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Abstract. The cut polytope P. is the convex hull of the incidence vectors of the cuts (i.e. complete 
bipartite subgraphs) of the complete graph on n nodes. A well known class of facets of P. arises 
from the triangle inequalities: x o + Xlk + X~k < 2 and xlj -- x~k -- xjk < 0 for 1 < i, j, k < n. Hence, 
the metric polytope M., defined as the solution set of the triangle inequalities, is a relaxation of 
P.. We consider several properties of geometric type for P., in particular, concerning its position 
within M.. Strengthening the known fact ([3]) that P. has diameter 1, we show that any set of k 
cuts, k < log 2 n, satisfying some additional assumption, determines a simplicial face of iV/. and 
thus, also, of P.. In particular, the collection of low dimension faces of P. is contained in that of 
iV/,. Among a large subclass of the facets of P., the triangle facets are the closest ones to the 
barycentrum of P, and we conjecture that this result holds in general, The lattice generated by all 
even cuts (corresponding to bipartitions of the nodes into sets of even cardinality) is characterized 
and some additional questions on the links between general facets of P. and its triangle facets are 
mentioned. 

I. Introduction 

In this paper ,  we prove  several  results  of geometr ic  type on  the cut  po ly tope  P, of 
the comple te  g raph  on n nodes.  They  are  mo t iva t ed  by the s tudy of the geometr ic  
shape of P,, in par t icu lar ,  the pos i t ion  of the facets of  P, with respect  to its 
barycen t rum,  the con t r ibu t ion  of the i m p o r t a n t  subclass of  the t r iangle  facets to the 
global  shape of  P,, and  also the s tudy of some latt ices genera ted  by families of  cuts. 

We  set [1, n] = {1, 2 . . . . .  n}. Given  a subset  S of  [1, n], the  cut  de te rmined  by S 
is the set 6(S) of all pairs  ( i , j )  of dis t inct  po in ts  of  [1, n] such that  exact ly  one of  i 
and j be longs  to  the set S. The  incidence vector  of  the cut  6(S), also called its cut  
vector, is the vector  X ~s) o f R  "~"-1)/2 defined by  X~ ~s) = 1 if(i, j )  e 6(S) and  --ij~s) = 0 

otherwise,  for 1 _< i < j < n. The cut polytope P. is the convex hull of the incidence 
vectors of  the cuts 6(S) for all subsets  S of [-1, n]; it  is a full d imens iona l  po ly tope  in 
R "("-~)/2. Given  v ~ R "("-~/z and  Vo e R, the inequal i ty  v. x < Vo is said to be valid 
for P, if it  is satisfied by  all cut  vectors  and,  then, to be facet inducing if there  exist 
n(n - 1)/2 affinely independen t  cut  vectors  satisfying the equal i ty  v. x = Vo. A well 
known class of  facets of  P. arises from the fol lowing t r iangle  inequali t ies:  
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(1.1) Xo -- X~k -- Xjk < O for l < i, j, k < n 

as well as the inequalities: 

(1.2) xlj + Xik + Xjk < 2 for 1 < i, j, k < n 

There are 3(~) facets of type (1.1) (homogeneous triangle facets) and (~) facets of type 
(l.2) and so 4(~) triangle facets in total. Each triangle facet contains 3.2 n-3  c u t  

vectors, i.e. 3/4th of the total number of vertices of P,. Although P, has surely a lot 
of quite complicated (and still yet undiscovered for the greatest majority) facets, its 
most simple ones, the triangle facets, seem to gather already quite a lot of the 
properties enjoyed by P,. 

Let M, denote the polytope in R n(n-1)/2 defined as the solution set of the 4(~) 
inequalities (1.1) and (1.2), M, is called the metric polytope. So M, contains the 
polytope P, and M, is contained in the cube [0, 1] "~"-~)/2. The cut vectors are als0 
vertices of M,; in fact, they are the integral vertices of M.. The problematics of 
describing vertices of 34. and facets of P, are in some sense "dual". Namely, while 
the vertices of P. are easy (they are the cut vectors), it is probably very hard to find 
explicitly all its facets; on the other hand, the facets of M, are easy (they are the 
triangle inequalities) while it is also probably very hard to find all vertices of 54,. 
We refer e.g. to [3], [5], [7], [8] for information on the facets of P. and to [2], [11] 
for information on the vertices of M,. Actually, [2] and [11] study the extreme rays 
of the metric cone M C .  = {x ~ Rn(n-1)/2: Xij - -  X i k  - -  Xjk ~ 0 for all 1 _< i, j, k _< n}. 
But, one sees easily that, if d defines an extreme ray of M C ,  and if a - -  
min(2/(dlj + dik + djk): dii+ dik + d j k r  0 for 1 < i, j, k < n), then ad is a vertex of 
the metric polytope M.. 

Since the metric polytope M. contains the cut polytope P., it is natural to ask 
how well M, approximates P., i.e. how well the triangle facets wrap P,. In section 
2, we give some elements of answer toward this question. Barahona and Mahjoub 
([3]) proved that P, has diameter one, i.e. that any two cut vectors are adjacent on 
P,. It follows from a result of Padberg that any two cut vectors are also adjacent 
on M, (see Remark 2.11). Therefore, the 1-skeleton of P, (its collection of vertices 
and edges) is contained in the 1-skeleton of iV/,; in other words, M, has the Trubin 
property (see [19]) with respect to P,. So, for d = 0, 1, all d-faces (faces of dimension 
d) of P, are also faces of Mn; this property holds for some higher dimension faces. 
Namely, we show that any three cut vectors determine a simplicial face of M, and, 
thus, also of / ' ,  and, therefore, all 2-faces of P. are faces of M.. Generally, we prove 
that any k cut vectors, k _<'log 2 n, which are in general position (see section 2 for 
the definition) determine a simplicial face of M, and, thus, also, of P,. We conjecture 
that, for k < logz n, all k-faces of P, are also faces of M,. We show that the minimum 
integer k for which there exist k cuts that do not lie on any triangle facet is in 
O(log 2 n). This indicates that log2 n might be the limit value for validity of our 
conjecture. 

Several other geometrical facts are known on the cut polytope P,, for instance, 
that it enjoys a lot of symmetries (see the precise description of its symmetry group 
below), also its circumscribed sphere, since it is immediate to check that all cut 
vectors lie on the sphere of center b = (1/2 . . . .  ,1/2), the barycentrum of P,, and 
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radius x/r/2 with r = n(n - 1)/2. However, the geometrical shape of P, is not yet fully 
understood. For  example, it is not quite excluded that P, might become more and 
more "flat" for large n. This question is considered in section 3; unfortunately, we 
cannot completely settle it. However, we show that any facet of P, having only 0, 1, 
- 1 coefficients (in the left hand side of its defining inequality) has distance at least 
(2,,/3) -1 from the barycentrum b of P,, this smallest distance being attained precisely 
by the triangle facets. We conjecture that this property holds generally for all facets 
of P,, i.e. that the triangle facets are the closest ones to the barycentrum and so the 
inscribed sphere to P, has radius greater or equal to (2x/3) -1. 

It is known that the integer points x belonging to the lattice generated by the 
cut vectors are characterized by the fact that their perimeter on any triangle must 
be even, i.e. x o + Xik -t- Xjk is even for all 1 < i < j < k < n ([1]). Here, in section 4, 
we characterize a sublattice of it, namely the lattice of all even cuts, i.e. all cuts 6(S)  
with both sets S and [ 1 , n ] - S  of even cardinality. Subfamilies of cuts obtained 
by introducing some parity conditions are well studied and classical objects in 
Combinatorial Optimization (see e.g. [13]). 

We state in section 5 several questions concerning the links between arbitrary 
facets of P, and its triangle facets, in particular, whether any facet of P. can be 
decomposed as linear combination of triangles, also whether any facet collapses to 
some triangle inequality.? Both these properties can be observed on the classes of 
facets of P, known so far. Finally, we show in section 6 how the structure of the 
3-hypercut polytope HP(3), can be derived from that of the cut polytope P,. Given 
a subset S of [1, n], the 3-hypercut 63(S) is the set of triples (i, j, k) of distinct points 
of [1, n] that intersect both S and its complement [1, n] -S  and the polytope HP(3), 
is the convex hull in R n(n-1)(n-2)/6 of the incidence vectors of the 3-hypercuts. So, 
3-hypercuts are a direct generalization of cuts (i.e. 2-hypercuts). In fact, HP(3), is a 
linear bijective image of P.. 

