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Abstract 

A metric d is h-embeddable if it can be isometrically embedded in some hypercube. Equiva- 
lently, d is h-embeddable if d can be written as a nonnegative integer combination of cut metrics. 
The problem of testing h-embeddability is NP-complete (Chvbta!, 1980). A good characteriza- 
tion of h-embeddability permitting a polynomial-time algorithm was given for several classes of 
metrics, in particular, for metrics on n < 5 points (Deza, 1961), for path metrics of graphs 
(Djokovic, 1973), for metrics with values in { 1,2} (Assouad and Deza, 1980), for metrics on 
n 2 9 points with values in { 1,2,3} (Avis, 1990). We consider here generalized bipartite metrics, 
i.e., the metrics d for which d(i,j) = 2 for all distinct i,j E S or i, j E T for some bipartition (S, T) 
of the points. We characterize h-embeddable generalized bipartite metrics and derive a poly- 
nomial recognition algorithm. 

1. Introduction 

Given a finite set V := { 1, . . . , n} and a mapping d : V2 + R + , d is called a metric if it 

satisfies d(x, x) = 0, d(x, y) = d(y, x) for al! x, y E V and 

d(x,y) - d(x,z) - d(y,z) < 0 for al! x,y,z E V. (1.1) 

Note that zero distances between distinct points are allowed. (Hence, we use the word 

“metric” for denoting what is usually called a semimetric) QN := (0, l}N denotes the 

hypercube of dimension N. The Hamming distance between two binary vectors of QN is 
the number of positions where their coordinates differ. A metric d on V is said to be 

hypercube embeddable, h-embeddable for short, if their exist n vectors vl, . . . , v, E QN (for 

some integer N) such that d(x, y) is equal to the Hamming distance between vX, uY for 

all x,y E F’. Clearly, if x,y are distinct points of V at distance d(x, y) = 0, then the 

vectors v, and vY should coincide. Therefore, zero distances may be ignored when 

studying h-embeddable metrics. 
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It is an NP-complete problem to decide whether a metric is h-embeddable. In fact, 

this problem is already NP-complete when restricted to the class of metrics having 

a point at distance 3 from all other points and taking all their other values in (2,4,6) 

[S]. Nevertheless, several classes of metrics are known for which the hypercube 

embedding problem admits a good characterization yielding a polynomial-time 

algorithm. This is the case, in particular, for the following classes of metrics d: 

(a) d is a metric on n d 5 nodes [6,8], 

(b) d takes only the values 2,4 and some point is at distance 2 from all other points 

cn 
(c) d is the shortest path metric of a graph [12], 

(d) d takes only the values I,2 [ 11, 

(e) d is on n > 9 points and takes only the values 1,2,3 [3], 

(f) d is a metric whose extremal graph is either a complete graph on 4 nodes, or a cycle 

of length 5, or the union of two stars ([13], see precise definition of extremal graph 

there). 

In this paper, we extend the cases for which the hypercube embedding problem is 

polynomially solvable, namely to the class of generalized bipartite metrics. Given 

a partition of V into V = S u T, we consider the metrics d such that d(x, y) = 2 for all 

distinct x, y E S and all distinct x, y E T. We call such a metric a generalized bipartite 

metric. Note that the path metric of the complete bipartite graph with node bipartition 

(S, T) is indeed of this form (with d(x, y) = 1 for all (x, y) E S x T). For instance, every 

h-embeddable metric whose values are either odd or equal to 2 is a generalized 

bipartite metric (this includes the above cases (d),(e)). 

The problem of embedding metrics in the hypercube is related to the study of the 

cut cone in the following way. For any subset A of V, let 6(A) denote the cut metric, 

defined by S(A)(x,y) = 1 if JA n (x, y>\ = 1 and G(A)(x,y) = 0 otherwise. Clearly, 

6(A) = 6( V\A) holds. The cone generated by the 2*-l - 1 nonzero cut metrics is 

called the cut cone and is denoted by V”. In fact, W, consists of all the metrics on V that 

are I,-embeddable [2]. Recall that a metric d on V is said to be I,-embeddable if there 

exists n vectors ur, . . . . u, E IWN (for some N) such that d(x, y) = II u, - vy II for all 

x, y E V. For v E [W’, /I u I/ denotes its Ii-norm 1 1 shbN ~~~~;if~,v~{O,l}~,then~Iu-uI/ 

coincides with their Hamming distance. Similarly, h-embeddable metrics admit the 

following characterization. A metric d on V is h-embeddable if and only if d is 

a nonnegative integer combination of cut metrics, i.e, d = Cacvla6(A) for some 

AA E Z + . Therefore, every h-embeddable metric belongs to the cut cone V,, . Note that 

the problem of testing membership in the cut cone is also NP-complete [13]. (Several 

classes of facets of %?” are known, yielding necessary conditions for Ii-embeddability 

and thus for h-embeddability; see, e.g., [lo].) 

