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Abstract. Let P be a Delaunay polytope in Rn. Let 7"(P) denote the set of affine bijections f of ~n for which 
f (P)  is again a Delaunay polytope. The relation: f ~ g if f, g differ by an orthogonal transformation and/or 
a translation is an equivalence relation on 7(P). We show that the dimension (in the topological sense) of the 
quotient set T(P) /~  coincides with another parameter of P, namely, with its rank. 

Let V denote the set of vertices of P and let dp denote the distance on V defined by de(u, v) = Ilu - vii 2 
for u, v ~ V. Assouad If] shows that de belongs to the cone ~lvl := {d I ~u,vev  bubod(u, v) < 0 for b 

Z v with ~-~uev bu = 1}. Then, the rank of P is defined as the dimension of the smallest face of the cone 7-/iv I 
that contains de. 

Keywords: Delaunay polytope, affine transformation, lattice, dimension, hypermetfic 

1. I n t r o d u c t i o n  

This paper  is motivated by a question of  Billera (private communication, 1994), who asked 
whether the notion of  rank of  a Delaunay polytope P ,  which is defined in [3] in terms of  
a certain c o n e  7-/iVi, can be expressed in a more intrinsic way as an invariant of a set of  
transformations of  P .  We give a positive answer to this question. Namely, we show that 
the rank of  P is equal to the dimension (in the topological sense) of  the set consisting of  the 
affine bijections f (up to Euclidian motions) for which f (P )  is again a Delaunay polytope. 

In this result, we use the notion of  dimension of  a topological space. This notion was 
defined at the beginning of  the twentieth century, in particular, after the works of  Brouwer, 

Menger, Urysohn; see, e.g., [5]. 

Namely, for a topological  space X, its dimension d im(X)  is defined in the following 
way. If, for any open sets G i (1 < i < S) such that X = Ul<__i<__s Gi, there exist open 
sets Hj  (1 < j < t)  such that X = [..Jl_<j_<t Hi ,  each Hj  is contained in some Gi, and 
the intersection of  any n + 2 H j ' s  is empty, then d im(X)  < n. I f  d im(X)  < n but not 
d im(X)  < n - 1 then d im(X)  = n. 

This concept generalizes the usual notion of  dimension for a Euclidian space or a polyhedron. 
We do not need, however, to know the precise definition of  this notion of  dimension. We will 
only use the fact that the dimension is a topological invariant, i.e., that two homeomorphic 
topological  spaces have the same dimension. 

We recall the definitions for a Delaunay polytope and its rank in Sections 1.1 and 1.2. 
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I.I. Delaunay transformations 

Let P be an n-dimensional polytope in R n with set of vertices V. Then, P is said to be a 
Delaunay polytope if the following conditions hold: 

�9 The set L := {~_,v~v boo [ b ~ Z v and ~-~o~v by = 1} is a lattice (i.e., there exists a 
nonempty ball centered at each lattice point that contains no other lattice point). 

�9 There exists a sphere S with center c and radius r such that 

Ilx - cll >__ r for all x 6 L, (1.1) 

with equality in (1.1) if  and only if x is a vertex of P.  

In other words, no lattice point lies in the interior of  the ball whose boundary sphere is S 
and the lattice points lying on S are~zecisely the vertices of  P.  In particular, P is inscribed 
on the sphere S. (Here, I lxl l  = ~/xTx denotes the Euclidian norm o f x  ~ I~n.) 

Delaunay polytopes were introduced by Voronoi [6, 7] (they are also called L-polytopes 
in the literature). They are closely related to the well known Voronoi polytopes. Namely, 
the vertices of  the Voronoi polytope at a lattice point u are precisely the centers of the 
Delaunay polytopes that have u as a vertex. 