We conclude the introduction by recalling the description of the symmetries of 
the cut polytope P,. Given a cut 6(S),  set r0~s) = [I~i,~)~0is)rlj where rlj denotes the 
reflection around the hyperplane x o = 1/2 for 1. < i < j < n. Hence, y = rots)(X ) 
is defined by Yij = 1 - xij if (i, j )  e 6(S)  and Yu = xij otherwise; ro~s) is an affine 
map and, if we denote by Rots) its linear part, then rots)(X ) = Rots)(X ) + X ~ For 
v e R "~"-~)/2, let v s denote the vector of R "1"-1)/2 defined by v s = - v  0 if (i, j) e 6(S) 
and v g = vii otherwise for 1 < i < j < n. If the inequality v. x < Vo is valid for P, 
and defines the face F of P., then the inequality v s . x <_ v o - v .  6(S)  is also valid for 
P, ([3]) and, in fact, defines the face rots)(F) of P, ([6]). Any permutation a of [1, n] 
clearly induces an i sometry of R "~"-1)/2 and, in fact, a symmetry of P.. For  n ~ 4, the 
only symmetries of P, are the reflections rots) for  S subset of [1, n] and the permuta- 
tions of [1, n]; in fact, the symmetry group of P,  coincides then with the central 
quotient of the symmetry group of the n-dimensional cube ([6]). 

2. How Well Do  the Triangle Facets Wrap the Cut Polytope? 

The met r i c  p o l y t o p e  M ,  is the set of vectors satisfying all triangle inequalities (1.1) 
and (1.2), i.e. M, = {x ~ R"t"-a)/2: xij  - -  Xik --  Xjk < O, Xlj + Xik + Xjk < 2 for 1 _< i, j, 
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k _< n}. Therefore, P, ___ M,  ___ [0, 1] "~"-~)/z. We are interested in how tight this 
relaxation of P, by M,  is. In fact, for n = 3, 4, both  polytopes  coincide but, for n > 5, 
the inclusion P, _~ M,  is strict. We show that  some propert ies  of P,, in part icular,  
concerning the s tructure of  its low dimension faces, are retained by M,.  We shall 
use the following criterion for character izing faces. Given some cuts fi(S~) . . . . .  6(S~), 
they determine a face of  M, ,  namely  the face F = {~<~<_~ixo~S~): cq > 0 and 
~ < ~ < ~  ~g = 1}, if one can find a vector  w in R n(n-1)/2 such that  Max(w.  x: x ~ M.)  
is at tained precisely at the points  x ~ F. Clearly, if F is a face of  M, ,  then, F is also 
a face o f / ' , .  The  dimension of a face F is the largest number  of affinely independent  
points in F minus one. 

A first useful observa t ion  is that  all the symmetr ies  of  P, are also symmetr ies  
of  M..  Indeed, any pe rmuta t ion  of  [1, n] trivially preserves M,  and the following 
l emma can be easily checked. 

Lemma 2.1. For any subset S o f  [1, n], the reflection ra(s) preserves M, .  [ ]  

Corollary 2.2. Let  ~ ( S 1 )  . . . . .  6(Sk) be k distinct non empty cuts. Then, the set F = 
Conv(X~tS'): 1 < i < k) is a face  o f  M .  (resp. P,) i f  and only if  the set F' = 
Conv(X  ~t~), X~tS'aSk): 1 < i < k - 1) is a face  o f  M .  (resp. P,). 

Proof. It  suffices to prove  that,  if F is a face, then F '  too is a face. We do the p roo f  
e.g. for the case of  the po ly tope  iV/,, the p roo f  being identical for the case of  P.. Since 
F is a face of  M,,  there exists a vector  w such that  Wo := Max(w.  x: x ~ M,)  is 
at tained precisely at the points  x ~ F. Define the vector  w' by w/~ = - wi~ if (i, j )  
6(S~) and w[~ =wi~ otherwise. Fo r  x e M, ,  if y = r~(sk)(x ), then w ' . x  = w . y -  
w.  X ~ts~) < w o - w.  X a(s~), since, f rom L e m m a  2.1, y ~ M,.  Moreover ,  equali ty holds 
if and only if w . y  = Wo, i.e. y s F, i.e. y = ~ < i < k ~ X  ~ts~) for some e~ > 0 with 
21<_i<_kO~i ~--- 1, or  equivalently,  x = r~ts~)(y ) = El<_i<_k-1 ~ X~(siAsk), that  is, x e F'. 
This shows that  F '  is a face of  iV/,. [ ]  

Lemma 2.3. Any  set o f  four  distinct cut vectors is affinely independent. 

Proof. (i) Any two non  zero cut vectors  X ~s), X ~r) are linearly independent .  Indeed, 
if ~X ~(s) + f iX  ~(r) = 0, then, comput ing  the value of the left hand  side at coordinate  
(i,j) e ~(S) - fi(T) yields ~ = 0 and thus fl = 0 too. 

(ii) Any three non  zero cut vectors  are l inearly independent .  Indeed, assume that  
v := c~X ~(s) + f iX  ~r + 7X~V ) = 0. I f  ~(S) q~ ~(T) U 5(U), comput ing  the value of  v 
at coordinate  (i, j ) e  5 ( S ) -  (6(T)U ~(U)) yields that  ~ = 0 and thus we deduce 
fl = ~, = 0 f rom case (i) above.  So we can suppose that  6(S) _~ fi(T) U 6(U), 6(T) ~_ 
~(S)U6(U) and fi(U)_~ 6(S)U6(T) .  Take  (i,j) in ~ ( S ) -  6(T), so ( i , j ) e 6 ( U ) ;  by 
comput ing  vi~, we deduce tha t  ~ + y = 0. Similarly, we obta in  that  ~ + fl = 0 and  
fl + 7 = 0, implying that  ~ - - / / =  ~ = 0. 

(iii) Take  now four distinct cuts 6(S), 5(T), fi(U) and 5(V) and scalars ~,// ,  7, 
2 such that  ~ + fl + ~ + 2 = 0 and ~ X  ~s) + f iX  ~r) + 7X  ~w) + 2 X  ~r = O. If  e.g. 
fi(V) = ~ ,  then we can conclude by apply ing  case (ii). Otherwise,  by applying the re- 
flection ro(v) to the above  relation, we obta in  that  ~ X  ~ts/'v) + f iX  ~r + v X  ~vav) = 
0, which, using again (ii), yields that  ~ = fl = ~ = 0. [ ]  
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A p o l y t o p e  P is said to be  k-neiohborly (see [-12]) if, for a n y  subse t  X o f k  vertices, 
the set F = C o n v ( X )  is a face of P wi th  ver tex set X,  i.e. X de t e rmines  a s impl ic ia l  

face of P. Let  ~bn(P) d e n o t e  the set of  faces of d i m e n s i o n  d of  P. 

Theorem 2.4. Any set o f  d distinct cut vectors determines a simplicial face o f  M,  and, 
thus, also o f  P,, for  1 <_ d < 3. 

Corollary 2.5. P. is 3-neighborly. [] 

Corollary 2.6. qSa(P.) c ()d(M.) for  0 < d < 2. [] 

Proof o f  Theorem 2.4. I n  view of C o r o l l a r y  2.2, it  is e n o u g h  to p rove  the resul t  for 
a set of  cuts  c o n t a i n i n g  the  e m p t y  cut. The  case d = 2 follows f rom [14-1, b u t  it  c an  
be checked  direct ly  as follows. G i v e n  a n o n  e m p t y  cu t  3(S), define the vec tor  w by  
wit = 0 i f ( / , j )  �9 6(S) a n d  wij = - 1 otherwise.  Then ,  for x �9 M, ,  w. x < 0 wi th  equa l -  
ity if a n d  on ly  i f x  0 = 0 for (i ,j)  6 6(S). Since x satisfies (1.1), then,  for a n y  i, j �9 S a n d  

h r S, Xlh < Xij + Xjh = Xjh a n d  Xth < xih + Xij = Xih a n d  thus  Xih = X, jh. Therefore ,  
xis = ~ for all  (i, j )  �9 6(S), for some  0 < ~ < 1, i.e. x = ctX ~ts). Hence,  Conv(0 ,  X or 
is a face of M, .  