Let _Ym denote the cut lattice, consisting of all integer combinations of cut metrics. 

One can easily characterize the members of 2,. Namely, for d integral, d E 9, if and 

only if d satisfies the following condition, called the euen condition: 

d(x, y) + d(x, z) + d(y, z) is even for all x, y, z E V. (1.2) 



M. De-a, M. Laurent/ Discrete Applied Mathematics 56 (1995) 215-230 211 

Clearly, every h-embeddable metric on V belongs to the cut lattice, i.e., satisfies the 

even condition (1.2). In summary, we have the following implication: 

d is h-embeddable + d E %?,, n Lf’,,. 

This necessary condition is, in general, not sufficient. We will see in Remark 3.1 an 

example of a generalized bipartite metric on n 3 6 points which belongs to %?n n 9’” 

but is not h-embeddable. In contrast, for the classes (a)-(f) of metrics mentioned 

above, it was shown that membership in V?fl n 9, suffices for ensuring h-embeddabil- 

ity. (For the class (a), this result can be rephrased as saying that the family of cut 

metrics on n < 5 points is a Hilbert basis of the cone U,.) (In fact, the following 

stronger result was shown: within the classes (a)-(f), the even condition (1.2) and the 

hypermetric condition suffice for ensuring h-embeddability; see, e.g., [4, lo] for defini- 

tions.) 

The paper is organized as follows. In Section 2, we give a characterization of the 

generalized bipartite metrics that are h-embeddable. This characterization is then used 

in Section 3 for deriving a polynomial-time recognition algorithm. We give in the last 

Section 4 several additional results on h-embeddable metrics. In particular, we 

characterize h-embeddability within the class of metrics which admit a projection on 

all points but two that can be uniquely written as a positive combination of star cut 

metrics (see Propositions 4.5 and 4.10). 

We conclude this section with some preliminary results and definitions that we need 

in the remainder of the paper. 

Let d be a metric on V which is h-embeddable, i.e., can be decomposed as 

a nonnegative integer combination of cut metrics. Any such representation: 

d=x AcyAAK4 with iA E Z+, is called a Z.-realization of d. An h-embeddable 

metric is said to be rigid if it admits a unique Z.-realization (i.e., it has an essentially 

unique embedding in a hypercube). 

let II, denote the metric on V that takes the value 1 on each pair of distinct points. 

Given tl E Z+, the equidistant metric 2aQ,, which takes the value 2x on each pair of 

distinct points, is clearly h-embeddable. Indeed, 

2crll, = c G?S({x}) 
1 Cx$n 

is a 7+- realization of 2crQ,, called its star realization. The following result shows that, 

for n large enough, the metric 2x21, is rigid, i.e., the star realization is the only 

decomposition of 2ctQ, as a nonnegative integer sum of cut metrics. This result will 

play a crucial role in our treatment. 

Theorem 1.1 (Deza [7]), Zfn b ~1’ + LX + 3, then the metric 2ctQ, is rigid. 

For instance, the metric 211, is rigid for any n # 4. It is easy to see that 2Q4 

admits exactly two distinct Z.-realizations, namely, 2Q4 = x1 Gx.4 6({x)) = 

c ,,,,,~(il~X~). 



218 M. De--a, M. Laureni/ Discrete Applied Mathematics 56 (1995) 215-230 

We will also use the next theorem which gives an asymptotic result about the 

rigidity of the more general class of metrics of the form: ~ldxdn~x~({~}) with 

a,, . . . . ~1, positive integers. It is a reformulation of Theorem 7(i) from [9]. 

Theorem 1.2. Consider the metric d = 1 1 Gxsn cr,h( { x} ) where cxl, . . . , cx, are positive 

integers. If n is large with respect to max(cc,, . . . . a,), then d is rigid. 

2. The structure of h-embeddable generalized bipartite metrics 

In this section, we characterize the generalized bipartite metrics that are h-embedd- 

able. For this, we completely describe the structure of their distance matrices and we 

shall use it in the next section in order to derive a polynomial recognition algorithm. 

Let d be a generalized bipartite metric on V = { 1, . . . , n} with bipartition (S, T), i.e., 

d(x, y) = 2 for all (x, y) E S2 u T2 with x # y. Let D denote the 1 SI x 1 TI matrix with 

entries d(x, y) for x E S, y E T; D is called the (S, T)-distance matrix of d. We start with 

an easy observation. 

Lemma 2.1. Let d be a generalized bipartite metric with bipartition (S, T). If d is 

h-embeddable, then there exists an integer LX such that d(x, y) E (a, a + 2, c1+ 4) for all 

(x,y)~SxT. 

