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Abstract 

Given a graph G = (V, E),  the metric polytope S ( G )  is defined by the inequalities x ( F )  - x ( C  \ 
F) ~< IF I - 1 for F C C, IF[ odd, C cycle of G, and 0 ~< Xe ~< 1 for e C E. Optimization over 
$ ( G )  provides an approximation for the max-cut problem. The graph G is called 1/d-integral if 
all the vertices of S ( G )  have their coordinates in {i /d  ] 0 <<. i ~ d}. We prove that the class of 
1/d-integral graphs is closed under minors, and we present several minimal forbidden minors for 
½-integrality. In particular, we characterize the ½-integral graphs on seven nodes. We study several 
operations preserving 1/d-integrality, in particular, the k-sum operation for 0 ~< k ~< 3. We prove 
that series parallel graphs are characterized by the following stronger property. All vertices of the 
polytope S ( G )  fq {x I e x ~< u) are ½-integral for every choice of ½-integral bounds g, u on the 
edges of G. 

Keywords: Max-cut; Cut polytope; Metric polytope; Linear relaxation; One-third-integrality; Box 
one-third-integrality; Forbidden minor 

1. Introduction 

We study a system of  inequali t ies  associated with the max-cut  problem (see be low 

for a def in i t ion) .  Given a graph G = (V,E),  the inequali t ies  are of  the form 

x (  F )  - x (  C \ F )  < ~ I F I - 1 ,  f o r F C C ,  IFIodd, CcycleofG, (1)  

O<~xe ~< 1, f o r e c E .  (2)  
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Each of these inequalities is valid for all cut vectors. The polytope 8(G)  defined by 
these inequalities is called the metric polytope of the graph G. Barahona and Mahjoub 

[4] characterized the graphs G for which the metric polytope 8(G)  is integral as those 
having no/£5 minor. 

In this paper we study the graphs G for which each vertex of the metric polytope 
8(G)  is 1/d-integral. We call these graphs 1/d-integral. The minimum d for which 

a graph is 1/d-integral serves as a certain measure of approximation of the max-cut 
problem by the above system of inequalities. As shown later, there are no ½-integral 
graphs. Hence the first case after integrality is that of ½-integral graphs. 

We present several results on 1/d-integral graphs. We show in Section 3 that this 
class is preserved by sum operations: the 0-sum and l-sum of two 1/d-integral graphs 
is 1/d-integral, and the 2-sum and 3-sum, with some restriction in the latter case, 
of a 1/d-integral graph and an integral graph is 1/d-integral. (In several cases, the 
requirements on the two summands are different.) In consequence, the class is closed 
also under subdivisions of edges and, with some restriction, under the AY-operation. 

The c/ass of 1/d-integral graphs is closed under minors. We present in Section 4 
four minimal forbidden minors for 1-integrality. In particular, all subgraphs of K6 are 
~-integral and we characterize the ½-integral graphs on seven nodes. We also include 
the full description of 8(Kn) for n ~ 6. 

In Section 5 we characterize the graphs G for which all the vertices of the polytope 
8(G)  n {x I g <~ x <~ u} are ½-integral for every choice of .~-integral vectors g and 
u C Re; they are the series parallel graphs. 

Section 2 contains some tools and operations. We recall how the polytope 8(G)  arises 
as projection of the metric polytope on the edge set of G. We consider some operations 
on the vertices of 8(G)  which are intensively used later, namely switching, the 0- and 
1-extension, and the union operation. 

Let us mention that the result of Section 5 on box ½-integral graphs has been extended 
in the context of binary clutters by Gerards and Laurent [7]. Box 1/d-integral binary 
clutters are characterized there in terms of forbidden minors for any integer d ~> 2. In 
fact, the case d = 1 corresponds to the clutters with the Q+-max-flow min-cut property 
whose characterization is the object of a conjecture by Seymour [ 19]. 

One encounters the polytope 8(G)  in connection with various problems. We briefly 

describe some of them. 

The max-cut problem 

The polytope 8(G)  was introduced in [4] as a linear relaxation of the cut polytope 
79(G). Indeed, the (0, 1 )-valued vertices of 8(G)  are precisely the characteristic vectors 

of the cuts of G. Hence, the optimum of the linear program 

maxc'rx, x c 8 (G) ,  (3) 

always provides an upper bound on the optimum of 
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maxcTx, x ~ 79(G). (4) 

Since the max-cut problem is NP-hard, it is important to study for which objective 
functions c the linear program (3) provides a good approximation for (4). We show 
that (3) provides a 4-approximation of (4) for any ½-integral graph with nonnegative 
weight function. The relation between the linear programs (3) and (4) has been studied 
also in [ 15, 16] in the case when the objective function is given by Ce = 1 for e C E(G) 
where G is a graph. In the latter paper it is shown that the expected value of the ratio 
between (3) and (4) tends to 4 for a random graph with fixed edge probabilities, and 
the ratio can be arbitrarily close to 2 on a class of sparse graphs. 

Recently, a nonpolyhedral relaxation of the cut polytope has been investigated (see, 
e.g., [13]);  Goemans and Williamson [8] have shown that it provides a 1.138- 
approximation for the max-cut problem for all graphs with nonnegative weights. 

Multicommodity flow problems 

Let us denote by C(G) the cone defined by the homogeneous inequalities from the 
system (1) and (2), i.e., by the inequalities 

x ( e ) - x ( C \ e )  <~0, f o r e E C ,  C c y c l e o f G ,  

O<~xe, for e C E. 

(5) 

(6) 

The cone C (G) has been considered in connection with multicommodity flow problems. 
By the so-called Japanese theorem [10], it is the dual cone to the set of feasible 
multiflows. 

Seymour [20] has shown that the graphs G for which all the extreme rays of C(G) 
are (0, 1)-valued are the graphs with no Ks minor. Schwarzler and Seb6 [18] have 
characterized the graphs G for which all extreme rays of C(G) are (0, 1,2)-valued. 
Actually, all of them are 1-integral (see Remark 4.6). 

The metric cone and polytope 

Let n ~> 3. The metric cone .A4C,, is the cone defined by the inequalities 

Xij -- Xik -- Xjk ~ 0, (7) 

for all triples {i,j, k} C V = {1 . . . . .  n}. Its extreme rays were studied in [1,2,9, 14]. 
The metric polytope .L479n is the polytope defined by the inequalities (7) and 

x~i + Xik + Xj~ <~ 2, (8) 

lor all triples {i , j ,k} C V = {1 . . . . .  n}. The inequalities (7) and (8) are called 
the triangle inequalities. The metric polytope enjoys a lot of interesting geometrical 
properties which have been investigated in [6]. Several classes of vertices, mainly 
arising from graphs, have been constructed and studied in [ 11 ]. It has been confirmed 
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that all the vertices considered in that paper are adjacent to integral vertices (see our 
conjecture in Section 4.1). 

It is well known that ,9(/( , )  and A.4"Pn coincide and, moreover, ,9(G) is the projection 
of  A.47)~, on the edge set of  G. The analogous statement holds for the cones C(Kn) and 

A4C,. We recall the details in Section 2.1. For this reason we call ,9(G) the metric 
polytope of the graph G and C(G) the metric cone of G. 

Some notation 

Alternatively, we let K(V)  denote the complete graph on a vertex set V, and A.47:'(V) 
denote the corresponding metric polytope. If  x E R e is a vector indexed by the edges of  

a graph G = (V,E), we denote its coordinates alternatively by xe, x(e) ,  xij, or x ( i , j ) ,  
for an edge e = ( i , j )  of  G. 

Let Gt = (Vt, Et) be a graph, for t = 1,2. When the subgraph induced by ld N Vz is a 

clique on k nodes in both G1 and G2, we define the k-sum of G1 and G2 as the graph 

G = (V,E) with V = ki tA I/2 and E = E1 tA E2. 
A vector is said to be integral if all its coordinates are integers. Given an integer d ~> 2, 

a vector x is called l/d-integral if dx is integral; if d is the smallest such integer, we 

also say that x has denominator d. A vector x is called fully fractional if none of  its 
coordinates is integral. In particular, the terminology will be used in connection with the 

vertices of  a polytope, i.e., we will speak about l/d-fractional vertices, fully fractional 

vertices, integral vertices, etc. We say that a vector c ~ R( : )  is supported by a graph 

G = (V,E) (or, with support in G) if cij = 0 for all ij q~ E. 

