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Chapter 1

Introduction

Extreme value theory is the part of probability and statistics that provides the

theoretical background for modeling events that almost never happen. The inter-

est in these events originates from their potentially large consequences, like in a

case of a big flood or a stock market crash. Examples of extreme events come from

fields such as meteorology (floods, wind storms, heavy rainfall, large scale forest

fires), finance, non-life insurance and re-insurance, internet page ranking, athlet-

ics, etc., see de Haan (1990); Rootzén and Tajvidi (1995); Perrin, Rootzén, and

Taesler (2006); Katz, Parlange, and Naveau (2002); Vrac and Naveau (2007); Ané

and Kharoubi (2003); Embrechts, Klüppelberg, and Mikosch (1997); Volkovich

(2009); Einmahl and Magnus (2008).

Over the past decades, extreme value theory, univariate as well as multivariate,

has become widely used, known and studied. Some of the useful monographs that

have facilitated that progress are: Resnick (1987); Embrechts, Klüppelberg, and

Mikosch (1997); Coles (2001); Beirlant, Goegebeur, Segers, and Teugels (2004);

Falk, Hüsler, and Reiss (2004); de Haan and Ferreira (2006); Resnick (2007).

In this introduction the core ideas in extreme value theory are presented, with

the focus on the notions needed in the thesis. We conclude with an overview of

the thesis.
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Chapter 1. Introduction 2

1.1 Univariate extreme value theory

The theory of extreme values was inspired by the following question: “What hap-

pens with the limit distribution in the central limit theorem when the sequence

of partial sums is replaced by the sequence of partial maxima?”. Consider a ran-

dom sample X1, . . . , Xn from a distribution function F . By a generalization of

the central limit theorem we know that if there exists a sequence (sn) of positive

numbers and a sequence (mn) of real numbers such that

∑n
i=1Xi −mn

sn

d→ Z, as n→ ∞,

then Z is a random variable with a stable distribution. Extreme value theory

establishes under which conditions on F there exists a sequence (an) of positive

numbers and a sequence (bn) of real numbers such that as n→ ∞,

maxi=1,...,nXi − bn
an

d→ Y,

where the distribution of Y is non-degenerate; and it describes the possible dis-

tributions of Y .

If there exists a sequence (an) of positive numbers and (bn) of real numbers such

that

P

(

maxi=1...,nXi − bn
an

≤ x

)

= F n (anx+ bn) → G(x), as n→ ∞, (1.1.1)

for every continuity point of G, we say that F is in the max-domain of attraction

of G, and call G an extreme value distribution. The class of extreme value dis-

tributions was first described in Fisher and Tippet (1928) and Gnedenko (1943).

It holds that there exist γ ∈ R, a > 0 and b ∈ R such that G(x) = Gγ(ax + b),

where

Gγ(x) =







exp{−(1 + γx)−1/γ}, if 1 + γx > 0 and γ ∈ R \ {0},

exp{−e−x}, if γ = 0.

The above parametrization is from von Mises (1936).
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Up to location and scale, extreme value distributions form a single-parameter

family. The parameter γ is called the extreme value index. We distinguish three

different subclasses of extreme value distributions.

• If γ > 0, the sequences (an) and (bn) can be chosen such that G has a

Fréchet(1/γ) distribution, G(x) = exp{−x−1/γ}, for x > 0; the right end-

point of F is ∞. Examples of distributions in the max-domain of attraction

of such G are the Student and Pareto distributions.

• If γ = 0, the sequences (an) and (bn) can be chosen such that G has a

Gumbel distribution, G(x) = exp{− exp{−x}}; the right end-point can be

finite or infinite, and examples of distributions in this domain of attraction

are the exponential and normal distributions.

• If γ < 0, the sequences (an) and (bn) can be chosen such that G has a

reverse Weibull(−1/γ) distribution, G(x) = exp{−(−x)−1/γ}, for x < 0;

the right end-point of F is finite. The uniform or, in general, Beta distri-

butions are examples of distributions in the max-domain of attraction of

an extreme value distribution with a negative γ.

The max-domain of attraction condition (1.1.1) provides a (limit) model for

the upper tail of a distribution and is used when dealing with the applications

mentioned above. The estimation of γ is crucial, and several estimators of γ

have been constructed. The most famous ones are the Hill (1975) estimator, the

moment estimator as in Dekkers, Einmahl, and de Haan (1989), the Pickands

(1975) estimator and the maximum likelihood estimator as in Smith (1987).