We  n o w  t u r n  to the case d = 3. W e  p rove  the  resul t  for the three  cuts  6(S), 
6(T) a n d  6(~) .  Set A = S N  T, B = ( [ 1 , n ]  - S) f l  T, C = S N ( [ 1 , n ]  - T) a n d  D = 
( [1 ,n ]  - S) f-I ( [1, n]  - T). W e  suppose  first t ha t  the  four  sets A, B, C, D are n o n  

empty.  T a k e  some  po in t s  a �9 A, b �9 B, c �9 C a n d  d �9 D. W e  define the vec tor  w by  
Wab = W a c  = W b d  = W c a  = - -  1, W,a = wb~ = 1, wit = --  1 if (i, j )  �9 E : =  A 2 {..J B 2 U C 2 U 
D E a n d  wq = 0 otherwise .  Thus ,  w. X ~r = w. X am = 0. T a k e  x �9 M , ;  then,  w. x = 

--Z(i,j)eE Xij + (72 where  tr 2 = Xaa + Xbc -- Xab - -  Xac - -  Xba - -  Xcd verifies the follow- 
ing re la t ions .  
(i) ~r~ = (x .~  
(ii) a 2 = (Xad 
(iii) a2 = (X.a 

(iv) a 2 = (Xad 

- -  Xac - -  Xcd ) Jr- (Xbc - -  Xcd - -  Xbd ) "+ Xcd - -  Xab ~ Xcd - -  Xab 

- -  Xab - -  Xbd ) + (Xbc - -  Xab - -  Xac ) "+ Xab - -  Xcd ~ Xab - -  Xcd 

- -  Xac - -  Xcd ) -t- (Xbc - -  Xab - -  Xac ) + Xac - -  Xbd ~ Xac - -  Xbd 

- -  Xab - -  Xbd ) -I- (Xbc - -  Xbd - -  Xcd ) -1- Xbd - -  Xac ~ Xbd - -  Xac 

F r o m  (i)-(iv), we deduce  tha t  cr 2 < 0 a n d  thus  w. x < 0. Moreove r ,  if w. x = 0, t h e n  

~ , , j ) ~ e  xlj = 0 a n d  o- 2 = 0. Since 0-2 = 0, we deduce  f rom (i)-(iv) tha t  X,b = Xcd :=  e, 
Xac = Xbd :=  fl, X,a = xbc = e + /3. Since ~ , , t ) ~ E x  0 = 0, we have  tha t  x~t = 0 for all  
( i , j )  �9 E. Next ,  u s ing  a g a i n  the  inequa l i t i e s  (1.1), we o b t a i n  tha t  xit = e for all  

(i, j )  �9 A x B U C x D, x 0 = fl for all  (i, j )  �9 A x C 13 B x D, x 0 = �9 + fl for all  
(i, j )  �9 A x D U B x C. Hence ,  x = c~X ~ts~ + f iX ~tr) holds  wi th  0 < cq fl a n d  e + fl < 

1. We  suppose  n o w  tha t  s o m e  of  the  sets A, B, C, O is empty .  Since 6(S), 6(T)  are 
d is t inc t  n o n  e m p t y  cuts, a t  m o s t  one  of  the  sets A, B, C, D can  be empty .  Suppose ,  

for ins tance ,  tha t  D is empty .  Then ,  w is def ined by  w,b = w,~ = - 1, % = - 1 for 
( i , j )  �9 A 2 [J B 2 LI C 2, Wb~ = 1 a n d  % = 0 otherwise.  The  p r o o f  is t h e n  iden t ica l  (bu t  

simpler). [ ]  

W e  con j ec tu r e  tha t  C o r o l l a r y  2.6 c an  be genera l ized  to low d i m e n s i o n  faces. 

Conjecture 2.7. For d < log2(n), q~a(M,) - ~d(P.). 
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Given k cuts 6(S~) . . . . .  6(Sk), we say that they are in 9eneral position if each of 
the 2 k intersection classes C(A):= ( 0 i c a  si)fq (~ica  ([1, n] -- Si)) is non empty for 
any subset A of [1,k]. Then, k < log2n and it is easy to see that the associated cut 
vectors are linearly independent. Note that, if the cuts 3(S~),..., 3(Sk) are in general 
position, then the cuts 6(S~ ASk) . . . . .  6(Sk_ ~ ASk) are also in general position. The 
next Theorem 2.8 is a partial contribution to Conjecture 2.7. In view of the pre- 
ceeding remark and of Corollary 2.2, Theorem 2.8 implies that any k cuts in general 
position together with the zero cut also determine a simplicial face of M,. 

Theorem 2.8. Let ~($1) . . . . .  6(Sk) be k distinct cuts which are in general position. Then, 
they determine a simplicial face of M, and, thus, also of P,. 

In order to prove Theorem 2.8, we introduce some notation. Given an integer 
k < log z n, let X be a set of 2 k distinct points of [1, n]. Hence, the elements of X can 
be indexed by the subsets of [1,k], i.e. we can write X = {i(A): A _~ [1,k]}. If 
x ~ R n(n-1)/2, for the sake of simplicity in the notation, we write XA, B for denoting 
x,a)i(m for A, B subsets of [1,k]. We set Ok(X ) := Z [ A A B [ = k X A , B -  ZIAABI=I )CA, B. 
Hence, ak(x ) can be seen as the sum of the components ofx  along the main diagonals 
of the k-dimensional cube minus the sum of the components of x along the edges 
of the cube. 

Lemma 2.9. With the above notation, if x ~ M,, then ak(X) < 0 and ak(X ) = 0 if and 
only if there exist some scalars ~1 . . . . .  o~ k such that ~i >- 0 for 1 < i < k, ~l + "'" + 
~k <<- 1 and 

(2.10) XA,B = ~ ~i for all subsets A, B of [1, k]. 
i ~ AAB 

Proof. First, it is easy to check that, if condition (2.10) holds, then ak(X ) = 0 indeed 
holds. We now show that, for x ~ M,, ak(x) <_ 0 and, if equality holds, then one can 
find scalars c~ a . . . .  , ~t k _> 0, cq + -.- + ~k --< 1, such that x satisfies (2.10); let us call 
(Ilk) this property. We prove that property (Hk) holds by induction on k _> 2. The 
proof in the case k = 2 is easy and, in fact, is already contained in the proof  of 
Theorem 2.4 (case d = 3). We assume that (Hk-~) holds for k >_ 3 and we prove that 
(Hk) holds. The idea is to partition the set X = {i(A): A ~ [1, k]} of size 2 k into the 
two sets X'  = {i(A): A ~ [1, k] and k r A} and X" = {i(A): A ~ [1, k] and k E A}, 
each of size 2k-a; SO this partition is done by distinguishing the point k. Correspond- 
ingly to the sets X', X", we set: 

k (s A, B, [AABi=k-1 

and 

Then, 

xa, 8 - ~ xa,n 
k4A,B,[AAB[=I 

= Z x . , .  - Z xA,.. 
k ~ A, B, ] A A B ] = k - 1  k ~ A, B, [AABI=I 

ak(x) = a~_~(x) + a~'-1(x) + w l ( x )  - W 2 ( x )  - W 3 ( x )  - W~(x ) ,  

where I411, Wz, I413, W4 are defined as follows. 
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and 

WI(X) ~--- E XA,[1,k]-A = E XAU{k} ,[1 ,k-1]-A '  
kCA kCA 

W2(x) = E XA,AU{k}'  
kr 

W3(x) ---- E XA,[1,k-1] - A  = E XA,[1 ,k -1]-A 
k ,k- lgfA k(~A,k-l  eA 

W4(x) ~-- E XAU{k},[1,k] - A  = E XAU{k},[1,k]-A" 
k,k-lq~A k(~A,k-l  ea  

Then, one can check that  ak(X) can be writ ten in the following two ways: 

f fk(X) ~- O's -J~ O'kt-l(X) "-[- Z (NA,[1,k]-A - -  XA,AU{k} - -  XAto{k},[1,k]-A) 
kCA 

-'[- 2 (XAo{kI,[1,k] - A  - -  XA,[l,k--1] - A )  
kCA,k-1 eA 

and 

0k(X) = 4 -1 (X)  + O-k*-l(X) -{- Z (XAU{k} ,[1 ,k-1]-A - -  XA,[1 ,k -1]-A - -  XA,AU{k}) 
kCA 