2. Operations 

The purpose of  this section is to recall several useful operations on the polytope 

S(G). 

2.1. Projection of the metric polytope 

Let G = (V,E) be a graph with node set V and edge set E. Given a subset S of  V, 

t ~ ( S )  denotes the cut in G determined by S, i.e., the set t ic(S) = {ij E E I i E S, j  ~ S}. 
The cut polytope 7)(G) c R E is defined as the convex hull of the incidence vectors of  

the cuts of  G. The inequalities (1) and (2) are valid for the cut polytope 7~(G) [4].  
It is easy to see that the nonredundant inequalities (1) are for the chordless cycles C 

of  G, and the nonredundant inequalities (2) are for the edges e that do not belong to 

any triangle of  G. In particular, the polytope ,9(Kn) coincides with the metric polytope 

Ad79,,. In fact, in general, the polytope ,.3(G) is the projection of  .AdPn on the space 

R e [3] .  More precisely, the following can be easily checked. 

L e m m a  2.1. Let G = (V,E) be a graph and let e be an edge of K(V)  which does not 
belong to G. Let G ÷ e denote the graph obtained by adding the edge e to G. 
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(i) l f  x E .L479(V), then the projection xe  o f  x on R e belongs to ,9(G). 

(ii) I f  y E ,9(G),  then there exists x E ,9(G + e) whose projection xe  on R e 

coincides with y. Moreover, i f  y is a l /d-integral  vertex o f  ,9( G), then there exists such 
x which is a l id-integral  vertex o f , 9 ( G  + e). 

Corol lary  2.2. Given a graph G on n nodes, the following are equivalent. 

(i) G is l /d-integral,  i.e., all the vertices o f  the polytope ,9(G) are l/d-integral.  
(ii) For every objective function c supported by G, the program max(cTx  I x E 

J~79n) admits a I /d-integral  optimizing vector. 

2.2. The switching operation 

Given a cut ~ ( S ) ,  we define the switching reflection r~(s)  of R e by y = r ~ ( s ) ( x ) ,  

where Yij = 1 - x i j  if i j  E fi6 ( S) and Yij = xij if i j  E E \ ~ ( S). The switching reflection 
preserves the cut polytope [4] ;  indeed, r~c(s ~ maps the cut ~6(T)  to the cut ~6(SAT) .  

In particular, the switching reflection ra~(s) preserves faces and facets of  the cut polytope 
79(G). Given v E R e, v0 E R, suppose that the inequality vTx <~ vo defines a face of  

79(G). Define v s E R e by v s = - v i j  if i j  E 6c (S )  and v s = uij otherwise. By applying 

the switching reflection r~c(s ~, we obtain the inequality (vS)Tx <. vo - ~ee~a(s)Ve 
which defines a face of  79(G) of  the same rank. Clearly, the inequalities (1) are 

preserved under any switching. Note also that the inequalities ( 1 ) are obtained from the 

inequalities (5) by switching. Therefore, the switching reflections preserve the polytope 

,9(G).  Thus we have the following lemma. 

Lemma 2.3. If x E ,9 (G) ,  then y = r~(s)(x)  E ,9(G); moreover, y is a vertex o f  ,9(G) 

whenever x is a vertex of  ,9( G). 

In the case of  the complete graph G = K~, n 5~ 4, it was proved that the switching 

reflections together with the permutations of  the nodes are the only symmetries of  the 

cut polytope 79 (Kn) [ 5 ] and of the metric polytope ,9 (K,,) [ 1 1 ]. 

2.3. Extension and projection of  vertices in S (  G) 

If  x E ,9(G) and G ~ = (V,E t) is a subgraph of  G, i.e., E t C E, then the projection 

xE, of  x on R E' belongs to S(G~); we also say that x is an extension of  xe,. 
In general, vertices are not preserved by projection. However, a nice feature of  the 

polytope S ( G )  is that, essentially, we may always assume to deal with fully fractional 

vertices, since a vertex of  ,9(G) with some coordinate 0 or 1 is the extension of  a 

vertex x ~ of  ,9(Gr), where G r comes from G by contracting the edge corresponding to 

the integral coordinate of  x. 

Let G = (V,E) be defined on the n nodes 1 . . . . .  n and suppose that e = (1 ,n )  is an 

edge of  G. Let G ~ = (W, U )  denote the graph obtained by contracting the edge e in G; 

so, V' = V \ {n}. Let V1, V~ denote, respectively, the set of  nodes of  V \ { 1, n} that are 
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adjacent to the node 1 and n. Then, E ' =  E \  { ( n , i )  l i  E V~} U { ( 1 , i ) [ i  E V~ \ ~} .  
Given x'  C IRe', we define its O-extension x E ]R E by 

{ x~j,  f o r i = l ,  j E g ] ,  

x~Li, for i = n, j E ~ ,  (9) 
xij = 0, for i = 1, j = n, 

x~j , elsewhere. 

Conversely, if x E S ( G )  with xln = 0, then, by the triangle inequalities (7),  x U = xnj 

holds for all j C lfi N V,,. Hence, defining x ~ C IRe' as the projection of  x on U,  we have 

that x is the 0-extension of  x ~ as defined by the above relation (9). 

Similarly, we define the 1-extension y of  x ~ by 

{ x~i, for i =  1, j C l f i ,  
1 L x ~ j ,  for i = n, j E V n ,  

Yij = l ,  for i = 1, j = n, 

X i j  , elsewhere. 

(]0) 

Moreover, if y ~ $ ( G )  with Yl~ = 1, then y is the 1-extension of  its projection x'  on U.  

Proposi t ion 2.4. Let  x E R e be the O-extension o f  x ~ C R E', i.e., x, x '  satisfy (9). 

Then, x C S ( G )  i f  and only i f  x I E ,5(G') ;  moreover, x is a vertex o f  S ( G )  i f  and only 

i f  x '  is a vertex o f  S ( G ' ) .  The same holds also f o r  x ~ and its l -extension y. 

Proof. It is easy to check that x E S ( G )  if and only if x '  E S ( G ~ ) .  Let x t be a vertex 

of  S ( G ' ) .  Let /3' be a family of  IE'I linearly independent inequalities (1) and (2) 

that are satisfied at equality by x ~. The inequalities xl~ ~> 0 and x U - xl~ - x i, <~ O, 

2 ~< j ~< n - 1, are satisfied at equality by x. Together with/3 ' ,  we obtain a set o f  IEI 
equalities for x which are linearly independent. Therefore, x is a vertex of  S ( G ) .  

Assume now that x is a vertex of  S ( G ) .  Let /3 be a family of  IEJ linearly independent 

equalities chosen among ( 1 ) and (2) satisfied by x. We can suppose that/3 contains the 

equalities xln = 0 and x U - x1,, - x,,i = 0 for j C V~ N V~. Then, the remaining equalities 

o f / 3  do not use the edge ( 1, n) ; hence, they yield equalities for x ~. Therefore, x ~ is a 

vertex of  S (G ' ) .  
The statement about y follows by applying switching and using Lemma 2.3. [] 

As a consequence, for many questions, we may restrict ourselves to fully fractional 
vertices. An easy application is that S ( G )  has no fractional ½-integral vertices. Two 

other applications are formulated in Propositions 2.6 and 2.7. 

Corol lary  2.5. The metr ic  po ly tope  has no f rac t ional  ½-integral vertices. 

Proof. If  A.479,, has a fi'actional ½-integral vertex, then there would exist a vertex of 

AAT)m, for some m ~ n, with all coordinates equal to ½. But such vector satisfies none 

of  the inequalities (7) and (8) at equality. U 
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Proposi t ion 2.6. l f  G is lid-integral, then any minor of  G is lid-integral. 