Let f : •n __~ ~n be an affine bijection. In general, f (P )  is not a Delaunay polytope. 
For instance, an equilateral triangle is a Delaunay polytope while a triangle with a right 
angle is not a Delaunay polytope; in fact, a triangle is a Delaunay polytope if and only if 
it has no obtuse angle. We call f a Delaunay transformation of  P if f ( P )  is a Delaunay 
polytope and we let T(P) denote the set of  all Delaunay transformations of  P. Observe that 
all translations, orthogonal transformations, and homotheties are Delaunay transformations 
of P.  Given two affine bijections f ,  g of  It~ ~, write 

f "-~ g (1.2) 

if f ,  g differ only by an orthogonal transformation or a translation, i.e., if there exist an 
orthogonal transformation h o f R  n anda  ~ R n suchthat g(x)  --- h( f (x ) )+a for al lx ~ R n. 
The relation --, is an equivalence relation on T(P). Let T(P)/ , . ,  denote the quotient space 
of T(P) by ,v. 

Our goal in this paper is to evaluate the dimension (in the topological sense) of  the set 
T(P)/ .~.  In fact, the set T(P)/"~ can be more simply defined in terms of matrices. 

Clearly, we can suppose that the origin is a vertex of P (else, replace P by a translate 
of  it). Then, every equivalence class of  T(P)/"~ contains a representative f ,  which maps 
the origin on the origin. Hence, f can be identified with the nonsingular matrix A, which 
represents f in the canonical basis of  I~ n. Given two n x n matrices A, B, write 

A ", B i f A r A  = BTB. (1.3) 

When restricted to the set GL(n) of the n • n nonsingular matrices, the definition of the 
relation -,, f rom (1.3) is coherent with the one given in (1.2). Namely, for A, B ~ GL(n), 
A "-" B if A = U B for some orthogonal matrix U. Set 

7~(P) :=  {A ~ GL(n) [ A(P) is a Delaunay polytope}, (1.4) 
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where A(P) := {Ax ] x E P} denotes the image of P under A. From the discussion above, 
it follows that 

7(P)/- = lo(P)/-. (1.5) 

As an example, we describe below the Delaunay transformations of the triangle and of 
the cube. 

Example 1.6 Consider the triangle ~2 with vertices ug = (0, 0), vi = (2,0) and 213 = 
(1,2); it is a Delaunay polytope. Every class of the set l(a2)/ - admits a representative 

of the form A = (i t ), where a, b, c satisfy: 

a > 0, 

O<a+2b<2a, 
4b2 + 4c2 > a2. 

Indeed, up to rotation, every Delaunay transformation A of ~2 can be supposed to leave 

the x-axis invariant and, hence, has the form (,, c . a ‘) The conditions on a, b, c express the 

fact that each angle of the triangle A(a2) is acute. Geometrically, this means that the point 
A(u2) should lie in the shaded region shown in the figure below. 

This shows that there are three degrees of freedom for the parameters of a Delaunay trans- 
formation (up to orthogonal transformation) of a~; in other words, the set 7(a2)/ - has 
dimension 3. More generally, an easy induction shows that, for the n-dimensional simplex 

?I+1 cz”, l(a,)/- has dimension ( 2 ). 

Example 1.7 Consider now the square y2 = [0, 112. It is easy to see that each class of 

7( y2)/ - has a representative of the form (a ’ o b), where a, b > 0. Hence, the set 7(y2)/ - 

has dimension 2. More generally, for the n-dimensional cube y,,, I( y,,)/ - has dimension n. 
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1.2. Rank of a Delaunay polytope 

Let P be a Delaunay polytope with set of  vertices V. We consider the c o n e  ?/IVI in the 

space R ~ ~) (indexed by the pairs of  elements of  V) defined by the inequalities: 

b.bvxuv < 0 (1.8) 
u,v~V 

for all b e Z v such that ~-~u~V b,  = I. (We suppose that the elements of  V are ordered and 
u < v refers to that order.) We use the notation 7-I Ivl as the cone 7-/Ivl depends only on [V[. 
The cone 7-/iv I is known as the hyperraetrie cone. Note that 7-(iv I is defined by infinitely 
many inequalities. However, it is shown in [4] that 7-/iv I is a polyhedral cone, i.e., that a 
finite subset of  the inequalities (1.8) suffices to describe 7-/iv I. 