+ Z (XA,[1,k 11 A -  Xao{k},[1,kl--A)" 
kr  EA 

Since x e M,,  the first sum (being a sum of homogeneous  triangles) in each of the 
above expressions of ak(X) is non  positive. The  second sums in each of the above 
expressions are opposi te  quantities,  hence, ak(X ) <_ 0 indeed holds. Fur thermore ,  if 
ak(x) = O, then O's ) = O'kr_l(X) = 0 and 
(i) XA,[t ,k]_ A - -  XA,AD{k } • XAU{k},[1,k]_ A = Xa,[1 ,k_ l]_  A for any A ~_ [1,k - 1] 
F rom the induct ion assumpt ion  (Hk_l) applied to 4 _ , ( x )  and a~,'_,(x), we deduce, 
respectively, that  there exist k -  1 scalars a'~(k) . . . .  , 0~,_l(k ) such that  Xa, B = 
y'a~AABO(i(k) for A, B c [1, k - 1], and there exist k - 1 scalars a';(k) . . . . .  a~_l(k) 
such that  )CA, B = ~I~A~B ~ for A, B c [1, k] with k e A, B. In particular,  x~, {~} = 
~'i(k) for all i r k; also, X[i,kl,t~,kl-{i} = a'[(k) for all i r k. In  what  preceeds, we have 
distinguished the point  k of [1 ,k] ,  but  any point  h of  [1 ,k]  could have been 
distinguished as well and, hence, we can define similarly the scalars o~'i(h ) and a'[(h) 
for any i r  h in [1,k].  In other  words,  we have xe,{~} = a'~(1)= a'i(2) . . . .  = 
o(i(i - 1) = e'~(i + 1) . . . . .  ~'~(k) := e'~ > 0, for any 1 _< i < k. Also, Xtl,kl.[Lk>{i } = 
e'[(1) = ' ' "  = e'[(i -- 1) = a'[(i + 1) . . . . .  e'[(k) := a'[ > 0, for any 1 _< i < k. Using 

! I I  �9 ! I I  f 1 ;  . 

relation (i), we deduce that  ~ i  ~ ta,k-l] ai = E i  ~ [1,k-ll 0{i, I.e. a k -- 0{ k = E 1  _< i<_k (ai - -  ai ), 

this relat ion remains  valid for any  index h instead of k, so, by summat ion ,  one 
obtains that  ~, 1 <i<k (e'~ -- ai') = 0, and, therefore, e'i = e'i' := ai for all 1 _< i _< k. We 
conclude by checking that  (2.10) holds, i.e. XA,B = EisAAB O~i for any subsets A, B of 
[1, k]. Indeed,  this follows f rom the induct ion assumpt ion  if there exists a point  
h in A A B  or a point  h i n  [1,k]  - A U B .  Otherwise,  B =  [1,k]  - A ,  e.g. k ~ A  
and, using (i), we ob ta in  tha t  XA,[1,k]_ A = XA,AU{k } "{- Zl_<i_<k-10~i -~- Zl_<i_</al = 
2ieaA([1.k]-A) O{i ~ 1. Thus,  we have proved  that  p roper ty  (Hk) indeed holds. [ ]  

Proof  o f  Theorem 2.8. Since the k cut 6(St) . . . .  ,6(Sk) are in general posit ion, each 
intersection class C(A) = ((]i~A S~) n ( ( ~ A  ([1, k] - &)) is non  empty,  for any sub- 
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set A of [1, k]. We can choose a point  i(A) belonging to C(A) and, thus, construct  a 
subset X = {i(A): A _~ [1,k]} of 2 k points of [1,n].  We now define a vector w as 
follows: wij = - 1 if i, j belong to a common  intersection class C(A), wij = -- I if 
(i,j) = (i(A),i(B)) for some subsets A, B of [ l , k ]  with IA/XBI = 1, wij = 1 if (i,j) = 
(i(A), i(B)) for some subsets A, B of [1, k] with IA/X BI = k, and wij = 0 otherwise. 
Then, for x ~ iV/,, using Lemma 2.9, w . x  = ak(X ) - -  Z h ~ [ 1 , k ] ~ i < j , i . j e C ( A ) X i j  ~ O, 
Furthermore,  if equality holds, then xlj --- 0 whenever i, j belong to the same 
intersection class and, thus, since x satisfies the triangle inequalities, xlj --- XA,B for 
all i e C(A), j ~ C(B). Also, from Lemma  2.9, there exist scalars c~ 1 . . . . .  ~k --> 0 with 
~l_<izk ~i < 1 such that XA,n = ~ i ~ A z 3 B  O~i for A, B subsets of [1, k], or, equivalently, 
x = ~ 1 <_ i ~ k ~i Xr(S'). This shows that  the cuts 6 (S 1 ) . . . .  ,3  (S k) together with the zero 
cut determine a face of M.. [ ]  

Remark 2.1 I. Let M" denote  the solution set of all the triangle inequalities (1.1), (1.2) 
passing through a given fixed node, say node 1; then, P, _~ M, _~ M" _~ [0, 1] "~"-l)/z. 
Padberg ([14])  proved that  any two cut vectors are also adjacent on the polytope 
M,]. In fact, Padberg  proved this result in the context  of the boolean quadric  
polytope which is a linear bijective image of the cut polytope.  Therefore,  the 
1-skeleton of P, (its collection of vertices and of edges) is contained in the 1-skeleton 
of M~ and thus, also, in the 1-skeleton of  M,. In o ther  words, both M,, M', have the 
Trubin proper ty  (see [19]) with respect to P,. 

Let us consider the following question. What  is the minimum number  k = k(n) 
such that there exist k cuts that  do not  lie on any triangle facet? Clearly, 3 _< k(n) <_ 
n - 1, because the n cuts 3({1)), . . . ,  3({n}) do not  lie on any triangle facet. We can 
restrict our  at tention to homogeneous  triangle facets, because, if ko(n) is the smallest 
integer such that  there exist ko(n) cuts that  do not  lie on any homogeneous  triangle 
facet, then ko(n) <_ k(n) <_ ko(n) + 1 holds clearly. The number  ko(n ) admits the 
following alternative interpretat ion.  A family of cuts {6(S~) . . . . .  3(S~) } does not  lie on 
any homogeneous  triangle facet if and only if the family { ( S l , [ 1 , n ] -  S~) . . . .  , 
(S~, [1, n] - Sk) } of 2-parti t ions of [1, n] satisfies the proper ty  (.) below. 

(.) for all distinct h, i, j in [1,n],  there exists a part i t ion (S~,[1,n] - S,) such that 
h~ S, and i, j E [1 ,n]  - S~. 

In fact, in these terms, the quant i ty  ko(n ) has been investigated in ([15], Proposi-  
tion 2.6, Remark 2.8, where it is denoted by Mo(n; 3, 2)). It is shown there that, for n 
large, ko(n ) is of the order  of log z n. Therefore,  for n large, k(n) is in O(log2 n). This 
might be an indication that  log 2 n is indeed the limit value for validity of Conjecture 
2.7. 

We conclude the section with a few remarks. Let  p denote  the largest integer 
such that any set of p cut vectors is affinely independent.  Then, from Lemma 2.3, 
p _> 4, and p __< 7, because there exist 7 cuts whose incidence vectors are linearly 
dependent. Indeed, X ~({a'z}) + X 6({1'3}) At- X 6({2'3}) = X J({1)) -[- X 3({2}) "~ X 3({3}) "+ 

X ~1'z'3)) holds. One can observe also that  the set of cuts X = {3({1}),fi({2}), 
3({3}), 3({1,2}), 6({1, 3)), 6({2, 3}), 6(~))  does not  determine a face of M,, neither 
of P,. Indeed, if Conv(X) is a face of P,, then there exists a vector  w such that 
0 = Max(w. x: x ~ P,) is at tained precisely at the vectors x ~ Conv(X); thus, 0 = 
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w.X h({1'2'3}), implying that X6({1'2'3})• Conv(X), a contradiction. Furthermore, 
the smallest face of M, (or P,) containing X has dimension 6 and is not simplicial, 
since it contains also X ~t~'2'3~). Therefore, Pn is not 7-neighborly and it has some 
non simplicial faces already for dimension 6. Note however that Pn has some 
simplicial facets (e.g. Example 5.6 below, see [7]). 

3. How "Fiat" Is the Cut Polytope? 

A certain parameter of the shape of a polytope is the radius of the largest inscribed 
ball. Let r, denote the radius of the largest ball that can be inscribed in the cut 
polytope /On. HOW does r, change when n groes? Is it increasing, constant or 
decreasing? The first alternative can be easily excluded, but we are not able to decide 
between the latter two. However, we conjecture that r, remains, in fact, constant 
and,is equal t o  (2X//3) -1. 

The barycentrum b of the cut polytope Pn is the point defined by b - -  
(~s_~ta,nj x~s~)/2n-1, hence b = (1/2,. . . ,  1/2). 