Proof. Let c(, /? denote the smallest and largest value taken by d(x, y) for (x, y) E S x T; 

say CI = d(x, y), B = d(x’, y’) for x,x’ E S, y, y’ E T. Using the metric condition (l.l), we 

obtain that b = d(x’, y’) < d(x’, x) + d(x, y) + d(y, y’) < 4 + IX. Moreover, CC, b have the 

same parity by (1.2). 0 

Set s := ) Sl and t := I TI. Let ds (resp. dT) denote the projection of d on S x S (resp. on 

T x T). Then, ds = 211, and dr = 211,. The main idea is based on the following simple 

observation. If d = CAEVAAB(A) is a Z+-realization of d, then its projection on S, 

namely CAZV AA&,4 n S), is a Z.-realization of ds. Similarly, its projection on T is 

a b + -realization of dr. Recall that 211, is rigid for all n # 4. Therefore, ifs # 4, then the 

realization 1 aCvjlA6(A n S) of ds must be the star realization, i.e., it must coincide 

with CXps 6( {x}). Recall also that the metric 21 4 has two realizations, namely, the star 

realization: 1 1 sx 6 4 6( {x}) and the special realization: 6( { 1,2}) + 6( { 1,3}) + 6( { 1,4}). 

Therefore, ifs = 4, we have two alternatives for the realization CAEV 1,6(A n S) of ds. 

The same reasoning applies for dr. 

The following definitions willbe useful in the sequel. A B.-realization of d is called 

a star-star realization if both its projections on S2 and on T2 are the star realizations 

of 211, and 2ll,, respectively. A realization of d is called a star-special realization if its 

projection on S2 is the star realization of 2ll,, but t = 4 and its projection on T2 is the 

special realization of 211,. Finally, a realization of d is called a special-special realization 

if s = t = 4 and both its projections on S2 and T2 are the special realization of 2f4. 
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In the following, we analyze the structure of the h-embeddable generalized bipartite 

metrics. For this, we distinguish the cases when a star-star, or a star-special, or 

a special-special realization exists. 

Proposition 2.2. Let d be a generalized bipartite metric with bipartition (S, T). Then, 

d admits a star-star realization ifand only if there exist a partition {A, B, C, D} of S and 

a partition {A’, B’, C’, D’} of T (with possibly empty members) with 1 Al = 1 A’ 1 and 

1 BI = 1 B’ I and there exist one-to-one mappings cr : A + A’ and z : B + B’ and an integer 
f 2 IBI + IDI + ID’1 such that 

[f for (x,y)~((AuC)x(B’uD’))u((BuD)x(A’uC’)) 

d(x,y) = 
u ((Mz))lz E A} u {k~(z))lz E B) 7 

f+2 fir (~,y)~((AuC)x(A’uC’))\{(z,~lz))lz~A}, 
(2.1) 

f- 2 for (x,y) E ((B u D)x(B’ u D’))\((z,+))Iz E B). 

Fig. 1 shows the (S, T)-distance matrix of the metric d defined by (2.1). We use the 

following notation in Fig. 1 and in the next figures: I, denotes the a x a identity matrix, 

J, the a x a all ones matrix, and a block marked, say, withf; has all its entries equal to 

f: As a rule, we denote the cardinality of a set by the same lower-case letter; e.g., 

a = I AJ, a’ = IA’I, etc. 

Proof of Proposition 2.2. Let d be a generalized bipartite metric admitting a star-star 

realization: d = CUE4 S(U), where 4% is a collection (allowing repetition) on nonempty 
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a b c d c’ d’ m 

0 

Fig. 2 

subsets of V. Hence, 1 U n SI E {O,s, 1, s - l> and 1 U n TI E 10, t, 1, r - 1) for all 

U E %!. We can suppose without loss of generality that IU n SI E {O, 11 for all U E a. 

Let M denote the matrix whose columns are the incidence vectors of the members of 

“u. Combining the above-mentioned two possibilities for iJ n S with the four possibil- 

ities for CJ n T, we obtain that M has the form shown in Fig. 2. Hence the sets 

A, B, C, D and A’, B’. C’. D’ form the desired partitions of S and T. We can now 

compute ci(.u,~x) for (s, ~a) E S x T and verify that they satisfy relation (2.1), after setting 

f:= IBI + IDI + ID’1 + 111. 

Conversely, suppose that rl is defined by (2.1). Set A = {xl, . . ..xlAl} and 

B = {VI, . . ..L’[Bl J. ’ One can easily check that rl satisfies: 

d= 1 G((Xi>G(.Yi)))+ C cj(T”\,(T(?‘i)) u [J’i))+ C s({X}) 
l$iGlAl I <i<l81 XECUC 

+ c 6(Tu ix)) + 1 (i(T\‘,.x;) + (,f‘- IBJ - ID/ - lD’I)S(T). 
XGD XED’ 

This realization is clearly a star-star realization. Cl 

Proposition 2.3. Let d be u yeneralized bipartite metric with bipartition (S, T) and 

suppose 1 TI = 4. Then, d admits a star-special realization if and only if there exist 

a partition (A, B, C, D] oj’S and a partition {A’, B’, C’, D’, E’] of T (with possibly empty 
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members) with JA 1 = IA’I, IllI = IB’I crnd I E’( = 1 and there exist one-to-one mappings 
CJ: A + A’ and t : B -+ B’ and nonncgatiw integers ,J g, m such that 

f= IBI + ID + ID’1 + m, 

g=IAI+IDI+IC’I+,I?-1, 

d(x,y) = ’ 
jiw (s, y) E (A u D) x E’ , 

9 + 2 ,fijr (s, y) E (B u C) x E’, 
(2.2) 

with the values d(x, Jl).fbr (.Y. J,) E S x (T\E’) bring gil;en hy (2.1). 