35 

Proof.  Let G be a 1/d-integral graph and let e = ( 1, n) be an edge of G. It is obvious 
that the graph G - e obtained by deleting the edge e is 1/d-integral. We show that the 
graph G/e  obtained by contracting the edge e is 1/d-integral. We take the same notation 
as above for V1, Vn and G'  = G/e.  Let w' be an objective function with support in G'.  
Define the objective w with support in G by 

( W]j, 
Wtl j ,  

wij = - M ,  

w itj , 

for i = 1, j ~ ] ,  

for i = n, j ~ V , ,  
for i = 1, j = n ,  
elsewhere. 

(11) 

By assumption, the linear program max(wTx I x ~ AA72~) admits a 1/d-integral opti- 
mizing vector x. I f  we choose the constant M large enough, then Xln = 0. Let x '  denote 
the projection of x on R e' .  Hence, x'  is l /d-integral .  It is easy to check that x '  is 
an optimizing vector for the linear program max(w'Tz [ z E AA79,_1). Therefore, the 
graph G'  is 1/d-integral. [] 

Proposi t ion 2.7. Assume G is ½-integral. Then, for  every objective c E Re+, 

max(cWx [ x c S ( G )  ) <<. 34-mc(G,c), 

where m c ( G , c )  denotes the maximum cut of  the graph G with the weights c. 

Proofi The proof is by induction on n, the number of  nodes of  G. The statement holds 
trivially if n ~< 2. Let G be a ½-integral graph on n >/3 nodes and let c be a nonnegative 
objective function supported by G. Let x be a vertex of 8 ( G )  which optimizes the 
program max(cTx I x  E S ( G ) ) .  

If  x is fully fractional, then x e ~ 2 for all edges. Therefore, cTx = 2 ~ e c E  Ce. On the 
other hand, a trivial lower bound for the maximum cut in G is mc(G,  c) >~ ! 2 eEE Ce" 
Therefore, Proposition 2.7 holds. 

Suppose that xe = 0 for some edge e = (1, n). Let x '  denote the projection of x on 
R E', where E '  is the edge set of  G ~ = G/e.  Consider the objective c ~ E R e '  defined by 

Clj, for i =  1, j C V 1 \ V n ,  
., cnj, for i = n, j C V~ \ V1 

cij = ' (12) 
cU + c, j ,  f o r i = l ,  j E VI N Vn, 
Ci.j , elsewhere. 

It is easy to see that x ~ optimizes the objective function c'  over S ( G ' ) .  By the 
induction hypothesis, the following inequality holds: 

max(c'Wz [ z C S ( G ' ) )  <~ 4 m c ( G ' , c ' ) .  

But, m c ( G  r, # )  ~< mc(G,  c) holds. Therefore, Proposition 2.7 holds. 
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Suppose now that x f  ~ 0 for all edges f of  G, but Xe = 1 for some edge e = (1, n) .  

Let G t = G - { 1, n} with edge set U .  Let c ~, x ~ denote the projection of  c, x on ~K e ' ,  

respectively. Since G ~ is ½-integral, by the induction hypothesis, we have 

max(  c'Tz I z E S ( G ' ) )  <~ 4 m c ( G ' , c ' ) .  

This implies c~Tx ~ <~ 4mc(G~, # ) .  Let 86, (S)  be an optimizing cut in G ~ for the weights 

c ~. We have 

mc(G,  c) >/ 1cT(x6G(SU{1)) -~ X 6G(SU{n))) 

1 ~ (clu + C,,u). = m c ( C , c  l) + Cln + 
//:~ ,// 

3 M T .  t But, xl,,X,,u <. ~ for all nodes u 7? 1,n and m c ( G ' , c ' )  ) ~c x .  Therefore, 

3 ctYx t _4_ C 3 m c ( G , c )  /> ~ l n + ~  ~-~(CluXlu+C,,Xnu). 
//:~ ,n 

We deduce that m c ( G , c )  ~> 3cTx. Therefore, Proposition 2.7 holds. [] 

Finally we observe how a new vertex of  the metric polytope $ ( G )  can be constructed 

by "gluing" together two given vertices of  smaller metric polytopes. Let Gi = (Vii, Ei) 
be a graph for i = 1,2 and assume that the subgraph induced by Vj A V2 is a clique on 

k = IV1 A ½] nodes in both Gl and G2. Let G = (V,E) denote the k-sum of  Gl and G2. 
Let xi C R Ei, i = 1,2, such that x~ and x2 coincide on the edges of  the common clique 

K(V1 AVe). We can define x E R E by concatenating Xl and x2, i.e., setting x ( e )  = xi(e) 
for e C E/, i = 1,2. The vector x is called the k-union of Xl and x2. This operation will 

be used for proving results on k-sums of  graphs in Sections 3 and 4. 

Propos i t ion  2.8. ( i )  x C S(G) i f  and only i f  xi C S(Gi)  f o r  i = 1,2. 
( i i)  I f  xi is a vertex of  S(Gi)  for i = 1,2, then x is a vertex o f  S ( G ) .  

Proof.  The part ( i )  is clear. We verify ( i i ) .  Let X i be a vertex o f  S(Gi) ,  i = 1,2. We 

show that x is a vertex of  S ( G ) .  Assume x = o~y + (1 - a ) z  for some 0 < ce < 1 and 

y , z  ~ S ( G ) .  Denote by Yi, zi the projection of  y, z on Ei for i = 1,2. We obtain that 

xi = ayi + (1 - ce)zi, implying that xi = Yi = zi for i = 1,2. Hence x = y = z holds, 

yielding that x is a vertex. [] 

In particular, if  x i is a vertex of  the metric polytope 2tiP(Vii),  for i = 1,2, such that 

Xl and x2 coincide on the edges of  K(V~ N ½ ) ,  then their k-union x is a vertex of  S ( G ) ,  

G denoting the k-sum of  K(V1) and K ( ½ ) .  By Lemma 2.1, x can be extended to a 

vertex y of  the metric polytope .A.479(Id U V2). Moreover, if  xl and x2 are 1/d-integral ,  

then y can be chosen 1/d-integral .  Such y is a common extension of both xl and x2. 
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3. Sums with integral graphs 

37 

In this section, we study 1/d-integrality with respect to the k-sum operation for 
graphs; d is an integer, d ) 3. We prove the following results. 

• 1/d-integrality is preserved by 0- and 1-sums. 
• The 2-sum of a 1/d-integral graph and an integral graph is 1/d-integral. 

• The 3-sum of an integral graph and a rich 1/d-integral graph (for the definition of 
a rich graph, see Definition 3.5 below) is 1/d-integral. 

T h e o r e m  3.1. The O- and 1-sum operations preserve 1/d-integrality. 

Proof.  Let Gi = (Vi, Ei) be a 1/d-integral graph, for i = 1,2. We suppose first that G1 
and G2 have no common node and let G = (V,E) denote their 0-sum. Let x be a vertex 
of S(G)  and let xe, denote the projection of x on R e` for i = 1,2. Le t /3  be a system 
of ]E[ linearly independent inequalities from the system (1) ,  (2) that are satisfied at 

equality by x. Let /3i denote the subset o f / 3  consisting of the equations supported by 

Gi, for i =  1,2. Then, IB[ = [El = IBll + [B21 = IEl[ + [E2I, implying that IBi] = IEil for 
i = 1,2. Therefore, xi is a vertex of S ( G i )  and thus is 1/d-integral, for i = 1,2. This 
shows that x is 1/d-integral. 

The proof  is identical when G1 and G2 have one node in common. [] 

T heo rem 3.2. Let G~ and G2 be two graphs having an edge in common. If G1 is 
l/d-integral and Gz is integral, then their 2-sum is l/d-integral. 

Proof.  Take Gi = (Vi, Ei), for i = 1,2, and let f denote the common edge of G1 and 
G2. Let G = (V,E) denote the 2-sum of G1 and G2. We show that G is 1/d-integral, 
i.e., that every vertex of  S(G)  is 1/d-integral. Let x be a vertex of S(G)  and let xE, 
denote the projection of x on ]RE', for i = 1,2. I f  xf  = 0 or 1, then we can contract the 
edge f .  Namely, then x is a trivial extension of a vertex y of  S ( G / f ) .  But, the graph 

G / f  can be seen as the 0-sum of the graphs G1/ f  and G2/f.  By Theorem 3.1, y is 
1/d-integral.  Therefore, x is 1/d-integral. 

