
for each group in GROUPSET set do 

compute DENSITY as the aggregate sum of the SUMS of the rows in the group 
end 
alternating between the groups with smallest and largest DENSITY values, relabel the 

row indices of the inner submatrix of M ’ 
rearrange the column indices of the inner submatrix to maintain the non-zero main 

diagonal entries of M ’ and move all other non-zero entries from M to M ’ 
block out the partitions on, below, or adjacent to the main diagonal of M' . 