Proof. Suppose that tl is given by (2.1) and (2.2). Set A = {x1, . . . . xlA,), 

B= tv 1, . . . . yIB,) and E’ = (:‘I. Then (I admits the following star-special realization: 

(x d = c 6((Si,C(.Y~).Z’~) + c ii(T’,, (T(j’;),:‘) u [vi)) + c 8( 
I Qidl.4 I Ci<lH XEC 

+ C &(.Y,:‘)) + C ii(Tu (.Y)) + C 6(7-j ;.Y,z’)) + d(T). 

xeC’ SE 0 *ED 

1, 

Conversely, suppose that d admits a star-special realization: 1 r,E,S(U), for some 

collection %! (allowing repetition) of nonempty subsets of V. Let M denote the matrix 

whose columns are the incidence vectors of the members of f#‘, let Z’ E T, and let M’ 

denote the submatrix of M obtained by deleting its Y-row. The projection of d on 

T\ (z’j is the rigid metric 2Q.J. Therefore. by the proof of Proposition 2.2, the matrix 

M’ has the form shown in Fig. 2. By assumption, we have the special realization of 2Q4 

on T, i.e., I U n TI = 0.2, or 4 for all ii E JM. This observation permits us to determine 

the z’-row of M. Namely, it has the following form (keeping the notation of Fig. 2.): 

One can now verify that ti satisfies (2.1) and (2.2), after setting,f= h + d + d’ + m and 

g=a+d+c’+nz- 1. 0 

As a consequence of Proposition 2.3, we deduce that any generalized bipartite 

metric admitting a star-special realization takes, besides the value 2, the following 

three values: 

0 f;f+ 2,f+ 4 if a + c’ = 3, i.e., y =,/‘+ 2, 

0 f- 4,f- 2,fif a + c’ = 0, i.e., ~1 =,/‘- 4, 

0 f- 2,Jf+ 2 if a + c’ = 2, (i.e., Q =.f’), or if a + c’ = 1 (i.e., g =f- 2). 

One can also characterize the generalized bipartite metrics with bipartition (S, T), 
JSI = I TI = 4, that admit a special-special realization. This characterization is ana- 

logous to that of Proposition 2.3 for the star-special case. We state the result without 

proof. 
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Proposition 2.4. Let d be a generalized bipartite metric with bipartition (S, T) and 
suppose that ISI = 1 T( = 4. Then, d admits a special-special realization if and only if 

there exist a partition {A, B, C, D, E} of S and a partition (A’, B’, C’, D’, E’} of T (with 
possibly empty members) with 1 Al = 1 A’[, (B 1 = I B’I and I E 1 = I E’I = 1 and there exist 

one-to-one mappings o : A + A’ and z : B + B’ and nonnegative integersf, g, h, i, m such 

that f= IBI + IDI + ID’1 + m, 

g = IAl + IDJ + ICI + m - 1, 

h = IAl + ICI + ID’1 + m - 1, 

i=JBI+ICI+IC’I+m, 

h for XEE, ~EA’uD’, 

h+2 for XEE, ~EB’uC’, 

i for XEE, GEE’, 

(2.3) 

with the values d(x, y) for (x, y) E (S\ E) x T being given by (2.1) and (2.2). 

In fact, using the fact that IS\El = I T\E’I = 3, we can explicitely describe the 

generalized bipartite metrics admitting a special-special realization. There are 50 

possibilities for the sequence (a, b, c, d, c’, d’). Up to permutation on S and T, this gives 

9 possibilities for the (S, T)-distance matrix. For example, the two parameter sequences 

(2,0,1,0,0,1) and (2,0,0,1,1,0) give, respectively, (f;g,h,i)=(l,1,3,1), (1,3,1,1); one 

can see easily that the corresponding (S, T)-distance matrices are identical up to 

permutation of the rows and columns. We display in Fig. 3 all the nine distinct 

(S, T)-distance matrices for generalized bipartite metrics admitting a special-special 

realization; note that we have substracted the value m from all the entries. 

3. Recognition of h-embeddable generalized bipartite metrics 

In this section, we see that generalized bipartite metrics can be tested for h- 

embeddability in polynomial time. Let d be a generalized bipartite metric with 

bipartition (S, T). In order to check whether d is h-embeddable, one must check 

whether d admits a star-star, or a star-special, or a special-special realization. 