Lemma 3.1. The distance o f  any triangle .facet f rom the barycentrum o f  Pn is equal 
to (2x/~) -1. 

Proof. The distance from a point (Yl . . . . .  Yn) to a hyperplane al x 1 + . . .  + anXn <- b 
is given by the formula 

(3.2) ]aly I + " .  + anYn -- bl/llaH 

2 where Ilall 2 = a 2 + "'" + an. 

Hence, the distance of the triangle facet xij - Xik < 0 or x 0 + + < 2 
from the barycentrum b is equal to (2V/3) -1. - Xjk - -  Xik Xjk - -  []  

We conjecture that this is the smallest possible distance of a facet from the 
barycentrum. 

Conjecture 3.3. The distance of any facet of the cut polytope P, from its barycentrum 
1 is at least (2x/3)- , independently of n, this smallest distance being attained precisely 

by the triangle facets. 

It is enough to prove the validity of Conjecture 3.3 for the homogeneous facets of 
ion. Indeed, the two facets defined by v. x < v o and its switching by the cut 6(S), 
v s . x <_ v o - v. X ats), are at the same distance from the barycentrum b. We can only 
prove that the above conjecture is valid for all pure facets, i.e. the facets defined by 
an inequality v. x N 0, where all components of v are 0, 1 or - 1. 

Theorem 3.4. Le t  v.  x <_ 0 be an inequality which defines a face t  o f  Pn such that the 
components o f  v belong to {0, l , -  1}. Then, the distance o f  this face t  f rom the 
barycentrum (1/2,. . . ,  1/2) is at least (2x,/3) -1. Moreover,  this smallest distance is 
realized precisely by the triangle facets.  

In order to prove Theorem 3.4, we prove a more general result, which gives a lower 
bound on the maximum cut in a weighted graph with weights l, - 1 on its edges. 
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We recall some notat ion.  Let G = (V, E) be a graph  with weights c(e), e 6 E, on its 
edges. We set c(E'):= ~e~E,c(e) for any subset E'  of  E and we denote  by MC(G,c)  
the m a x i m u m  weight c(6(S)) of a cut, i.e. MC(G, c) = max(c(6(S)): S _~ V). Let us 
remark that  a special case of  Theorem 3.5 below, when all weights are 1, has been 
first proved by Edwards  ([10]). An algor i thmic p roo f  has been given later by Pol jak 
and Yurzik ([17], [18]). We will use the me thod  of the lat ter  proof.  

Theorem 3.5. Let G = (V, E) be a connected graph on n vertices with edge weights 
c(e) ~ {1, - 1} for e ~ E. Then, 

(3.6) MC(G, c) > c(E)/2 + (n - 1)/4. 

Proof We proceed by induct ion on n, the n u m b e r  of vertices of G. The  s ta tement  
is trivially valid if n = 1 or  2. We suppose that  n _> 3. We distinguish two cases. 

Case (i).  Assume that  G is not  2-connected,  i.e. G has an ar t iculat ion vertex. 
Let G~(V/,Ei), i = I, 2, be connected subgraphs  of G such that  E = E 1 U E  2 and 
IV1 0 V2] ~-- 1, set ni = IV/l, so n = n 1 + n2 - 1. By the induction hypothesis, (3.6) is 
valid for both G I and G2, and one easily concludes that  it is valid for G as well, because 
MC(G,c)  = mC(G~,c)  + MC(G2,c  ) > c(E~)/2 + (n~ - 1)/4 + c(E2)/2 + ( n 2 -  1)/4 = 
e(E)/2 + (n - 1)/4. 

Case (ii). Assume that  G is 2-connected. Then, one can show the existence of 
an edge uv of G such that  the graph  G' = G\{u, v) (i.e. the nodes u, v are deleted) 
is still connected. The p roo f  of  this s ta tement  is given in ([17], case 3 in the 
p roof  of Theorem 1). We- consider  two subcases, depending on the value 1 or 
- 1  of c(u,v). Suppose  that  c(u,v)= 1. Let  S be a subset of  the nodes of  G' 
which realizes the max-cu t  of G', i.e. c(6(S)) = MC(G',c). Note  that  MC(G, c) >_ 
max(c(6(S U {u})), c(6(S O {v}))) _> (c(6(S U {u})) + c(6(S O {v})))/2 = MC(G', c) + 
c(u, v) + ( ~ i r  .... j . . . .  c~)/2. By the induct ion hypothesis,  we have that  MC(G', c) >_ 
e(E')/2 + (n -- 3)/4. Hence, MC(G, c) >_ c(E)/2 + (n - 3)/4 + c(u, v)/2 = c(E)/2 + 
( n -  1)/4. 

Suppose now that  c ( u , v ) = - 1 .  Consider  the pair  of cuts c3(SU{u,v}) and 
6(S) instead of 6(S U {u}) and 6(S U {v}). As in the previous subcase, one can check 
that  MC(G,c)  > (c(6(S)) + c(6(S U {u, v})))/2 = MC(G',e)  + (~zr .... ; . . . .  co)/2 >- 
c(E)/2 + (n - 3)/4 - c(u, v)/2 = c(E)/2 + (n - 1)/4. [ ]  

Corollary 3.7. Let c = (ci2)1 <i<;<g E {0, 1, - 1} "~"-1)/2. Then, 

Moreover,  if e # 0, then equali ty can only occur  for c such that  ci; # 0 for 
i, j ~ {h, k, l} and eij = 0 otherwise, for some 1 < h < k < l < n. 

Proof. Let G = (V = [ l ,  n], E) denote  the subgraph  of K ,  formed by the edges (i, j)  
with non zero weight. If G is connected,  then, f rom relation (3.6), MC(G,c)>>_ 
c(E)/2 + (n - 1)/4. Now,  (n - 1)/4 _> (2x/3)-1(~) 1/2 > (2x/3) -1 ][cl], with equality be- 
tween the first and the last term if and  only if n = 3 and c~j ~ ( 1, - 1 } for all i, j. 
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Hence, (3.8) follows. If G is not  connected, let G,(V1,E1) . . . . .  Gk(Vk, Ek) be the 
connected components  of G and let c i denote  the restriction of the vector c to the 
pairs (i,j) of V/, i = 1 , . . . ,  k. It is easy to see that  ][c]] < ]]cl ]] + " "  + ]]Ck]] and hence 
(3.8) is valid for G since it is valid for each connected component .  Moreover ,  if 
equality holds in (3.8), then ][c][ = I[ca [] + "'" +[[ek ][, implying that all c~ except one 
are zero (i.e. Gi is isolated vertex), say c 1 # 0, and hence II/11 = 3 and eii ~ {1, - 1} 
for i, j c V1. [] 

Proof of Theorem 3.4. Let v. x < 0 be an inequality that  defines a facet of P, with 
vii e {0, 1, - 1} for all i,j. Consider  the max-cut  problem on K,  with edge weights 
czj on the edges. Since v. x < 0 is Valid and facet inducing, we have that MC(K, ,  e) = 
0 and, from (3.8), M C ( K . , c ) >  (~,l<_i<j<_.cij)/2 + (2v/3)-lllcl]. Note  that  v.b 
(~1 <_~ <j<_, c~j)/2 < O. Therefore,  we deduce that  [y ' l  <~ <j<. coil2 > (2,,/3) -~ H c H and, 
hence, using formula (3.2), the distance of the facet v. x _< 0 from the barycent rum 
b is at least (2v/3)-1. F r o m  Corol lary 3.7, equality can only occur if v. x _< 0 is a 
triangle facet. [ ]  

Let  us remark that  Conjecture 3.3 would follow if one could prove Relation (3.8) 
for arbi t rary edge weights (not necessarily 1, - 1, 0), i.e. the following Conjecture 
3.9 implies Conjecture 3.3. 

Conjecture 3.9. Let c=(clj)l~i<j<_,. Then, mC(K, , c )>(~ l<i<j<,c i j ) /2+ 
(2x/3)  -1 tlcll. 

Remark 3.10. We checked, by direct computat ion,  that the following class of hyper-  
metric inequalities satisfies Conjecture 3.3. Hypermetr ic  inequalities Hyp.(bl . . . .  , b,) 
are of the form ~l<~<i<,bib~x~ < O, where b 1 . . . .  , b, are integers whose sum 
bx + ..- + b, is equal to 1. They  are valid for the cut polytope P. and facet defining 
for large classes of parameters  b (see [5], [-7], [-8]). 