We can now assume that xf  v~ 0, 1. Let /3 be a family of  ]E[ linearly independent 
equalities from the system (1) ,  (2) satisfied by x. Let Bi denote the subset of  B 
consisting of  those equalities that are supported by Gi, for i = 1,2. Since 0 < xf  < 1, 
the families/31 and/32 are disjoint and, thus, IE[ = [/31 = 1/3~1 + [/321 = ]Ell + [E21 - 1. 
Therefore, IEi] - 1 ~< I/3il ~ IEil, for i =  1,2. We distinguish two cases. 

First, suppose that 1/321 = IE2] • Then, xE2 is a vertex of  S (G2)  and, thus, since G2 is 
integral, x& is (0, 1)-valued, in contradiction with the assumption that xf  4= O, l. 

Suppose now that 1/321 = [E21-1. Then, B1 = JEll; hence, xe, is a vertex of S (G1)  and, 
thus, is 1/d-integral. On the other hand, since it satisfies IE21 - 1 linearly independent 
equalities, xE2 can be written as the convex combination of  two vertices of  S(G2). 
Hence, xE2 = ceX ~(A) +/3X ~(B), where a , /3  ~> 0, a + / 3  = 1 and 6(A),  6(B) are two 
cuts in G2. Then, xf  = ce or xf  = /3; hence, a ,  /3 and, thus, xe2 are 1/d-integral. 
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Therefore, x is 1/d-integral. [] 

Corollary 3.3. Every subdivision of a l/d-integral graph is lid-integral. 

Proof. Let e be an edge of G which should be subdivided. Consider the 2-sum of G 
with a triangle along the edge e. Then delete the edge e from the 2-sum. The resulting 
graph is the required subdivision of G. It is 1/d-integral by Theorem 3.2 and Proposition 
2.6. [] 

Remark 3.4. The 2-sum operation does not preserve 1/d-integrality in general. As a 
counterexample, consider the graph G obtained by taking the 2-sum of two copies of 
1£5; K5 is ½-integral, but we construct below a i-integral vertex of S(G) .  

We use the following notation. If Ks, v denotes the complete bipartite graph with node 
sets S, T, then x(Ks, T) takes the value ½ on the edges of Ks.v and the value ~ on the 
other edges. Recall that x(Ks, v) is a vertex of .MT'n, n = [S I + [T[ ~> 5 [2]. 

Consider two copies G1 and G2 of K5 defined, respectively, on the node sets { 1,2, 3, 4, 
5} and {1 ,2 ,6 ,7 ,8 ) .  G is their 2-sum along the edge (1,2).  We define y E S (G)  as 
follows: its projection on the edge set of Gl is x(K{I,5),{2,3,4)) and its projection on the 
edge set of G2 is 1 5 It ~(x(K{1,2,8},{6,7}) ÷ ,9(6({1'2'6))). SO, y takes the values 1, 3, ~, ~" 
is easy to check that y is a vertex of 8 (G) .  Indeed, there are altogether nineteen triangle 
equalities satisfied by y (ten on G1 and nine on G2) and they are linearly independent. 

We say that a triangle ( i , j ,  k) supports a triangle equality for a vector x if at least 
one of the four inequalities (7) or (8) is satisfied as equality by x. 

Definition 3.5. Call a graph G rich if, for every vertex x of S (G) ,  each triangle of G 
supports at least one triangle equality for x. 

Clearly, every subgraph of a rich graph is rich. For example, K6 is rich (see Section 
5). Therefore, every graph on at most six nodes is rich. Also, every integral graph is 
rich (in fact, for every vertex, each triangle supports three triangle equalities!). 

Note that a ½-integral graph G is rich if no vertex x of $ (G )  satisfies xij = xik = 
2 = ½, for some triangle (i, j, k) of G. Xjk = ½, or xi j  = Xik = 5' Xjk 

Remark 3.6. It follows easily from the proofs of Theorems 3.1 and 3.2 that the 0- and 
1-sums of rich 1/d-integral graphs are 1/d-integral and rich, while the 2-sum of a rich 
1/d-integral graph and an integral graph is 1/d-integral and rich. 

We see below that Theorem 3.2 can be extended to the 3-sum case if we make the 
additional assumption that the graphs are rich. 

Theorem 3.7. Let G1 and G2 be 

is lid-integral and rich and if G2 
moreover, rich. 

two graphs having a triangle in common. If  G1 
is integral, then their 3-sum is lid-integral and, 
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Proof.  Take G i = ( Vi, E l ) ,  for i = 1,2, and denote by A = ( l ,  2, 3) the common triangle 

to G, and G2. Let G = (V,E) denote the 3-sum of  G1 and G2. We show that every vertex 

of  S ( G )  is 1/d-integral .  Let x be a vertex of  S ( G )  and let xel denote the projection 

of  x on R E', for i = 1,2. If  xe = 0 or 1 for some edge of  A, then, by contraction of  

this edge, we can apply Theorem 3.2 on the 2-sum and deduce that x is 1/d-integral .  

Hence, we can now assume that Xe ~ 0, 1 for each edge e C A. Let /3 be a family of  

IEI linearly independent equalities for x and let /3 i  denote the subset of  the equalities in 

/3 that are supported by Gi, for i = 1,2. We distinguish two cases depending whether A 

supports a triangle equality for x or not. 

We first suppose that A supports a triangle equality for x. Without loss of  generality 

we can assume that Xl2 + x13 + x23 = 2 ( i f  not, apply switching).  We can suppose that 

this equality belongs to/3.  Hence, I EI = 1/31 = 1/31]t 1/321-1 = I E1 I +  I E21 - 3, implying 

that IEil - 2 .< I/3il -< tEil, for i = 1,2. But [/321 v~ ]E2[, else xe2 would be a vertex of  

S ( G 2 )  and, thus, xE2 would be integral. 

~f 1/321 = IE21 - 1, then x ~  is the convex combination of  two vertices of  S ( G 2 ) ,  

XE 2 = OlX6(a) ÷/3,)(6(B), where a ,  fi ~> 0, c e + f l  = 1 and 8 ( A ) ,  6 ( B )  are two cuts in G2. 

Both cuts 8 ( A ) ,  6 ( B )  satisfy the triangle equality: x,2 + x13 + x23 = 2. Hence, at least 

one edge e of  A belongs to both cuts ~ ( A ) ,  8 ( B ) ,  implying that Xe = 1, a contradiction. 

I f  I;321 = IE21 - 2, then 1/311 = IEll; hence, XE, is a vertex of  S ( G 1 )  and, thus, XE, 
is 1/d-integral .  On the other hand, xE2 is the convex combination of  three vertices of  

S ( G 2 ) ,  xE2 = olx 6(A) -~ /3X 6(B) ÷ TX 6(C), where a, fl, y >! O, a + f l +  y = 1 and 6 ( A ) ,  

8 ( B ) ,  6 ( C )  are cuts in G2. From the fact that the three cuts 6 ( A ) ,  8 ( B ) ,  6 ( C )  satisfy 

the equality x12 ÷ x13 + x23 = 2 and that xe vs 0, 1 for each edge e E A, we deduce that 

8 (A)  CqA = {12, 13}, 6 ( B ) N A  = {12,23} and 6 ( C ) ; q A  = {13,23}.  Hence, x12 = a + f l ,  

x,3 = ce + 3; and x23 = fl + 3 / • Setting x,2 = a/d ,  x,3 = b/d ,  x23 = 2 - (a + b ) / d  for 

some integers a, b, we obtain that a = (a + b ) / d  - 1, fi = 1 - b id  and 3' = 1 - aid .  

Therefore, xE2 and, thus, x are 1/d-integral .  

We now suppose that A does not support any triangle equality for x. Hence, IE[ = 

1/31 = t/3,1 + [/32[ = ]Ell + [E2I - 3, implying that [E i [ -  3 <. [/3il ~- ]Eil, for i = 1,2. 