Inference is based on the top k (out of n) order statistics only, k ∈ {1, . . . , n},
and the choice of this optimal sample fraction is a difficult issue in statistics of

extremes. Several procedures for the choice of k have been suggested, see for

example Dekkers and de Haan (1993); Drees and Kaufmann (1998); Danielsson,

de Haan, Peng, and de Vries (2002); Gomes and Oliveira (2002).
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1.2 Multivariate extreme value theory

The max-domain of attraction condition in the multivariate setting determines

the limit distribution of the componentwise maxima of random vectors. Let

X1, . . . , Xn be a random sample from a continuous d-variate distribution func-

tion F , Xi = (Xi1, . . . , Xid), i = 1, . . . , n. If there exist positive sequences

(an,1), . . . , (an,d) and sequences (bn,1), . . . , (bn,d) of real numbers such that as

n→ ∞,

F n(an,1x1 + bn,1, . . . , an,dxd + bn,d) → G(x) (1.2.1)

for every continuity point x := (x1, . . . , xd) of G, we say that F is in the max-

domain of attraction of G, and we call G a (multivariate) extreme value distri-

bution. Unlike in the univariate case, the family of multivariate extreme value

distributions does not allow for a finite-dimensional parametrization.

Let F1, . . . , Fd be the marginals of F . The multivariate max-domain of attrac-

tion condition implies d univariate max-domain of attraction conditions for the

marginal distributions, together with a max-domain of attraction condition for

the dependence structure. Namely, (1.2.1) implies the existence of the limit

lim
t↓0

t−1
P (1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd) =: l(x), (1.2.2)

for all x ∈ [0,∞)d. The function l is called the stable tail dependence function,

and is one of the notions used to describe the tail dependence structure. The

bivariate stable tail dependence function was introduced and studied in Huang

(1992).

Every continuous distribution function F can be expressed in terms of its marginal

distribution function and its dependence structure, for example its copula, C, as

F (x) = C(F1(x), . . . , Fd(x)). Using the copula, the stable tail dependence func-

tion can be written as

l(x) = lim
t↓0

t−1 (1 − C(1 − tx1, . . . , 1 − txd)) ,

which presents the connection between the dependence structure C on one hand

and the tail dependence structure described by l on the other hand. For instance,
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in the bivariate case, the coefficient of upper tail dependence is given by

lim
t↓0

t−1
P (1 − F1(X11) ≤ t, 1 − F2(X12) ≤ t) = R(1, 1) = 2 − l(1, 1),

where R(x1, x2) = x1 + x2 − l(x1, x2).

The function l is a convex function that takes values between max{x1, . . . , xd}
and x1+· · ·+xd, where the maximum of the coordinates corresponds to complete

tail dependence, and the sum of the coordinates to tail independence. Also, l is

homogeneous of order 1, that is l(tx) = t l(x), for all t > 0 and all x ∈ [0,∞)d.

Another way of writing the function l is in terms of the spectral measure H by

l(x) =

∫

∆d−1

max
j=1,...,d

{wjxj}H(dw),

where ∆d−1 = {w ∈ R
d : wj ≥ 0, w1 + · · · + wd = 1} is the unit simplex in R

d

on which the measure H is defined. The spectral measure also describes the tail

dependence structure and can be used interchangeably with l. Any finite Borel

measure H on ∆d−1 that satisfies the moment conditions

∫

∆d−1

wjH(dw) = 1, j = 1, . . . , d,

is a spectral measure. Often it is more natural to use the spectral measure H

than the function l. An example is the factor model, which will be studied in

detail in Chapter 4. Here we will only introduce the “canonical” d-dimensional

r-factor model X = (X1, . . . , Xd),

Xj = max
i=1,...,r

{bijZi}, j = 1, . . . , d, (1.2.3)

where the Zi are independent standard Fréchet random variables, and bij are

nonnegative numbers such that
∑r

i=1 bij = 1 for all j = 1, . . . , d. Factor models

are rather general models that are used in many different areas such as psychology

or, especially, finance, see for example Fama and French (1993); Malevergne and

Sornette (2004) and Geluk, de Haan, and de Vries (2007), and the references

therein. The spectral measure of the factor model above is discrete: it assigns

mass to r atoms, and is zero everywhere else. The function l of the factor model
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in (1.2.3) is given by

l(x) =

r
∑

i=1

max
j=1,...,d

{bijxj},

and it is not differentiable. As we will show later, this lack of smoothness calls

for a new estimation procedure.