4. The Lattice of Even Cuts 

A cut 6(S) is called even (resp. odd) if bo th  sets S and [1, n] - S are of even (resp. 
odd) cardinality, so n must  be even. The  even (resp. odd) cut polytope EvP, (resp. 
OdP,), defined as the convex hull of all even (resp. odd) cut vectors, was studied in 
[-9]; in fact, OdP, = r6 (a ) (EvPn)  for any odd cut 6(A). Those polytopes share some of 
the propert ies of P,. In particular, for n r 6, their only symmetries are the permuta-  
tions of [1, n] together  with the reflections r6~s), but now only for the even cuts 6(S). 
Let L ,  denote  the lattice generated by the cut vectors, i .e .L.  = {~S_ql,,j as6(S): as 
integer for S _c [1,n]} and let LE, denote  the lattice generated by all even cut 
vectors; L,  is called the cut lattice, LE, the even cut lattice. Thus, LE, is a sublattice 
of L, .  The  cut lattice L ,  admits the following simple characterization. 

Proposition 4.1 ([1]). Given d ~ R "~"-1)/2, then d belongs to the cut lattice L.  if and 
only if d has integer components and satisfies the following condition: 

(4.2) d~ + dig + dig is even for all 1 < i < j < k < n. 
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Given a partition of I-1, n] into k non empty disjoint subsets $1 . . . . .  S k, the k-cut  
b(SI . . . . .  Sk) is the set of pairs ( i , j )  such that i t  S a, j e S b for distinct a, b in [1,k]. 
So, the 2-cut 6(S, [1, n] - S) is the usual cut 6(S). Note that the lattice generated by 
the incidence vectors of all k-cuts for k > 2 is simply the ring of integers Z "~"-1)/2, 
because X ~{g}) + X ~{i}) - X ~{i}'{j}'fL"j-{~'j}) = e~j (the coordinate vector with all 
zero components except one component equal to 1 in position (i, j)) for any i, j in 
[1,n]. 

The dual lattice L* of L, too is well known, L* coincides with the lattice 
generated by the half triangles (eij + egg + ejk)/2 for 1 < i < j < k < n, and the 
coordinate vectors egi for 1 < i < j _< n. The less trivial inclusion is easily checked 
as follows. I fd  e L*, then 2d~j = d . X  ~ } )  + d . X  ~tlj}) - d . X  ~l~'jl) is integer and so 
can be written as 2d~j = ygj + 2zgj with Y0 e {0, 1} and z o integer for any i, j. Hence 
y .  X ~ts) is even for any cut yielding that y is integer combination of triangles and 
double unit vectors 2e 0 and thus d is integer combination of half triangles and unit 
vectors. In other words, given a vector d, d .  X ~ts) is an even integer for any cut 6(S) 
if and only if d is linear combination of triangles (e~j + eg k q- ejk ) and double edges 
2eij. Note that the lattice generated by the triangles and the double edges coincides 
with the lattice generated by the incidence vectors of all cycles of the complete graph 
on n nodes. As application, the separation problem for the lattice L,  can be solved 
in polynomial time. Given a vector d, it consists of deciding whether or not d ~ L, 
and, if not, of finding a vector c e L* such that c. d. is not an integer. 

Given a subset A of [1,n], we define the following linear form QA.X := 
~ 1  <_i < j<_n,(i,j)r tS(A) Xij --  ~'~1 <_i< j<_n,(i,j)~ 6(A) Xij" For i, j in [1, n], we also set Qi : =  Q {i} 
and Qi,j := Q{i,j}. For any even cut J(S), QA .xatS) = z(2a - n - z) where a = [AI 
and z = 2 l A t 3 S I -  [SI is an even integer, say z =  2y, and thus, Q A . X a t S ) =  
4y(a -- n/2 --  y). Therefore, the following relations hold. 

(4.3) ifA = N = [1,n], then Q N . X  ats) -- 0 (mod4) for all even cuts 6(S) 

(4.4) if a - n/2 is odd, then QA" X'~(s) ~ 0 (mod 8) for all even cuts 6(S) 

Hence, from relations (4.3), (4.4), one can derive easy necessary conditions for 
membership in the even cut lattice L E , .  In fact, these conditions, together-with the 
condition (4.2) on the perimeter of triangles, are sufficient for characterizing lattice 
points in L E ,  and, even more, it is sufficient to consider the condition derived from 
(4.4) by taking a = 1 if n --- 0 (mod 4) and a = 2 if n -- 2 (mod 4). 

Theorem 4.5. L e t  n be an even integer, n > 6. Given d ~ R n(n-1)/2, then d belongs to 

the even cut latt ice L E ,  i f  and only  i f  d has integer components  and sat is f ies  the 
conditions (4.2) and (4.6), (4.7) below. 

(4.6) QN. d = ~, dij - 0 (mod 4) 
l<_i<j<_n 

(4.7) Qi. d - 0 (mod 8) f o r  all 1 <_ i <_ n, i f  n =- 0 (mod 4), and Qi,j .  d - 0 (mod 8) f o r  
all 1 _< i < j < n, if n -  2 (rood4). 

Consequently, membership in L E ,  can be tested in polynomial time. The remain- 
ing of the section is devoted to the proof of Theorem 4.5. Given c, d ~ R "~"-l)/z, we 
set c .~ d if e - d ~ L E , ,  i.e. c ~ L E ,  if and only if d ~ L E , .  
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Lemma 4.8. (i) 2(e 0 + ejh + ehk -~- eki ) ~ LE.  for all distinct i, j, h, k in [1, n] 
(ii) 4(eij + elk), 4(elj + ehk ) ~ LE,  for all distinct i, j, h, k in [1, n] 
(iii) 8eij E LE.  for all i, j in [1, n]. 

Proof. Note  first that  6({1,2}) + 6({3,4}) - ~({1,2,3,4}) = 2(e13 -[- e23 + e24 + 
e14) ~ LE,,  hence implying assert ion (i). Similarly, 2(e12 + e14 + e23 + e34) 6 LE,  
and 2(e12 + e13 + e24 + e34) e LE..  By combina t ion  of these three relations, we 
obtain that  4(e13 + e24 ) ~ LE,.  Similarly, 4(e13 + e56 ) ~ LE. and 4(e24 + e56 ) E 
LE., yielding that  8e56 ~ LE.  and thus stating (iii). Finally, 4(e12 + e56 ) ~ LE.  and 
4(e13 + e56 ) ~ LE,,  implying that  4(e~2 + e13) ~ LE,,  thus concluding the proof.  

[ ]  

Proof of Theorem 4.5. Take  d ~ R "~"-~/2 with integer components  and assume that  
d satisfies the condit ions (4.2), (4.6), (4.7). We show below that  d indeed belongs to 
the even cut lattice LE,.  

We first r emark  that  we can assume that  d has only even components .  Indeed, 
set F = {(i, j): d~j is odd}. F r o m  assumpt ion  (4.2), F is a complete bipart i te  g raph  
and thus, if its node  par t i t ion is A and [1, n] - A, then d' = d + 6(A) has only even 
components .  F r o m  assumpt ion  (4.6), we deduce that  6(A) is an even cut and, thus, 
d ~ d ' .  

F r o m  now on, we suppose that  d~j = 0 (mod 2) for all i, j. The basic idea is now 
to apply  some reductions on d using L e m m a  4.8. Set E = {(i, j): d 0 ~ 0}. In view of 
L e m m a  4.8 (iii), we can assume that  d 0 = 2, 4 or  6 (mod 8) for all (i, j)  ~ E and, in 
view of L e m m a  4.8 (ii), we can assume that  d~j = 4 (rood 8) for at most  one pair  
(i, j) e e .  

Claim 4.9. We can assume that E is contained in the set E'--{(2,3)}(A {(1,i); 
2 <_i<<_n}. 

Proof. It  is based on the reduct ion of d by repeated applications of  L e m m a  
4.8 (i). First, we can assume that  d~j = 0 for all 3 < i < j < n. Indeed, this can 
be achieved by doing the following reductions on d. If  dij -= 2 (mod 8), then re- 
place d by d - 2(exi + e~j + eEj + e~z); if d~j = 6 (mod8),  then replace d by d + 
2(eli + eij + e2j + e12)and, ifdu - 4 (mod 8), then d ,~ d + 4(e l i  q- e 0 + e2j q- e12 ). 
We can also assume that  dEi = 0 for 4 _< i < n. Fo r  this, it suffices to replace d by 
d + a(eli + e2i q- e23 d- e13 ) with a = - 2  ifd2i --=- 2 (mod 8), a = 4 ifdEi - 4 (mod 8) 
and a -- 2 ifd2~ - 6 (mod 8). Similarly, we can assume that  d3i = 0 for 4 < i < n. [ ]  

Claim 4.10. We can assume that dla - d13 = 0 (mod4),  d14 = d15 = "'" = din := a 
(mod 4) and da3 ~ a(n -- 3) (mod4).  