Clearly, if s, t # 4, then only the first situation can occur and the last situation can 

occur only ifs = t = 4. In view of Propositions 2.2-2.4, this amounts to check whether 

d is of the form indicated in (2.1), (2.2) or (2.3). It is quite clear that this can be done in 

polynomial time. Actually, it can be done in 0(n2) if d is on n points. Though there 

is no real conceptual difficulty, we give nevertheless, for the sake of completeness, 

a brief account of the algorithm. 



M. De-a, M. Laurent/ Discrete Applied Mathematics 56 (1995) 215-230 223 

4 2 2 2’ 
4 2 2 2 

2 2 2 01 

2 2 2 4 
2 2 2 4 

2 2 2 4 
4 4 4 6 

Fig. 3. 

1 1 1 3 
1 3 3 3 
1 3 3 3 
3 3 3 5 

0 2 2 2 
2 0 2 2 
2 2 2 4 

2 2 4 2 

3 3 3 1 

3 3 3 1 

3 3 3 1 

5 5 5 3 

The description from Proposition 2.2 enables us to design a polynomial algorithm 

for testing whether a generalized bipartite metric has a star-star realization and 

finding such a realization if one exists. Let d be a generalized bipartite metric. We 

consider three cases. 

Case 1: d(x, y) = x for all (x,y) E S x 7’( for some x E Z.). Suppose first that 2 = 1. 

If 1 TI = 1, then d = C,,,6( (.Y)) is a star-star realization of d. If ISI = / TI = 2, 

S = j1,2), T= j3,4), then d = 6( j1,3)) + li( (1,4j) is a star-star realization of d. 

Otherwise ISI 3 3, I TI 3 2 and then d is not h-embeddable (since d does not belong to 

the cut cone). If x 3 2, then d = CltV (5( (.Y) ) + (x - Z)ii(T) is a star-star realization 

of d. 
Case 2: d(x,y) takes the two values X,Y + 2 for (s..t) ES x T (for some z E 77.). 

Suppose that d has a star-star realization, i.e., its distance matrix is of the form shown 

in Fig. 1. Then, one of x, r + 2 is equal to the value,/‘from Proposition 2.2. Suppose 

tl =f(the case c( + 2 =,fis similar). Note that one of the following two conditions 

holds: either (i) B = B’ = 8 and D’ = 0 (or D = 0) or (ii) IBI = [B’l = 1 and 

D = D’ = 0. Let H = ( VH, E,,) (resp. K = ( Vh, E,)) denote the graph whose edges are 

the pairs (x, y) E S x T such that d(s, y) = ,I’ (resp.,f‘+ 2). Up to permutation of S and T, 

at least one of the following is true: 

(a) H is a matching of size ISI = I TI ( in which case A = S and A’ = T), 
(b) H contains a complete bipartite subgraph with parts S’ c S and T, 

(c) H contains a complete bipartite subgraph with parts S’ c S and T, and a complete 

bipartite subgraph with parts T’ c T and S, 

(d) K contains a complete bipartite subgraph with parts S” E S and T. 
(For example in the above case (ii), (c) occurs with 1 < IS’1 < 2 and 1 < IT’1 < 2; 

moreover, if IS’1 = 2 then IT’1 = 1, I TI = 2 and d has indeed a star-star realization 

with A’ = T\ T’, B’ = T’, A u B = S’, C = S\ S’, C’ = 0.) We choose the maximal 
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such sets S’, S”, T’. Then, it remains only to discuss a small (in O(1)) number of cases. 

We leave out the details. 

Case 3: d(x, y) takes the three values c1 - 2,a,a + 2 for (x, y) E S x T (for some 

a E Z, ). Suppose that d has a star-star realization. Then, a is equal to the valueffrom 

Proposition 2.2. Let H = ( VH, EH) (resp. K = ( VK, EK)) denote the graph whose edges 

are the pairs (x, y) E S x T such that d(x, y) =f- 2 (resp.f+ 2). Then VH and VK are 

disjoint, VH n (A u C v A’ v C’) = 8, V, c B v D v B’ u D’, and the edges 

e = (x, y) not belonging to H with x,y E V, form a matching and satisfy d(x, y) =J 

Similarly for K. Note that if an element x belongs to B u D\ VH or to A u C\ V, then 

d(x,y) =f for all y E T. Setting S, := {x E SI d(x,y) =f for all y E T}, then 

V, A S = B u D and V, n S = A u C whenever S, = 0. Defining similarly the set T,, 

we have V,, = B u D u B’ u D’ and VK = A u C u A’ u c’ whenever both S, and 

T, are empty. If this is the case, then the properties mentioned above permit us to 

determine the sets A, B, C, D, A’, B’, C’, D’ and to conclude the verification for d. Note, 

moreover, that S, n (C u D) = T, n (C’ u D’) = 8, and IAl = 1, C’ = 8 if 

Sf n A # 0, and IB( = 1, D’ = 8 if S, n B # 8. Hence, (S,(, (T,( < 2. Based on these 

observations, one can describe all possible cases (whose number is clearly in 0( 1)) and 

conclude the verification for d. 