One can observe that one point de belonging to the hypermetric cone 7-/Iv I can be con- 
structed from P.  Namely, set , 

de(u, v) := Ilu - vii 2 (1.9) 

for u, v ~ V. Then, the vector de :=  (de(u, v))u,v~v,,,<v belongs to ~lvI- To see it, take 
b ~ Z v such that ~'~.~v bu = 1. Let c and r denote the center and radius of  the sphere 
circumscribing P.  Then, 

E b.bvde(u, v) = ~ b.bullu - vll 2 
u,vEV u,v~V 

= ~ b.boll(u - c) - (o - c)ll 2 
u,v~:V 

= E b u b ~  
u,oEV 

IJ I = 2 r 2 - 2  E b ,  u - c  <0, 
uEV 

where the last inequality follows from (1.1). This property was observed by Assouad [1]. 
Assouad proved, moreover, that, conversely, every point of  the c o n e  "h~lv I arises in some 
sense from a Delaunay polytope. More precisely, let d be an arbi~ary point of  the cone 
~lVi- Then, there exists a Delaunay polytope Q with set of  vertices W and a mapping 
~p : V ---> W such that 

d(u, o) = U~o(u) - ~0(v)ll 2 

for all u, v ~ V. We refer to [2] for a detailed survey on the connections between Delaunay 
polytopes and the hypermetric cone. 

This leads to the following notion of rank for a Delaunay polytope, introduced in [3]. 

Defini t ion 1.10 Let P be a Delaunay polytope with set of vertices V and let de denote 
the point of  the c o n e  "]-/iv I defined by (1.9). Then, the rank of P is defined as the dimension 
of the smallest face of  "]'(IVl that contains de. 

For instance, the n-simplex ~n has rank (n ~- 1 ) and the n-cube has dimension n (see [3]). 
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1.3. The main result 

The following is the main result of  the paper. The proof  is given in Section 2. 

T h e o r e m  1.11 Let P be a Delaunay polytope. Then, its rank is equal to the dimension 
of  the quotient set T ( P ) / "~ of  Delaunay transformations of  P. 

R e m a r k  1.12 Note that the dimension of T ( P ) / ~  is always greater or equal to 1, as the 
homotheties are Delaunay transformations of  any Delaunay polytope. It is shown in [3] 
that P has rank 1 if and only if the homotheties are the only Delaunay transformations of  
P (up to translations and orthogonal transformations), i.e., if the dimension of T ( P ) / ~  is 
equal to 1. Hence, Theorem 1.11 holds for rank one Delaunay polytopes. Several examples 
of  rank one Delaunay polytopes are described in [3]. 

2. Proof of Theorem I . I I  

In what follows, P denotes an n-dimensional Delaunay polytope in R n with set of  vertices 
V and admitting the origin as a vertex. As the hypermetric c o n e  7-Liv I is a polyhedral cone, 
there exists a finite set Be C {b ~ Z v I )--~-,~v b, = 1} such that 

7-g,vl={xER(v2l l  ~ b u b v x u v  <O f o r a l l b E B e } .  (2.1) 

u<v 

Let dp denote the point of  ~lV[ defined by (1.9). Let Fp denote the smallest face of  the 
c o n e  7--/iv I that contains de. Then, Fp is defined by 

Fp = {X ~ ~lVl , ~-~ bubvxuv ~ O for all b E Ap } (2.2) 
u,v~V 
u<u 

for some subset Ap ~ Bp. 

2.1. A characterization of  the Delaunay transformations of  P 

We start with an easy result of  linear algebra. We use the following notation: For two n • n 
matrices A, B, 

(A, B) := ~ aijbij 
l < i , j < n  

denotes the usual scalar product, with an n • n matrix being viewed as an nE-vector. Recall 
the identity: x r A x  = (A, xx r) for an n x n matrix A and x E R n. 