Proof. We now use assumpt ion  (4.7). We first show that  dlz = 0 (rood 4). Indeed,  if 
n = 0 (mod 4), then Qa .d + Q1 .d = - 2 d l a  = 0 (mod 8) and, i fn  - 2 (mod 4), then 
Q2,,. d + QI , , .  d = - 2 d 1 2  - 0 (rood 8). Then, d12 = d13 (mod 4), because, for n = 0 
(mod4),  Q2.d - Q3.d = 2(d13 - dla)  - 0 (mod8)  and, for n = 2 (mod4),  
Q 2 , n . d - Q 3 , , . d = 2 ( d x 3 - d 1 2 ) - O  (mod8).  Finally, for 5 < i < n ,  for n = 0  
(mod 4), Q4. d - Qi. d = 2(dli - dl~) =- 0 (mod 8) and, for n = 2 (mod 4), Q2,4. d - 
Q2,i.d -- 2 (d1~-  d14) -= 0 (mod8).  The last s ta tement  follows f rom assumpt ion  
(4.6). [ ]  
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Claim 4.11. I f  a =- 0 (mod 4) (a being defined in Claim 4.10), then d ~ LE, .  

Proof. F r o m  Claim 4.10, we have that  d~j =- 0 or 4 (mod8)  for all i, j. In order  
to show that  d e LE, ,  it suffices to verify t h a t  the set E = {(i,j): d~j = 4 (mod 8)} 
is of even cardinality. T o  see it, note  that, for n -- 0 (mod4),  Q l . d  =- 4]EI - 
Ee<i<n2dli  ~ 0 (rood 8) and, for n ~ 2 (rood 4), Q~,2.d :- 4[E[ - Z3<_i<_n2(dli + 
dzl) =- 0 (mod 8), which, in both  cases, implies that  [El is even. [ ]  

Let us make  the following observat ion.  Set c = 2(e23 + ~4<_l<_n eli), then c ~ LE ,  
because c = 3({1,3)} - fi({2, 3}) + 3({1,2}). 

Claim 4.12. I f  a =- 2 (mod 4), then d E LE, .  

Proof. Using L e m m a  4.8 (ii), we can assume that  d~i ~ 2 (mod 8) for all 4 _< i _< n 
except at most  one such index i. F r o m  Claim 4.10, each of dlz  and d13 is 0 or  4 
(rood 8) and dz3 is 2 or  6 (mod 8). We distinguish two cases. 

We suppose first that  d~i ~ 2 (rood 8) for all 4 < i < n. There are six possible 
cases, according to the possible value of (d~2, d13, dz3) (mod 8); we examine below 
all possibilities for this triple. 
(i) (0; 0, 2), then d ,.~ c and thus d ~ L E ,  
(ii) (0, 0, 6), then d ~ c + 4ez3, in contradic t ion  with the fact that  d satisfies (4.7) 
(iii) (4, 0, 2), then d ~ c + 4e12, yielding a contradic t ion  as above  
(iv) (4,0,6), then d ~ c + 4elz  + 4ez3 ~ c and thus d ~ L E ,  
(v) (4, 4, 2), then d ~ c and thus d ~ L E ,  
(vi) (4, 4, 6), then d .~ c + 4e23, yielding a contradict ion.  
Finally, we suppose that  dl~ -- 2 (mod 8) for 4 < i < n - 1 and da, -= 6 (mod 8). As 
above, we examine the possibilities for the triple (d12, d13, d23) (rood 8) and obtain,  
for the cases (0, 0, 6), (4, 0, 2) and  (4, 4, 6 ) t h a t  d ~ LE , ,  and for the cases (0, 0, 2), 
(4, 0, 6), (4, 4, 2) a contradic t ion with the fact that  d satisfies the assumpt ion  (4.7). [ ]  

Remark 4.13. Given  an integer t _> 2, a cut fi(S) is called a t-ary cut if ISI = 0 (mod t) 
and n - IS[ -= 0 (mod t) holds; so, even cuts are 2-ary cuts. Analogues of  relations 
(4.3), (4.4) for membersh ip  of a vector  d in the lattice generated by all t -ary cuts 
are as follows: QN.d =- 0 ( m o d t  z) and, for any  subset A of [1 ,n]  such that  }A[ -- 
nit is odd, setting A' = [1, n] -- A, Zi<j,(i,j)eAxA (t - 1)2d/j + Zi<j,(i,j)eA'• d i j  - -  

~ ' A < j , i E A , j ~ A , ( t  - -  1)dij -= 0 (mod 2t2). 

5. Do All Facets "Come" from~Triangles? 

We give below two propert ies  that  we have observed on the classes of  facets of  
P, known so far. Let  v ~ R "~"-1)/2 and Vo e R. Let  [1, n] = I a U ' - -  O Ip be a par t i t ion 
of [1,n]  into p parts,  define v' ~ R p ( p - 1 ) / 2  by V~k = ~,i~/h,j~/k Vij for 1 _< h < k < p, 
one says that  v' is obta ined  by collapsing v. Collapsing preserves validity, namely,  
if the inequality v. x < v o is valid for P., then the inequali ty v ' .  x < Vo is valid for 
ep ([5]). 

Property 5.1 (parity conjecture). Let  v. x < v o be an inequali ty defining a facet of  P,. 
Then, v. X ~ is an even integer for all cuts 3(S) or, equivalently,  the vector  v belongs 
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to the lattice generated by the triangles eij + elk -[- ejk and the double  edges 2e~j for 
distinct i, j, k in [1, n]. 

Property  5.2. Let v. x < 0 be an inequali ty defining a facet of  P,. Then, it collapses 
to some triangle facet. 

Some easy observat ions  on Proper ty  5.1. 
(i) The switching opera t ion  preserves Proper ty  5.1, hence it is enough to check 

Proper ty  5.1 for homogeneous  facets, i.e. with v o = 0. 
(ii) P roper ty  5.1 is preserved under  collapsing; namely,  if a facet inducing 

inequality v . x  <_ 0 has p roper ty  5.1, then any collapsing of it, v ' . x  < O, has it too. 
Indeed, if v is integer combina t ion  of triangles and double edges, then so is v', 
because any collapsing of a triangle is a triangle or a double  edge. 

(iii) Both assumpt ions  of validity and full r ank  are necessary for P rop-  
erty 5.1. Indeed, take 2 p < n  and V.X:Z(i,j)e[1,p]x[1,plU[p+l,Zp]x[p+l,Zp]Xij-- 
~{~,j)~tl,pl • X~j; then the inequality v. x < 0 is valid but not  facet inducing for P, 
and v. X ~{{1]) = - 1 is not  even. Also, take 4p _< n and v. x = ~o<_i<_p-1 x2i+1,2i+2 - 
~p<_i<_2p-1 x2~+a,21+2, then the inequali ty v. x _< 0 is not  valid for P, but  there exist 
n(n - 1)/2 - 1 linearly independent  cut vectors  satisfying v. x = 0 and v. X ~(~1)) = 1 
is not even. 

We checked that  P roper ty  5.1 holds for the known  classes of facets of  P, (namely, 
parachute  facet [7], C W  facets [8], B o r o s - H a m m e r  facet [4], Pol jak-Turzik  facet 
[18]). I t  is an  interesting quest ion to look for a facet of P, that  does not  enjoy 
Proper ty  5.1; a good  candidate  is some inequali ty of the form v. x = ~'(~,j)~ ~ x o <_ Vo 
where E is a regular  g raph  of odd degree and Vo is the m a x i m u m  size of a cut. 

Similarly, we checked that  P roper ty  5.2 holds for mos t  known classes of facets. 
Note  that  a given facet m a y  collapse on different tr iangle facets. Also, P roper ty  5.2 
does not  extend to mult icut  polytopes.  

As i l lustration of the par i ty  conjecture, we give below the explicit decomposi t ion  
of some facets as linear combina t ion  of triangles and double  edges (i.e. degenerated 
triangles). We use the following notat ion.  We set T(i, j; k) := x~j - X~k -- Xjk. The 
facets we consider are suppor ted  by an inequali ty of  the form v. x < 0. 