But ,  1/321 ~ IE21, since x e 5t= 0 ,  1 for each edge e E A, and I/3,1 ~ IEl[, since G1 is 

rich (else, x~ a would be a vertex of  ,5(G,)  with the triangle A supporting no equality 

for  x E , ) .  H e n c e ,  1/321 = IE21 - 1 or  IE21 - 2 .  

If [/321 = I E 2 [ -  1, then xe: is the convex combination of  two cuts in G2, implying 

easily that x~ = 0 or 1 for some edge e E A. 

If  1/321 = IE2I - 2, then xe2 is the convex combination of  three vertices of  S ( G 2 ) ,  
XE2 = OL)(6(z) ÷/3,)(6(8) ÷,yx6(C), where ce, fl, y >~ O, a + fl + y = 1 and 8 ( A ) ,  6 ( B ) ,  

8 ( C )  are cuts in G2. Since x~ ¢ 0, 1 for each edge e E A, no edge of  A belongs to 

all three cuts, and every edge belongs to at least one of  them. Hence, we have (up to 

permutation) only the following two possibili t ies:  

• either 8 ( a )  fq A = (~, 8 (B)  n A = {12, 13}, 6 ( C )  A A = {12, 23}; then, x12 ---- /(3 ÷ 'y, 

X13 = /3, X23 = y, implying that Xl2 - x13 - x23 = 0; 

• or 8 ( A ) N A  = {12, 13}, 8 ( B ) N A  = {12,23},  8 ( C ) N A  = {13,23}; then, x12 = ~x+/3, 

x13 = c~ + y, x23 = /3  + y, implying that xl2 + x,3 + x23 = 2. 
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In both cases, we have a contradiction with our assumption that d supports no triangle 
equality for x. This concludes the proof  that G is 1/d-integral. 

Finally, we verify that G is rich, i.e., that, for each vertex x of  S(G) ,  every triangle 
supports an equality for x. Take a vertex x of  S(G).  Looking through the above proof, 
we see that either x is some trivial extension, or xE2 is the convex combination of 

three cuts of  G2 while xE, is a vertex of S(G~). Hence, each triangle of  G supports 
an equality for x; in the first case, apply Remark 3.6 and, in the second case, check it 
directly. [] 

The motivation for the notion of rich graphs comes from the 3-sum operation. Namely, 
we have the following result. 

Proposition 3.8. Let G be a ½-integral graph. If G is not rich, then the 3-sum of G 
with K4 is not ½-integral. 

Proof. I f  G is not rich, then there exists a vertex x of  S(G)  and a triangle A = ( 1,2, 3) 

of  G which supports no equality for x. Up to switching, we can suppose that x12 = x13 = 
x23 = 3" Consider K4 on the node set {1 ,2 ,3 ,u0} where uo ~ V(G). Let H denote the 
3-sum of  G and K4 along A. Let y ~ S (H)  be defined by y~. = xe for every edge e of  

G and Y,0a = Yu02 = Yu03 -- I" Then, y is a vertex of S(H)  which is not ½-integral. [] 

As an application of  the 3-sum operation, we obtain that the AY-operation preserves 
1/d-integral rich graphs. The AY-operation consists of  replacing a triangle A = ( 1,2, 3) 

in a graph by a claw, i.e., deleting the triangle A from G and adding a new node u0 to 
G adjacent to the nodes l, 2 and 3. 

Corollary 3.9. The AY-operation preserves the class of lid-integral rich graphs. 

Proof. Let G be a l /d-integral  rich graph and let A = ( 1 , 2 , 3 )  be a triangle of  G. 
Consider K4 defined on the node set {1,2,  3, u0}. By Theorem 3.7, the 3-sum of  G and 
K4 along the triangle A is 1/d-integral and rich. Then, delete the edges of  the triangle A. 
The resulting graph is 1/d-integral and rich; it is precisely the AY-transform of  G. [] 

For instance, the graph K6 is ½-integral and rich (see-the list of  its vertices in Section 

4.1 ). Hence, every graph obtained from K6 by applying the AY-operation is ½-integral 
and rich. One such graph is the Petersen graph. 

4. Forbidden minors for 1-integrality 

1 The purpose of this section is to present some minimal forbidden minors for 7- 
integrality. As a consequence, we can characterize the ½-integral graphs up to seven 
nodes. We also give the full description of  the metric polytope .A/[79n for n ~< 6. 
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4.1. Small metric polytopes 
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We recall the description of the metric polytopes of  small dimension. 
For n = 4, .MP4 has 8 = 23 vertices, all of  them integral. 

For n = 5, .MP5 has 32 vertices consisting of 24 integral vertices and 24 ½-integral 
vertices obtained by switching of (~ . . . . .  32-). 

For n = 6, AAP6 has 544 vertices consisting of  25 integral vertices, 25 ½-integral 
vertices obtained by switching of (~ . . . . . .  3) and 480 vertices which are the trivial 
extensions of  the ½-integral vertices of  AAPs. 

For n = 7, Grishukhin [9] has computed all the extreme rays of  the metric cone •C7 .  
He found that there are thirteen distinct classes (up to permutation and switching) of  

extreme rays. We do not know the complete description of the vertices of  .MP7. 
Clearly, every extreme ray of the metric cone A/ICn determines a vertex of  the metric 

polytope M P .  which is the intersection of the ray with some triangle facet (8) .  In 
[ 12], it is conjectured that every vertex of AAP. can be obtained, up to switching, in 
this way. Equivalently, it is conjectured that every fractional vertex of AdPn is adjacent 
to some integral vertex. This conjecture holds for .MPn, n ~< 6, and for several classes 
of  graphical vertices of  AAP~ constructed in [ 11 ]. 

1 It follows from the explicit description of .L /p , ,  n = 5, 6, that /(5 and K6 are g- 
integral and rich. Therefore, every graph on at most six nodes is ½-integral and rich. 
As a consequence, any graph on seven nodes which has a node of degree at most 3 is 
S-integral and rich ( f rom Remark 3.6 and Theorem 3.7). K7 is not rich; many examples 
of  vertices of  AAP7, for which some triangle exists which supports no equality, can be 
found in the list of  vertices from [9].  

We conclude with a remark on the possible denominators for the fractional vertices 
of  the metric polytope. By Corollary 2.5, no vertex of A/IPn has denominator 2. On the 
other hand, vertices can be constructed with arbitrary denominator d >~ 3. 

Proposi t ion  4.1. For every d ~ 3 and fo r  every n sufficiently large, e.g., n >/ 3d - 1, 
there exists a vertex of  J~4Pn with denominator d. 

Proof.  We first recall a construction from [2].  Let G = (V,E) be a graph and G'  = 
( V ' , E ' )  be a copy of G, where V = {1 . . . . .  n} and V' = {1' . . . . .  n'}. Consider the 

graph G* with node set V U W O (ue I e C E} constructed as follows. The edge set of  
G* consists of  the edges of  G, the edges of G ~ and the following new edges. Join each 
node i C V to its twin i t E W. For each edge e = ( i , j )  of G with i < j ,  join i and f to 

Ue. 

Let d~ denote the path metric of  G, where d 6 ( i , j )  is the length of a shortest path 
from i to j in G, for i , j  E V. Set ~-(G) = m a x ( d 6 ( i , j )  + d c ( i , k )  + d ~ ( j , k )  I 1 <. i < 
j < k ~< n).  Define similarly d~. and ~-(G*). It is easy to check that ~-(G*) = ~-(G) + 2  
holds. 

Define the vector xa .  C ~/[PN, N = 2n + ]E I, by xa* = {2 /T(G*)}dG. .  Then, 
it follows from [2] that xa* is a vertex of AAPN. Its denominator is T(G)  + 2 or 
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½(~'(G) + 2),  according to the parity of  r ( G ) .  

Let d ~> 3 be an integer. Let G be a path on d nodes, then r ( G )  = 2 (d  - 1) and, 
therefore, xc* is a vertex of A.47~3a_l with denominator d. Trivial extensions of  xG* are 
vertices of  .A.479n with denominator d for all n />  3d - 1. [] 

For instance, the polytope .A4P7 has vertices with denominators 3, 4, 5, 6 and 7. 