Lemma 2.3 Let xl . . . . .  xn be n linearly independent vectors in R n. Then, the system 
S ---- {xixT(1 < i < n), (xi -- xj)(xi -- xj)T(1 < i < j < n)} is linearly independent. 

n+l 
Proof: As S consists of  n + (~)  = ( 2 ) elements, it suffices to show that, if X is a 

symmetric n x n matrix orthogonal to all members of  S, then X is the zero matrix. By 
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assumption, (X, xixi r) = xir Xxi = 0 for i = 1 . . . . .  n, and (X, (x i - -  X j ) ( X  i - -  X j )  T}  ~--- 

(Xi - -x j )TX(x i - -Xj )  = O, imply ing tha txr iXx j+xrXx i  = 0for  1 < i < j < n. Wecheck 

that x r X x  --- 0 for all x ~ R". Indeed, let x = )--]1__i_, ~ for some scalars t~i. Then, 

xT Xx = Zl<i<n Og? XT XXi "~- Zl<_i<j<_n OliOlj(xT Xxj -~- gf  xxi) = 0. T h i s  implies that 

X = 0; indeed, i fx  is an eigenvector of  X for the eigenvalue )~, then 0 = x T X x  = ~.llxll 2, 
yielding ~. = 0. [] 

The following result of  [3] plays a crucial role in the proof, as it will enable us to 
characterize the Delaunay transformations of  P in Theorem 2.6. 

Theorem 2.4 [3] Let P be an n-dimensional Delaunay polytope in 1~ n with set o f  vertices 
V and such that 0 E V. Let Fp denote the smallest face of  the c o n e  7-/iv I containing d?. 

(i) Let A ~ G L (n ). l f  A ( P ) is a Delaunay polytope, then the vector d a( e ) ~ R C ~ ) defined 
by 

dA(p)(U, 1)) = IIAu - Avll 2 (2.5) 

for  all u, v E V, belongs to the relative interior of  Fe. 
(ii) Let d be a vector that lies in the relative interior of  Fe. Then, there exists A E G L(n) 

such that A ( P ) is a Delaunay polytope and d coincides with the point d a( e) defined by 
(2.5). 

Theorem 2.6 Let P be an n-dimensional Delaunay polytope in R" having the origin as 
a vertex and let Fp denote the smallest face o f~ l v  I containing dp. Let A ~ GL(n). Then, 
A(P)  is a Delaunay polytope if  and only if  the vector dAce) defined by (2.5) lies in the 
relative interior of  Fp. 

Proof :  Necessity follows from Theorem 2.4 (i). Conversely, suppose that dA(p) lies in the 
relative interior of  Fp. By Theorem 2.4 (ii), there exists B ~ GL(n) such that B(P)  is a 
Delaunay polytope and da(p) = dB(p). Then, (u - v)r A r A (u - v) = (u - v) r B r B (u - v) 
for all u, v ~ V. As V has full dimension n, we deduce from Lemma 2.3 that A r A  = B r B. 
Hence, ( B A - 1 ) r ( B A  -1) = I ,  i.e., BA - j  is an orthogonal matrix. This shows that the 
polytope A ( P )  can be obtained from B(P)  by applying an orthogonal transformation. 
Therefore, A (P )  is a Delaunay polytope. [] 

Coro l la ry  2.7 Let P be an n-dimensional Delaunay polytope in R n with set of  vertices 
V andsuch thatO E V. Let A ~ GL(n). Then, A(P)  is a Delaunaypolytope i fandonly if 
the following holds: 

b,,bollAu - Avll 2 = 0 
U,vEV 

y ~  b, bollAu - Avll 2 < 0 
U,I)EV 

(where the sets A? and Be define Fp as in relation (2.2)). 

for  all b E Ae ,  

for all b ~ Be \At,  

We conclude with an auxiliary result that will be needed in the next section. 
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Lemma 2.8 Let P be an n-dimensional Delaunay polytope in R n with set o f  vertices V 
and such that 0 E V. Let A1 . . . . .  A~ ~ G L (n) and, for  h = 1 . . . . .  k, let dh be defined by 
dh(u, v) = IIAhu - Ahvll2 for u, v �9 V. The following assertions are equivalent. 

(i) dl . . . . .  dk are linearly independent. 

(ii) Ar A1 . . . . ,  Ak r Ak are linearly independent. 

Proof: (i) =:~ (ii) Suppose that v '  < -  ~hATAh = 0 for some scalars oth's. Then, /-.~l<h g h 

(u -- V)r(y~q<h<_ko~hA~Ah)(U -- V) = O, i.e., Zl<h<kOthdh(U, 1)) = 0 for all u, o �9 V. 
Hence, Zl<h<k Olhdh : O, implying that oth = 0 for all h. 