One can check whether d has a star-special realization in the following way. 

Suppose 1 TI = 4. Let z’ E T and let d’ denote the restriction of d to the set V\{z’}. If 

d has a star-special realization then d’ has a star-star realization. We see easily that 

there are O(1) possible star-star realizations for d’ and all of them can be found in 

polynomial time. One then checks whether they can be extended to a star-special 

realization of d. 
Finally, one can verify trivially whether d has a special-special realization. Indeed, 

this is the case if and only if, for some m E 7,) the (S, T)-distance matrix of the metric 

d - r&(T) is one of the nine matrices from Fig. 3 (up to permutation on S and T). 

In conclusion, we have shown that one can test in polynomial time whether 

a generalized bipartite metric is h-embeddable. 

Remark 3.1. We give an example of a generalized bipartite metric on n 2 6 points 

which is not h-embeddable, but belongs to the cut lattice _Y’,, and to the cut cone $?‘,,. 

Given an integer k 3 5, we consider the metric dzk defined on 2k points by: 

dzk(iri + k) = 4 for any 1 < i 6 k and dzk(i, j) = 2 for all other pairs (i, j), 

1 < i #j < 2k. Hence, dzk is a generalized bipartite metric with bipartition 

((192, ,**, k},(k + 1,k + 2, . . . . 2k)). (Note that $dzk is the path metric of the l-skeleton 

of the k-dimensional cross polytope Pk, which is defined as the convex hull of the 2k 
vectors + ei (1 d i < k), where el, . . ., ek are the unit vectors in Rk.) It is an easy 

exercise to verify, for instance using the above procedure, that dzk is not h-embedd- 

able. On the other hand, one verifies easily that dzk belongs to the cut cone %:2k. 

Indeed, for some a, take a Z.-realization &s(S) of 2aQk such that N := IAs < 4a 
(e.g., consider IS(S), where the sum is taken over all subsets S of { 1, . . . . k} of 

cardinality Lk/2J). Then, C&&S u {i + k: i $ Sj) + (4a - N)G(jk + 1, . . ..2k}) = 
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xdZk. Let d, denote the projection of dzk on the first n elements of the set { 1, . . . ,2k} for 

1 < n < 2k. One can also verify that d, is not h-embeddable if k + 1 d n d 2k, while 

d, belongs to %,, n _cZ’~. (Note that, for n = k + 1, id,, is the path metric of the 

complete graph K, with one deleted edge.) This example was first given in [l]. 

4. Some more results on h-embeddable metrics 

In this section we give additional results on hypercube embedding that are obtained 

by application of some extension of the method used in the preceeding sections for 

studying generalized bipartite metrics. 

Let d be a metric on V. Suppose that there exists a bipartition (S, T) of V such that 

the projections ds and dT of d on S and Tare of the form: 

ds = C ~A{x)), 4 = C BACx>) 
XSS xeT 

for some positive integers ax, pX. From Theorem 1.2, we know that ds and dT are rigid 

if lS[ is big enough with respect to max xeS~, and 1 TI is big enough with respect to 

max,../I,. So, theoretically, one could use the same technique as the one used in 

Proposition 2.2 for studying h-embeddability of these metrics. However, a precise 

analysis of the structure of the distance matrix of such metrics seems technically much 

more involved than in the case where all CI,, fix are equal to 1, considered in Section 2. 

The next simplest case to consider after the case of generalized bipartite metrics 

would be the class of metrics d for which d(x, y) = 4 for x # y E S and d(x, y) = 2 for 

x # y E T (i.e., all CI,‘s are equal to 2 and all BX’s to 1). One can characterize 

h-embeddability of these metrics by a similar reasoning as was applied to generalized 

bipartite metrics in Section 2 and, as a consequence, recognize them in polynomial 

time. Indeed, the metric 4Q, is rigid for n = 3 and n 2 9 and has exactly three 

Z +-realizations: its star realization and two special ones for each n E { 4,5,6,7, S} [ 111. 

We do not give the details. 

In the following, we give a complete characterization of h-embeddability for the 

metrics satisfying (4.1) in the case 1 TI < 2. We first consider the case I TI = 1. We 

introduce some notation. 

Let d be defined on the set { 1, . . . . n,n + 1) and let /?,clX E Z for x E S := (1, . . . . n}. 