4.2. Forbidden minors 

We have shown in Proposition 2.6 that J-integrality is preserved by taking minors. 

Robertson and Seymour [ 17] have proved that, for every minor closed class of  graphs, 
there are only finitely many minimal forbidden minors. Thus arises the problem of  
finding the minimal forbidden minors for the class of  J-integral graphs. We present four 

of  them. This permits us to characterize the J-integral graphs on seven nodes. 
We first give some preliminary results. 

L e m m a  4.2. Let G be a graph and let x be a fully fractional J-integral vertex of 
$ (  G). The only inequalities (1) which are satisfied at equality by x are those where C 

is a triangle of  G. 

Proof.  Let F, C be such that the inequality (1) is satisfied as equality by x. Let 
a (respectively b) denote the number of  edges e E F (respectively e C C \ F )  
for which xe = ½. From the equality x ( F )  - x (C  \ F)  = IF] - 1, we deduce that 

J a +  ~ ( I V l - a )  - J b -  ~ ( I C ] -  I F ] - b )  = IF I -  1. We obtain that IF] = 21C I + a - b - 3 .  
But, a ~> 0 and b ~< ] C ] -  IVl, from which we deduce that ]C I ~< 3, i.e., C is a 

triangle. [] 

L e m m a  4.3. Let G be a graph and let x be a fully fractional vertex of  S (G) .  For each 

cycle C of  G, at most one of  the inequalities ( 1 ) supported by C is satisfied at equality 

byx .  

Proof.  Let C be a cycle of  G and let F, F / be two distinct subsets of  C of odd 
cardinality. Let x C S ( G )  satisfy the equalities x ( F )  - x ( C  \ F)  = IF] - 1 and 
x ( U )  - x ( C  \ U )  = [ F ' ] -  1. We obtain that IF N F ' ] -  x(F n F I) + ½( IFAU[-  2) + 

x ( C \ ( F U U ) )  = 0. Therefore, ]FNU] = x ( F N F ' ) ,  1FAUI = 2 and x ( C \ ( F U U ) )  = O. 

This implies that xe = 1 for e E F N  U and Xe = 0 for e ~ C \ ( F  U U ) .  I f  x is fully 
fractional, then F N U = (3, C = F U U ,  implying that ]C I = 2, a contradiction. [] 

Coro l la ry  4.4. Let G = (V,E) be a ½-integral graph on seven nodes. I f  G has at most 

IE I distinct triangles, then G is rich. 

Proof.  Let x be a vertex of  S ( G ) .  We show that each triangle of  G supports an equality 

for x. Suppose first that Xe = 0 or 1 for some edge e ~ E. Let A be a triangle of  G. I f  A 
contains the edge e, then A trivially supports an equality for x. Otherwise A is a triangle 
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Fig. 3. G3. Fig. 4. G4. 

43 

in the graph G/e, obtained by contracting the edge e. Since G/e is on six nodes, it is 
rich. Hence, A supports an equality for the projection of x on G/e. Therefore, A also 
supports an equality for x. We suppose now that x is fully fractional. From Lemmas 
4.2 and 4.3, we deduce that G has exactly [E I triangles and each of them supports an 
equality for x. This shows that G is rich. [] 

In the following result, we classify the graphs on seven nodes that are ½-integral. If 
E is a subset of edges of K7, K7 - E denotes the graph obtained by deleting from K7 
the edges of E. Set 

G1 := K7 - C7, G2:=KT-C~, 

G3:=KT-(C4+P3) ,  G4:=Ks-(K3,3+K2).  

So, G1, G2 are, respectively, obtained by deleting a cycle on seven and five nodes from 
K7; they are shown in Figs. 1 and 2. The graph G3 is obtained by taking the 3-sum 
of two copies of K5 along a triangle and then deleting two edges of this triangle; it is 
shown in Fig. 3. The graph G4 is obtained by taking the 2-sum of two copies of K5 
along an edge and then deleting this edge; it is shown in Fig. 4. 

Note that G4 - V is planar if v is any of the two nodes common to the two Ks's 
compos ing  G4. Hence, the suspensions of planar graphs are not ½-integral in general. 

Theorem 4.5. (i) The graphs G1, G2, G3 and G4 are minimal forbidden minors for 
the class of 1-integral graphs. 

(ii) Every graph on seven nodes not containing G1, G2 or G3 is ½-integral and, 
moreover, rich. 

Proof. The proof of (i) relies partly on computer check. Namely, we checked by 
computer that G1, G2, G3 are, respectively, 5-,1 3-,1 ¼-integral and that the graph K7 - C3 
is ½-integral. 

For each of the graphs G1, G2, G3 and G4, we give below a vertex x of S(G) which 
is not ½-integral. 
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Let x ~ R(~) such that x~4 = x15 = x36 = x37 = ~, xl3 = x24 = x27 = x46  = x57  = 2 ,  

x16 = x35 = 5' x25 = x26 = x47 = ~. Then, x is a vertex of  S ( G 1 )  where G1 = K7 - C 7  
and C7 is the cycle ( 1 , 2 , 3 , 4 , 5 , 6 , 7 ) .  

4 3 for 1 ~< i ~< 5. Then, x is a Let x12 ~ x23 = x34 = x45 = x15 -- x67 = ~, xi6 ~ xi7 -- 

vertex of  S (G2) ,  where G2 = K7 - C5 and C5 is the cycle ( 1 , 2 , 3 , 4 , 5 ) .  
2 and = = = = Let x13 = x14 = x25 = x36 = x46 = 1 Xl 2 = x34 = x67 = ~ x15 x23 x24 x37 

x47 = x57 = 3. Then, x is a vertex of  S(G3) ,  where G3 = K7 - (C4 q- P3), C4 is the 
cycle ( 1 , 7 , 2 , 6 )  and P3 is the path (3 ,5 ,4 ) .  

The graph Ks-K3,3 is obtained by taking the 2-sum of  two copies of  K5 along an edge 
e. We gave in Remark 3.4 a ~-integral vertex x of  the polytope S ( K 8 -  K3,3). In fact, if 

we project out the edge e, the projection of  x remains a vertex of  S ( K 8  - (/(3,3 + e) ). 

Therefore, G4 =/(8 - (K3,3 + e) is not ½-integral. On the other hand, it is easily seen 

that every minor of  G4 is ½-integral. 

We now verify that every minor of  the graph G = Gl, G2, G3 is ½-integral. This is 

clear for a contraction minor, since it is a subgraph of  K6. Let G - e be a deletion 

minor. If  the deleted edge e is adjacent to a node of  degree at most 4 in G, then G - e 

has a node of  degree at most 3 and, hence, is ½-integral. Therefore, every minor of  G1 

is ½-integral, since G~ is regular of  degree 4. All nodes of  G2 have degree 4 except two 

adjacent nodes which have degree 6. If  e is the edge joining them, then G2 - e is planar 

and, therefore, is ½-integral. All the nodes of  G3 have degree 4 except two adjacent 

nodes which have degree 5. If  e is the edge joining them, then G3 - e is contained in 

K7 - C3 and, therefore, is ½-integral. This shows the part (i) of  Theorem 4.5. 