(ii) =~ (i) Suppose that ZI<h<k Olhdh -~ O. Then, (u - o)T (ZI<_h<_k ahA~ Ah)(U -- v) = 0 
for all u, v �9 V. As V is full dimensional and contains the origin, we deduce from Lemma 
2.3 that Zl<h<k CthATAh ---- 0. Therefore, Oth = 0 for all h. [] 

2.2. The cone Cp 

By the considerations in Section 2.1, we are led to define the set Cp, which consists of  the 
n x n symmetric positive semidefinite matrices M that satisfy: 

(a) Y]. bubv(u - v ) rM(u  - v) = 0 for all b 6 .Ap, 
u,vEV 

(b) Y~. b.bo(u - v ) r M(u  - v) < 0 for all b �9 t3p\Ap. 
u,vEV 

(Recall the definition of  the sets Be, Ap from (2.1) and (2.2).) Hence, Cp is a closed cone, 
o 

whose relative interior Cp consists of  the symmetric positive definite matrices M that satisfy 
(a), and satisfy (b) with strict inequalities. As an immediate consequence of Corollary 2.7, 
the set To(P) defined in (1.4) can be rewritten as 

o 

To(P) = {A �9 GL(n) I AT A �9 Ce}. (2.9) 

We can express the dimension of  the cone Ce in terms of  the rank of P. Namely, 

Proposition 2.10 The dimension of  the cone Ce is equal to the rank of P. 

Proof: Let k denote the rank of  P and let p denote the dimension of  the cone Ce. As the 
face Fe has dimension k, we can find k linearly independent points dl . . . . .  dk lying in the 
relative interior of  Fp. By Theorem 2.4 (ii) and Corollary 2.7, there exist A 1 , . . . ,  Ak E 

o 

GL(n) such that ATAh E Cp and dh(u, v) = IIAhU -- Anvil 2 for u, v �9 V, h = 1 . . . . .  k. 
By Lemma 2.8, A~A1, . .  r �9 , A t Ak are linearly independent. This shows that k < p. Now, 
as the cone Cp has dimension p, we can find p linearly independent points Ml . . . . .  Mp in 
the relative interior of  Ce. Since Mh is positive definite, it has the form M h = A~Ah for 
some Ah �9 GL(n) ,  for h = 1 . . . . .  p. Then, the point dh defined from (2.5) using Ah lies in 
the relative interior of  Ft,, for h = 1 . . . . .  p. Moreover, dl . . . . .  dp are linearly independent 
by Lemma 2.8. This shows that p < k. Hence, we have the equality: p = k. [] 
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2.3. The homeomorphism 0 

We show here that Theorem 1.11 holds, i.e., that the dimension of the set 7-(P)/~., is equal 
to the rank of P. Recall from (1.5) that the set T(P) / "~  coincides with the set To(P)~ ~,  
where TO(P) is defined by relations (1.4) or (2.9). Consider the mapping 

A4n --~ PSDn 

A e--> ArA ,  

where A4n denotes the set o fn  • n matrices and PSDn the set o fn  x n positive semidefinite 
matrices. By definition of the equivalence relation "~ from (1.3), we have a bijection 

0 : Mn/"v  ---> PSDn 

e+ ArA ,  

where ,4 denotes the class of A e A4n in the quotient set A4n/~'. 

Lerarna 2.11 0 is a homeomorphism between the sets A/In~ ~ and PSDn. 

Proof: The mapping 0 is clearly continuous. We show that its inverse 0 - l  is also con- 
tinuous. For this, we show that the image 0(C) of any closed set C in A4n/~  is a closed 
set. Indeed, consider a sequence (Ai)iel~ of matrices of A4n for which the class .~i of A i in 
A4n/~" belongs to C for all i ~ N, and the sequence ((Ai)TAi)ieN is convergent, with limit 
M ~ PSDn. We show that M ~ O(C). As the sequence ((Ai)TAi)ieN is convergent, this 
implies easily that all the entries of the matrices A i (i E N) are bounded. Hence, we can find 
a convergent subsequence (A ij)/eN_of (Ai)ieN. Denote by A ~ A4n the limit of (A ij)jeN. 
Therefore, /~ belongs to C, since A'J e C for all j e N and C is closed. Moreover, the 
sequence ((A ij )T AiJ )yen converges to A r A, from which we deduce that 

M = ArA .  