For x E S, set 

ox := - ;( Cdb,n+ W.,) 
YES 

- 9 (d(x,n + 1) - a,), 

d(x, n + 1) - d(y, n + 1) + d(x, y) 

I > 

(4.4) 

r := min 
2 

x#yeS . 
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Proposition 4.1. Let d be a metric one the set V := { 1, . . . , n, n + l} which satisfies the 

even condition (1.2). Suppose that the projection ds of d on the subset S := f 1, . . . , n> 

satisjies: ds = C 16x6n~x6({~})for some positive integers tlI, . . ..cI. and that ds is rigid. 

Then, d is h-embeddable if and only ifo, 2 0 for all x E S. Moreover, the Z + -realizations 

of d are all the realizations of the form: 

d = B&in + 1)) + c PA(x,n + 11) + (a, - PJS({x}), 
XES 

(4.5) 

where /IX (x E S) are given by (4.3) and B is a nonnegative integer satisfying 

0-P 
a-(n-2)r</?<o and ~ 

n-2 
EZ (4.6) 

(with O, ox, z being given by (4.2), (4.4)). In particular, d is rigid whenever d satisJies some 

inequality (1.1) at equality. 

Proof. Suppose first that d is h-embeddable. Let CUE* 6(U) be a Z+-realization of d. 

Its projection on S is a Z +-realization of the metric ds = CXEsc1,6( lx}), assumed to be 

rigid. Hence, the sets U n S are the singletons {x} for x E S, each repeated X, times, 

and the empty set repeated, say B times. Denote by fix the number of sets U E % for 

which U n S = {x} and n + 1 E U. Then, the realization c,,,S(U) can be rewritten 

as (4.5). Hence, d(x,n + 1) = B + a, - 2pX + CyeS/$, from which we obtain 

0, = p + (n - 2)/3,. 

This shows that 6, 3 0, 0 > B, and (4.3). We check that p 2 0 - (n - 2)~. For this, 

note that, for x,x’ E S, 

0, - 6,, 
p= 

n-2 
i(d(x’, n + 1) - d(x,n + 1) - d(x,x’)) + c(,. 

Note also the identity: 

i(d(x, n + 1) - d( y, n + 1) + d(x, y)) = CI, - PX + /3,. 

Therefore, there exist x0 # y, E S such that 

(4.7) 

Hence, 7 > (0 - P)/(n - 2) and (a - P)/(n - 2) E B by (4.7). 

Conversely, suppose that ox 2 0 for all x E S, where the b,‘s are given by (4.2). As cX 

can be rewritten as 

cX = (n - l)a, + d(x,n + 1) + 1 i(d(y,n + 1) - d(x,n + 1) - d(x,y)), 
YES 

we deduce that gX is an integer. Let @ be a nonnegative integer satisfying (4.6) (note 

that one can always choose fi = G) and let pX, 6, z be defined by (4.3) and (4.4). We 

show that (4.5) is a Z.-realization of d. Clearly, /3x 3 0. Choosing x’ E S such that 
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rrX, = (r, we deduce from (4.8) that (0, - o)/(n - 2) E Z and (a, - o)/(n - 2) 

< - z + CL,. Therefore, /3x = (a, - /I)/(n - 2) = (0, - a)/(n - 2) + (C - P)/(n - 2) 

E Z and /IX 6 CC,. Finally, we check that (4.5) holds. The distances between pairs of 

points of S agree clearly and it is not difficult to check that 

p + c /3, + CC, - 2px = d(x, a + 1). 
YES 

Hence, we have shown that d is h-embeddable and that all its Z.-realizations are as 

indicated in Proposition 4.1. In particular, if d satisfies an inequality (1.1) at equality, 

then r = 0 which implies that /I = CJ and thus all /IX are uniquely determined. Hence, 

d is rigid. 0 

The following result can be deduced as an application of Proposition 4.1. 

Corollary 4.2. Let d be defined on the set V = { 1, . . ..n. n + l}. Suppose that its 

projection ds on the subset S := {l, . . ..n} satisfies ds = ~lCxgn~xS({~}) for some 

positive integers a1, . . . , ct, and that ds is rigid. Set p := d(1, n + 1) and suppose that 

d(x,n + 1) = /? - d(l,x)for 2 < x < n. 

(i) d satisfies the metric condition (1.1) if and only if 

p > a, + max(cc, + tlY: 2 d x < y d n). 

(ii) d satisfies the even condition (1.2) if and only if /I is an integer. 

(iii) d is h-embeddable tfand only if/I is an integer and /? 3 CXcs cr,; moreover, d is rigid. 

Let us now turn to an analogue of Proposition 4.1 for the case 1 TI = 2. Let d be defined 

on the set V:= {l,..., n, n + 1, n + 2). let d,,d’,d” denote the projections of d on the 

subsets S := (1, . . ..n}. S u {n + l}, S u {n + 23, respectively. We suppose that 

ds = C,,sd({x)) f or some positive integers ax, and that ds is rigid. Hence, we can apply 

Proposition 4.1 for testing h-embeddability of d’ and d”. Let CJ~,~~,CJ’,T’ be defined by 

relations (4.2)-(4.4) (where b’ is to be determined) when considering the metric d’ instead 

of d. Similarly, let ~~i,B!,cr”,z” be defined by (4244.4) (where P,, is to be determined) 

when considering the metric d” instead of d and the point n + 2 instead of n + 1. 