We prove (ii). Let G be a graph on seven nodes that does not contain any of  Gj, 

G2, G3 as a subgraph. If  G has a node of  degree at most 3, then G is ½-integral and 

rich. So we can suppose that all the nodes of  G have degree at least 4 in G. Hence, all 
nodes have degree at most 2 in the complement G of  G, i.e., G is a disjoint union of  

cycles and paths. Since G ~ C7, G contains a cycle. If  G contains a cycle of  length 3, 

then G is contained in K7 - C3 and, therefore, G is ½-integral. I f  G contains a cycle of  

length 4, then G = C4 + 6"3, since G is not contained in C4 + P3. Therefore, G is again 

contained in K7 - C3. If  G contains a cycle of  length 5, then G = 6'5 + K2. Therefore, 

G is integral since it is planar. I f  G contains a cycle of length 6, then G = K7 - C6 is 
½-integral. Indeed, K7 - C6 has fourteen chordless cycles (including eleven triangles and 

three cycles of  length 4) and fifteen edges. By Lemma 4.3, every vertex of  S ( K 7  - C6) 

has some integral coordinate and thus is ½-integral, since it is the trivial extension of  a 

vertex of  the cycle polytope of  a graph on six nodes. 
In order to conclude the proof of  (ii), we must show that G is rich. By the above 

argument, it suffices to verify that both K7 - C3 and K7 - C6 are rich, The graph K7 - C6 
has eleven triangles; therefore, it is rich, by Corollary 4.4. We cannot apply Corollary 
4.4 to show that/(7 - C3 is rich since this graph has twenty-two triangles and eighteen 

edges. But it can be checked directly as follows. 
Let G = K7 - C3 be defined on the nodes {1,2,  3, 4, 5, 6, 7} and the deleted triangle 

C3 be (5, 6, 7). Let x be a vertex of  S ( G ) .  If  x has some integral component, then every 
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triangle of G supports an equality for x. Let x be fully fractional, so its components 
1 2 are 5, 5" Call a triangle zl of G bad if it supports no equality for x, i.e., x takes the 

values (½, 3' ½), or (2,  2' ½) on the edges of A. At most four triangles of  G are bad. 
There are four triangles on the nodes { 1,2, 3, 4}. Among them, the number of bad 
triangles can be zero, two or four. If the four triangles on {1 ,2 ,3 ,4}  are bad, then 

xl2 = x13 = x14 = x23 = x24 = x34 = g (up to switching). Clearly, no such x exists 
for which all the remaining eighteen triangles of G support an equality. If two of the 

1 2 triangles on {1 ,2 ,3 ,4}  a r e  b a d  then, e . g . ,  x12 = x13 = x14 = x23 = x24 --- 5 '  x34 = 3 

(up to switching). It is again impossible to find such x for which at most two of the 
remaining eighteen triangles are bad. Let the four triangles on {1,2, 3,4} support an 
equality for x, i.e., Xl2 = x13 = Xl4 = x23 = x24 = x34 = 2 ( u p  t o  switching). We look 
at the possibilities for x~i, 1 ~ i ~ 4, 5 ~< j ~< 7. Fix j E {5, 6,7}. If xij = ½ for 
exactly one of the edges l j ,  2j, 3j, 4j,  say xlj = ½, then no triangle equality covers the 
edge l j ,  contradicting the fact that x is a vertex. The same holds if xij = 1 for three 
of the edges l j ,  2j, 3j, 4j. If xij = ½ for two (respectively four) of the edges l j ,  2j,  
3j, 4j,  then four (respectively six) of the six triangles going through node j are bad. 
This contradicts the fact that x is a vertex since the equalities supported by triangles on 
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 }  \ {j} have rank at most 14. [] 

R e m a r k  4.6. The class ~ consisting of  the graphs G for which all extreme rays of 
the cone C(G) are (0, 1,2)-valued has been characterized in [18].  Namely, a graph G 
belongs to G if and only if G has no minor H6 or K7 - (K3,3 + / 2 )  (recall that H6 is the 
graph obtained by equally splitting a node o f / (5 ) .  Equivalently, a 2-connected graph G 
belongs to G if and only if G is the 2-sum of a graph without K5 minor and of a copy 
of / (5 .  Therefore, by Theorems 3.1 and 3.2, every graph in G is ½-integral. 

5. Box l-integral graphs 

We have seen that the 2-sum operation does not preserve ½-integrality. This leads 
us to the study of  a stronger notion, box ½-integrality, which is preserved by 2-sums. 
Box ½-integrality is a stronger property than ½-integrality. Namely, we ask not only 
that the polytope $ ( G )  has all its vertices ½-integral, but also that each slice of $ ( G )  
determined by adding the box constraints ge <~ Xe <~ Ue for e E E has only ½-integral 
vertices, for all choices of ½-integral bounds g and u. 

Definition 5.1. The graph G is box S-integral if the polytope 

$ ( G )  A { X l g e  <~ Xe <~ ue,eC E} 

is empty or has only ½-integral vertices, for all g and u belonging to {0, 3, 2'  1 }e. 

Equivalently, the graph G = (V,, E) is box }-integral if, for every g, u E {0, ½, 2, 1}e 
such that .M79n n {x ] ge <~ Xe <~ Ue, e C E} 4= 0 and for every objective function c 
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supported by G, the linear program max(c ' rx  [ x E ./~TDn,~.e ~ X e ~ Ue,e  E E) admits 
a ½-integral optimizing vector. 

We are able to characterize the class of  box J-integral graphs. Recall that a graph G 
is said to be series parallel if  G is a subgraph of a graph which can be obtained by 
iterated 2-sums of  a collection of  copies of / (3 .  Equivalently, G is series parallel if  G 
does not contain any K4 minor. 

T heo rem 5.2. A graph G is box ½-integral if  and only if  G is series parallel. 

The proof  of  Theorem 5.2 consists of  the following steps: 
• box ½-integrality is preserved by 0-, 1- and 2-sums; 

• /(3 is box ½-integral, but K4 is not box J-integral. 
The fact that 0- and 1-sums preserve box l-integrality is proved in the same way as 

for ½-integrality. The result about the 2-sum needs two preliminary temmas. 
In the next lemma, we show that every point in a slice of  the metric polytope can be 

rounded to a J-integral point of  the slice. 

L e m m a  5.3. Take g,u E (0,  ½, ~, 1)(2) such that AATVn A {x ] g <. x <~ u} 4: O. Given 
x E AA79,, A {x [ g <~ x <~ u}, there exists y E A.~79n N {x [ g <~ x <<. u) such that y 
satisfies 

(i) ye=XeifXeC{O, 1,2,1}, 
1 (ii) y ~ = ½ i f O < x e < 5 ,  

(iii) Ye = ~- if  ~ < x~ < 1, 
1 2 (iv) YeE { 1 , ~ )  if  g <Xe < 7" 

Proof.  We will proceed by induction on n ~> 3. The statement holds easily if n = 3. Let 

n >~ 4 be given. We distinguish two cases. 
Assume first that 0 < xe < 1 for all edges. Then, we define y by 

1 7' 

Ye = 3' 

Jor , 

if  0 < Xe ~ 1, 

2 if g ~< Xe < 1, 

i f½ < X e < ~ .  

Clearly, y E .AdT9~, and g ~< y ~< u. 
Assume now that xe = 0, 1 for some edge e; we can consider only the case of  Xe = 0 

due to switching. Let e = (1 ,n ) .  Since xln = 0, xli = xin for all 2 ~< i ~< n - 1. Set 

g~i = max(gli,gin) and u]i = min(uli, Uin) for 2 ~< i ~< n - 1, a n d  g~j = gij, u~j -~ Uij 
otherwise. Let x ~ denote the projection of x in .Ad79~_1. Clearly, x t satisfies g~ ~< x ~ ~< u ~. 
By the induction hypothesis, there exists y~ satisfying the statement for x ~ and the bounds 
g~ and u ~. Let y be the 0-extension of y~. Then, y satisfies the statement for x and the 

bounds g and u. [] 
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The following lemma deals with sensitivity of  optimization over slices of  the metric 
polytope when the objective function varies on a single edge. 

L e m m a S . 4 .  Take g a n d u  C {O, ½ , ~ , I } Q )  such that A47")nN{x I g <~ x <<. u)  4 : 0  

and c E ~('~). For t E JR, define c ( t )  E RQ)  by c ( t )e  = Ce fo r  all edges e except 
c ( t )  f = c f  + t f o r  a f ixed edge f .  For a E {0, 1 2 1 }, we define the set M .  consisting g ,~ ,  
o f  the scalars t E R fo r  which the linear program max( c( t) Tx I x  E .AAT)., g <~ x <<. u) 

admits a ½-integral optimizing vector x satisfying x f = a. Then, the set M~ is a closed 
interval. 

Proof.  We show that M~ is convex. Let t, t + s E M,~ and 0 ~< A ~< l be given. We 
show that t + As E M~. 