Example  5.3. (a switching of) the bicycle odd wheel inequality ([3]). Then, 

= ~ (T( i , i  q2 t + 1;2t + 4) + T(i , i  + t + 2;2t + 5)) 
1_<i_<t+1  

+ T ( t + 2 , 2 t + 3 ; 2 t + 4 ) - - T ( t + 2 , 2 t + 5 ; 2 t + 4 ) .  

Example  5.4. The parachu te  facet ([7]). 

v . x  = x , j -  Y (Xo, + Xoi, + xk,, + xk,i)  - 
(i,j)eP 1 < i < k - - 1  

where k is an odd integer and P denotes  the edge set of  the pa th  (k, k - 1 . . . . .  2, 1, 1', 
2', . . . .  (k - 1)', k ')  and 
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v . x  = ~ (T(i , i  + 1;a,,) + T(i',(i + 1)';a,)) + T(1, 1';0) - T(k,k';O) 
1 <i<_k--1 

where a~ = k, av = k' for i odd and al = a i, = 0 for i even. 

Example  5.5. The facet Gr  7 ([7]). Then, 

/ ) . X  ~--- Z X/j -~- X56  At- X57  - -  X67  - -  X16  - -  X36  - -  X27  - -  X47  - -  2 x5, 
l<_i<j<_4- \ l<_ i  4 

= T(1,2;5) + T(1,3;5) + T(1,4;6) + T(2,3;7) + T(2,4;5) + T(3,4;5) 

-- T(6, 7; 5). 

Example  5.6. A hypermetric facet ([7]). Then, 

v . x  = H y p , ( - - ( n -  4 ) , - 1 , 1 , . . . ,  1) = -- 

and 

v . x  = - ( [ n / 2 J  - 2)2x12 + 

(n - 4 )x l l  + X 1 2  

3<_i<_n 

E x 2 , +  E x,j 
3<_i<_n 3<_i<j<n 

T(i, j; o~i~ ) - To, 
3 < i < j < n  

where eis = 2 if (i, j)  = (2t + l, 2t + 2) for 1 < t _< [n/2J - 1, and e0 = 1 otherwise, 
and T o = T(2, n; 1) if n is odd and T o = 0 if n is even. 

We consider also v' .  x = (n - 4) (x12 q- Xln ) - -  2 3  <_i<n-1  ( n  - -  4)Xli - -  ~ 3  <~i<_n-1 X 2 i  -~- 

x2, + ~3<i<s<,xq  - ~3_<i<,-1 x~,. Thus, the inequality v ' . x  <_ 0 is a switching 
of the inequality v . x  < O. Also, v ' . x  = -2([_n/2J -= 2)x~2 + ~3_<~<j_<, T(i , j ;c%) + 
~ 3  <i<_,-1 T(n, ai,; i) -- 7"1, where T1 = T(1, n; 2) if n is odd and T1 = 0 if n is even. 

Actually, in Examples 5.3, 5.4, 5.5 and case n = 5, 6 of  Example 5.6, we have a 
"strong" triangulation of  the facets, i.e. all coefficients are + 1 except one coefficient 
- 1 in the linear decomposit ion.  This implies, in particular, that  all homogeneous  
facets of P6 admit  a s t rong triangulation. 

6. The Hypercut  Po ly tope  

Given a subset S of [1, n] and 2 < p < n - 1, the p-hypercut  6p(S) is the set of  all 
p-tuples (i 1 . . . .  , iv) of distinct points of  [1, n] such that both  sets {ia . . . . .  ip} (3 S and 
{il . . . . .  ip} ~ ([1, n] - S) are no t  empty. For  p = 2, the 2-hypercut  62(S ) is the usual 
cut 6(S). The p-hypercut  polytope HP(p) ,  is the convex hull of  the incidence vectors 
of the p-hypercuts 6p(S) for all subsets S o f [ l ,  n], so H P ( p ) .  is a polytope in R m where 
m = ("p)= n ! / ( ( n -  p)!p!). Therefore, HP(2) ,  = P.. In fact, as we see below, the 
3-hypercut polytope HP(3),  is the image of  the cut polytope P, under  a linear 
one-to-one mapping. For  n > 5, p = n - 1, one checks easily that the vertices of 
H P ( n  - 1), are the vectors 0, 1 = (1 . . . . .  1), 1 - e i for 1 _< i < n, where e~ is the i-th 
coordinate vector in R". Fo r  p = n - 2, the vertices of  H P ( n  - 2), are the vectors 
1 - X ~({i}) for 1 < i _< n and 1 - eq for 1 _< i < j _< n in R n(n-1)/2. Generally, if 
p > n/2, the incidence vector of  the cut 6v([ p + 1, n]) is 1 - eaz...p and, therefore, 
HP(p) ,  is full dimensional. 
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Cons ide r  the m a p  f from R "~"-~)/2 to R n(n-1)(n-2)/6 defined by  y = f ( x )  with 

Y~jk = (X~j + Xik + Xjk)/2 for all tr iples (i, j ,  k). The  m a p  f is one- to -one  if n > 5. 
Indeed,  assume tha t  y = f ( x )  = 0. Take  dist inct  poin ts  i, j ,  k, h, l in [1, n]. Then,  

x o + Xik + X~k = X o + X~h + Xjh = 0, yielding tha t  X~k + Xjk = Xih + X~h. Similarly,  
Xih + Xik = Xjh + Xjk which, together  with the preceding relat ion,  implies tha t  Xik = 
Xjh. Similarly,  X~k = Xjt = X~h and  thus all componen t s  of  x are equal,  implying  tha t  
X = 0 .  

It  is immedia t e  to see tha t  y = f ( x )  i fx  is the incidence vector  of the  cut  6(S) and  
y is the incidence vector  of  the 3-hypercut  63(S) for any  subset  S of  [1, n]. Therefore,  
HP(3) ,  = f (P , ) .  Hence,  for n > 5, the hypercu t  po ly tope  HP(3) ,  is a po ly tope  of  
d imens ion  n(n - 1)/2 in R n(n-1)(n-z)/6 and  its l inear  descr ip t ion  can be deduced  f rom 

that  of  the cut  po ly tope  P,, as we recall  in L e m m a  6.1 below. 
Let  f be a one- to -one  l inear  m a p  from R p to R q, q > p. Let  A denote  the 

associa ted  p x q mat r ix  such tha t  f ( x )  = A x  for x ~ R p. Since f is one- to-one,  there  
exists a non  s ingular  p x p submat r ix  A1 of  A. Assume that  the rows of  A~ are  
indexed by the set L and  let A 2 denote  the (q - p )  x p submat r ix  of  A formed by  
the remain ing  rows, so its rows are indexed by  L'  = [1, q] - - L .  F o r  y ~ R q, set 

Yl = (Yj)j~L and  Y2 = (Yj)~L', SO y = (Yl, Y2). Every  row o f A  2 is l inear  combina t i on  
of the rows of  Aa, so A 2 = BA~ for some (q --  p) x p mat r ix  B. One  sees easily tha t  
y ~ R q belongs  to the range of  f ,  i.e. y = f ( x )  for some x, if and  only if Y2 = BY1 
holds. The  fol lowing l emma is easy to check. 

L e m m a  6.1. L e t  P = {x  ~ RP: M x  < b} be a po ly tope  in R p. Then,  its image under 

the linear map f is given by f ( P )  = {y  ~ Rq: Y2 = By1 and M ( A 1 ) - l y l  < b}. 

W e  conc lude  with the explici t  descr ip t ion  of some facets of HP(3) , .  Take  p such 
that  2p + 1 < n. Then,  the inequal i ty  ~l_<i<j_<zp+l xij < p(p + 1) defines a facet of 
P, and,  therefore,  the inequal i ty  ~l_<i<j<k<Zp+l Yij* <-- P(P + 1)(2p -- 1)/2 defines a 

facet of HP(3) , ,  because  ~ a_<i<j<,~ 2p+1 Yi~k = (2p --  1) /2(~  l_<i<j~ 2p+1 Xij) holds.  
F o r  instance,  for p = 1, the t r iangle  facet (1.2) co r responds  to the facet Yijk < 1. 
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Note added in proof: 
Since the paper was not type-set from the last revision, we would like to include some comments 
concerning Section 2. The following results should be included: 
- -  The cut polytope Pn is not 4-neighbourly 
- -  Any face of P, of dimension less than or equal to 5 is simplicial. 