This shows that M = 0(,4) belongs to O(C). [] 

o 

Corollary 2.12 The spaces To(P)~ ~ and C t, are homeomorphic, via the mapping O. 

Proof: This follows from Lemma 2.11, as the mapping 0 is one-to-one between the sets 
o 

To(P)~ ",, and Ce. [] 

Therefore, both sets To(P)~ "~ and Cp have the same dimension, which is equal to the 
rank of P, by Proposition 2.10. This concludes the Proof of Theorem 1.11. 

We conclude with two remarks. The first one illustrates the difficulties encountered when 
trying to compute the usual linear dimension of the quotient set T ( P ) / ~ .  The second one 
shows that, although 0 extends to a homeomorphism between the closure of the set q-(P)/"~ 
and the cone Ce, this yields no further result in terms of Delaunay transformations of P. 

R e m a r k  2.13 Quite naturally, one may wonder why we did not try to compute the usual 
linear dimension of the set 7-(P)/,,~ (i.e., its maximum number of linearly independent 
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points). It turns out however that this is not a well defined notion as it depends on the choice 
of  the representatives in the equivalence classes of  T ( P ) / ~ .  

To see it, consider again the case of  the square Y2 = [0, 1] 2 from Example 1.7. The 
1 1 

1 0 2 ~), and A 3 :=  ( ~1 ~ ) are Delaunay transformations matrices A~ : =  (0 2 ) '  A2 :=  (0 
v5 

of  7'2, which belong to distinct classes in the quotient set T ( y 2 ) / ~ .  Clearly, A3 is an 
orthogonal matrix, i.e., belongs to the same class as the identity matrix I .  Observe now 
that A1, A2, A3 are linearly independent, while the set {A1, A2, I} has rank 2. This shows 
that the rank depends on the representatives we use in each class. 

R e m a r k  2.14 The closure cl(To(P)) of the set T0(P) is defined by 

cI(TO(P)) = {A ~ .M,, I a r A ~ Cp}. 

As the mapping 0 is one-to-one between the sets c l (To(P)) /~  and Cp, we deduce that these 
two sets are homeomorphic. Therefore, the dimension of the set cl(To(P))/ '~ is also equal 
to the rank of  P .  Note, however, that the set cl(TO(P))/.-~ has no immediate interpretation 
in terms of  Delaunay transformations of  P.  In particular, the analogue of  (1.4) does not 
hold, i.e., it is not true that, for any A e .A4n, 

Ar A E Cp r A(P)  is a Delaunay polytope. 

For instance, take for P the unit square [0, 1] 2, with vertices v0 = (0, 0), Vl = (l ,  0), 

v2 = (0, 1), v3 = (1, 1), and let A :=  ( i  i )" Then, Avo = (0,0), Avl = Av2 = (1, 1), 

Av3 = (2, 2), and A(P)  is the segment [(0, 0), (2, 2)]. Hence, A(P)  is a Delaunay polytope, 
but the matrix ArA  does not belong to the cone Cp. Indeed, points of  Cp should satisfy 
the triangle equality: xv~o2 = xoov~ + Xvo~ (because dp satisfies it, as I lu l  - v2112 = 
IIv0 - o1112 + Iloo - u2112), bu t0  = IlAvl -- Av2112 ~ Ilmoo - AVlII 2 + liAr0 - Av2II 2 = 2. 
Conversely, if we choose for P an equilateral triangle and for A a transformation of  ]~2 
mapping P on a triangle with a right angle, then A(P)  is not a Delaunay polytope, while 
the matrix A r A  clearly belongs to the cone Cp. (In these examples, we use the fact that, for 
[VI < 4, the hypermetric c o n e  7-/iv I is defined by the triangle inequalities: x,,~, < xuw +Xou, 
for distinct u, v, w ~ V.) 
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