Let Co (respectively, Cj, C) denote the maximum value for the objective function 
c ( t )Vx  (respectively, c( t  + s)Tx, c ( t  + As)Vx) optimized over AA79n N {x I g ~< x ~< 

u} and let x0 (respectively, xl,  x) denote the corresponding optimizing vectors. By 
assumption, we can suppose that xo( f )  = xl ( f )  = a. 

First, note that, for any y E ]~(~), c( t  + As)Ty = c ( t )Ty  + Asyf  and c( t  ÷ As)Wy = 
c ( t  + s ) T y - -  (1 -- A) sy f .  

In particular, c( t  + As)Wxo = Co + Asa, and c ( t  + As) TXl = C1 - ( 1 - A) sa ,  implying 

that (1 - A)Co + AC1 <~ C. 

On the other hand, we have that C = c( t  ÷ As)Wx = c ( t )Vx  + Asx f  <<. Co ÷ Asxf ,  

and C = c( t  + As)Tx = c ( t  + s )Tx  -- (1 -- A)SXf ~ C1 - (1 - A)sx f ,  implying that 

( 1 - A) Co + Ac! i> c .  
Therefore, the equality (1 - A ) C 0  + AC1 = C holds. In consequence, each of the 

vectors x0 and xl is an optimizing vector for the program m a x ( c ( t  + As)Tx I x C 

.A479n, g <~ x ~< u). Hence, t + As E M, .  
Using compactness of  the set A479n N {x ] g <~ x <~ u, x ( f )  = or), it is easy to see 

that the set M,~ is closed. [] 

Theorem 5.5. The k-sum operation, k = 0, 1,2, preserves box l_integrality. 

Proof.  For k = 0, 1, the proof is identical to that of  Theorem 3.1. 

We now show that the 2-sum operation preserves box ½-integrality. Take two graphs 

Gi = (Vi, Ei), i = 1,2, having a common edge f and denote their 2-sum by G = (V,E). 
We suppose that G i is box ½-integral for i = 1,2, and we show that G is box ½-integral. 
Take c E R e and g,u E {0 ,½,~ ,1}  e such that A479n N {x [~e ~ Xe ~ Ue,e E E} 4: O. 
Let y be an optimizing vector for the program 

(P) max(  cTx I x c ./V'[']')n,ge ~ x e ~ ue,e C E) .  

Observe, first, that we may assume that each interval [ ge, Ue ] is tight for y, i.e., satisfies 

g~ = ue = Ye if Ye E {0, ½, 3' 1} and Ue - ge = 1 otherwise. Indeed, if it is not the 
case, define g', u ~ by the above conditions; then, y is also an optimizing vector for the 
program max(cXx [ x E A479n,g'e <~ Xe <~ U~e,e E E) ,  and the bounds ~,  u ~ are tight 
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for y. 

Define ci C R e' by ci(e) = c(e) for all edges e C Ei, except c l ( f )  = c ( f )  and 

c2( f )  = O. 
Let us first suppose that gf = uf := a. By the assumption, we know that the program 

max(c~x I x C Ad79(Vi),ge <~ Xe <. Ue,e ~ Ei) admits a ½-integral optimizing vector 

zi, for i = 1,2. Since z l ( f )  = z2( f )  = ce, we can construct the 2-union z of  zl and z2. 
Then, z is a ½-integral optimizing vector for the program (P).  

We can now assume that (gf, u f )  is (0,½) or (½,~) or (~ ,1) .  For t C R, we 

consider the translate Ci(t) of the objective function ci defined by Ci(t) (e)  = ci(e) for 

all edges e ~ El, except C l ( t ) ( f )  = c l ( f )  + t and c 2 ( t ) ( f )  = c2( f )  - t. For i = 1,2, 
2 1}, we define the set M/ ,  consisting of  the scalars t E R for which and for a E {0, ½, g, 

the program max(ci( t )Tx [ x E AdT)(Vi),ge <. Xe <. Ue, e C Ei) admits a ½-integral 

optimizing vector taking the value a on the edge f .  Hence, M / = 0 if ce # g f ,  Uf and, 
by Lemma 5.4, i and i Me(f) Mu(f) are two closed intervals covering R, for i = 1,2. 

Consider the program max(cl ( t )Tx  [ x E Ad79(Vl),g, <~ Xe <. Ue, e E El) for large 

t, t -~ +oo,  and then, for small t, t --~ - o o .  Hence, 

1 
./~TJ(VI) n {X Iee 4 Xe ~ Ue,e C El,X(f) = g(f)}  ~ 0 ~ Me(f) -~ O, 

.IV~(Vj ) N {X ] ge ~ Xe ~ Ue,e E Em,x( f )  = u ( f ) }  # 0 ~ Mlu(f) 4= O; 

1 1 and any t large enough belongs to Mu(f). in fact, any t small enough belongs to Me(s) 

In the same way, 

J~P(V2)  n {x l e e ~ x e ~ Ue,e C E 2 , x ( f )  = g ( f ) }  # 0 

.MP(V2) N {x I ge ~Xe < . U e , e C E 2 , x ( f )  = u ( f ) }  # 0 

2 
==6 Mg(f) 4= O, 

2 2 (any t large enough belongs to Me(f) and any t small enough to Mu(f)) .  Therefore, we 
can always find some t E M~ N M ] for a = g ( f )  or u ( f ) ,  except in the cases when 

Mu(f ) 1  = Mg(f)2 = 0 or Me(f ) 1  = Mu(f ) 2  = 0. But these two cases cannot occur; to see it, 

we use Lemma 5.3. 
Indeed, if (gf, u f )  = (0, 1), then, by Lemma 5.3, we can find a vector y belonging 

to the set A.47~(V) N (x  [ g ~ x <~ u} such that yf = ½. By the above observations, we 
deduce that 1 and 2 (2, 1), then Mu(f) Mu(f) are both nonempty. Similarly, if (gf,  Uf ) = 

1 and  M2(f) are nonempty. Lemma 5.3 produces y with yf  = 2 and, thus, both sets  Mg(f) 
1 2 = ½ and, then ,  M~(f) Also, in the case (~f, u f )  = (5, 5 ), we have such y with, say, yf  

and 2 Mg(f) are nonempty. 
1 ~ g ( f )  or u ( f ) .  Then, In consequence, we can always find some t E M~ n M~, for a = 

for such t, there exists a ½-integral vector zi satisfying z i ( f )  = o/ and which is optimum 

for the program max(ci( t )Tx [ x ~ AdTa(Vi),ge <~ Xe <~ Ue,e E El). Therefore, we can 
construct the 2-union z of  zl and z2 which is a ½-integral optimizing vector for the 

program (P).  [] 

L e m m a  5.6. /(3 is box ½-integral. 
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Proof .  We show that the polytope .A//T'3 N ( x  I g <~ x ~< u} has only ½-integral vertices 

for every g ,u  E (0 ,  ½, ~, 1} 3. Let x be a vertex of  the polytope .A4793 N (x  I g ~< x ~< u )  

and l e t /3  be  a set of  three l inearly independent  active constraints  at x. /3 contains  some 

tr iangle equali t ies and some bound ing  equalities: Xe = ge or Xe = Ue. 

• If  /3 contains  three tr iangle equalities,  then x is a vertex of  AAT'3 and, thus, x is 

0 -1-va lued .  

• I f / 3  contains  two tr iangle equalities,  then we deduce that xe = 0 or 1, for some 

edge e; but  /3 contains  another bound ing  equality, say on  edge f ,  f v~ e. Then,  two 

coordinates  of  x are 1-integral and, thus, the third one too. 

• I f /3  conta ins  only  one tr iangle equality and two bound ing  equalities, or i f  13 contains  

three b o u n d i n g  equalities,  then x is clearly ½-integral. [] 

R e m a r k  5.7. The graph K4 is not  box ½-integral. For example,  consider  the vector 

x C AA794 defined by x12 = x13 = x~4 = ~ and x23 = x24 = x34  = 1 .  Then, x is a vertex 

of  the polytope .A4794 N ( x  ] 0 ~< xij <~ ½, 1 <~ i < j <. 4}. 
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