Proposition 4.3. Let d be a metric on V := { 1, . . . , n, n + 1, n + 2) that satisfies the even 

condition (1.2). Suppose that its projection ds on the subset S := { 1, . . . , n} is of the form: 

ds = Cxss ~d({x>) f or some positive integers c(, and that ds is rigid. Then d is h- 

embeddable if and only if(i), (ii) hold. 

(i) The projection d’ (resp. d”) of d on S u {n + 1) (resp. on S u {n + 2)) is h-embedd- 

able. 

(ii) 

i 

d(n + l,n + 2) 6 B’ + p” + Cxesmin(P: + P:),~cI~ - P: - Pi), 

d(n + 1,n + 2) > max(/I’,P”) - min(p’,/I”) + Cxesrnax(/I:,/I::) - min(P;,PJ!), 

where /I’,/?” are nonnegative integers satisfying o’ - (n - 2)~’ < fl’ < o’, 

(a’ - /?‘)/(n - 2) E Z and o” - (n - 2)~” d /I” d a”, (o” - fY)/(n - 2) E Z. 
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Proof. Suppose that d is h-embeddable. Then, a Z.-realization of d is of the 

form: 

d = C yA{x)) + yN{x,n + 13, + YX{W + 23) 
XES 

+ y’S({n f 1)) + y’V({n + 2)) + $({n f 1,n + 2)), 

where all the coefficients are nonnegative integers, We obtain the following decompo- 

sition for d’: 

d’ = (Y + y’)Wn + 11) + c (yx + YW(CX)) + (a, - yx - ~:‘b’Wv + l>,- 
XES 

Comparing with (4.9, we deduce that /?’ := y + y’ satisfies (4.6), and p: = CI, - yX - y; 

for x E S. Similarly, when considering d “, we obtain that #I” := y + y” satisfies (4.6), and 

j?c = CL, - yX - 7: for x E S. Therefore, 

d(n + 1,n + 2) = y’ + y” + c (y: + y:‘) 
XSS 

=P’+/Y-2y+ C(2c(,-2y,-B:-p;). 
XOS 

As max(/3:,/?:‘) - min(/?:,B[:) < 2c(, - 2y, - /?: - /?:’ < min(/?: + /?:1,2c1, - fl: - /I:‘) 

(since yX, y:, JJ:’ > 0 and LX, > yX + y: + yi) and max (p’, /3”) - min( p’, p”) < 

p’ + p” - 2y d fi’ + p” ( since y, y’, y” 3 0), we deduce that (ii) holds. 

Conversely, suppose that (i), (ii) hold. Then, we can write 

d(n + 1,n + 2) = B + 1 B, 
XOS 

where B, B, are chosen in the following way: B has the same parity as j?’ -t fl” and 

satisfies 

max( p’, 8”) - min( /?‘J?“) < B < j’ + p” 

and, for x E S, B, has the same parity as /3: + /?:’ and satisfies 

max(K, K) - min(k p:‘) d B, G min(& + fi;, 2ct, - p: - (3;). 

For x E S set 

a .= P: + 8:: - Bx 
X’ 

2 

d .= 24 - P: - P; - B, 
’ x’ 2 ’ 

b .= 6x + P: - P: B, + P:: - P: 
XV 

2 ’ cx:= 2 



M. Deza, M. Laurent/ Discrete Applied Mathematics 56 (1995) 215-230 229 

and set 

a := P’ + B” - B 
2 ’ 

b .= /3’ - B” + I.3 
. 2 7 

c .= B” - P’ + B 
. 2 . 

Hence, a,, b,, c,, d,, a, b, c are nonnegative integers. One can easily check that 

d = 
( 

c a,K{x,n + l,n + 23) +b,&{x,n + l}) + c,G({x,n + 2}) + d,J({x}) 
XSS 

+ a6({n + 1,n + 2)) + b6({n + l}, + c6({n + 2)), 

which shows that d is h-embeddable. 0 

Finally, let us consider the class of metrics taking their values in { 1,2cr, 2~ + 1) for 

some integer tl> 2. The case CI = 1 was studied in [3] and the case o! > 2 can be easily 

settled as follows. 

Proposition 4.4. Assume d takes all its values in { 1,2cr, 2a + 1} for some integer o! > 2. 

Then, d is h-embeddable ifand only ifd satisfies the metric condition (1.1) and the even 

condition (1.2). 

Recently, h-embeddability was characterized within the class of metrics taking their 

values in (01, P, CI + fl}, w h ere cx, j? are nonnegative integers such that at least one of LX, /I, 

or c1 + B is odd, yielding a polynomial recognition algorithm [14]. 
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