In the bivariate case a nonparametric estimator of l is

l̂n(x1, x2) :=
1

k

n
∑

i=1

1

{

R1
i ≥ n+

1

2
− kx1 or R2

i ≥ n+
1

2
− kx2

}

, (1.2.4)

where k ∈ {1, . . . , n} and where R1
i and R2

i are the ranks of Xi1 and Xi2 in the

two marginal samples respectively, for i = 1, . . . , n. If k = kn is an intermediate

sequence, k → ∞ and k/n → 0, then the estimator in (1.2.4) is consistent and,

under some second-order conditions, asymptotically normal, see Huang (1992);

Drees and Huang (1998); Einmahl, de Haan, and Li (2006).

Just like the definition of the function l itself, the definition of the above estimator

is easily translated to general dimension d. However, estimation of a function in

higher dimensions is not easy. In addition, the fraction of the data that can be

used to estimate l is small. Therefore, it might be helpful to impose a parametric

model for l. Estimation of l then reduces to estimation of the parameter vector.

This is the approach followed in the thesis.

1.3 Outline of the thesis

Chapter 2. A Method of Moments Estimator of Bivariate Tail De-

pendence. A new estimator for the two-dimensional stable tail dependence

function is introduced in Chapter 2, which corresponds to the paper Einmahl,

Krajina, and Segers (2008). Assuming that the stable tail dependence function

belongs to some parametric family with an unknown parameter θ from a param-

eter space Θ ⊆ R
p, we define an estimator θ̂n of θ as the solution of

∫

[0,1]2
g(x)l̂n(x)dx =

∫

[0,1]2
g(x)l(x; θ̂n)dx,
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where l̂n is the nonparametric estimator of l from (1.2.4), and g : [0, 1]2 → R
p is

an auxiliary function that we choose. Note that we do not require that F1, F2 or

C are parametric, that is we consider a large semiparametric model.

We prove that, under mild conditions, the method of moments estimator θ̂n is

consistent and asymptotically normal. These results do not rely on the continuity,

not even the existence of the partial derivatives of l (with respect to x), which is

the standard requirement for asymptotic normality of all other estimators of l, the

nonparametric one, as well as the maximum likelihood estimators, see Coles and

Tawn (1991); Joe, Smith, and Weissman (1992); Smith (1994); Ledford and Tawn

(1996); de Haan, Neves, and Peng (2008). The absence of the differentiability

assumption enables the estimation of tail dependence in a wider class of models.

For example, we estimate the discrete two-point spectral measure corresponding

to the bivariate two-factor model.

Chapter 3. A Method of Moments Estimator of Tail Dependence in

Elliptical Copula Models. Elliptical distributions form a family of models

that are widely used in finance and insurance, see Embrechts, McNeil, and Strau-

mann (2002); Landsman and Valdez (2003); Kaynar, Birbil, and Frenk (2007).

Bivariate elliptical distributions yield an explicit form of the function l, or equiv-

alently, of the function R given by

R(x1, x2) =

∫ π/2

− arcsin ρ
min {x1(cosφ)ν , x2(sin(φ+ arcsin ρ))ν}dφ

∫ π/2

−π/2
(cosφ)νdφ

.

The same function R is obtained for every distribution with the same copula.

Such distributions form the class of the elliptical copula models, which are also

known as the meta-elliptical distributions, as introduced in Fang, Fang, and Kotz

(2002).

The two parameters ρ and ν in the above expression have different meanings

and properties, and are therefore treated differently in the estimation procedure.

Since the correlation parameter ρ depends on the whole copula, we estimate it

using the whole sample. Next we plug it into the expression for R and estimate

the tail parameter ν using the method of moments presented in Chapter 2.
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This application is of interest because of the wide use of elliptical models. How-

ever, the implementation and the asymptotic properties are not straightforward.

The estimation procedure, the asymptotic results for the estimator of (ν, ρ) and

a simulation study are presented in Chapter 3, which corresponds to Krajina

(2009).

Chapter 4. An M-Estimator of Tail Dependence in Arbitrary Dimen-

sions. In Chapter 4, which is based on Einmahl, Krajina, and Segers (2009),

we assume that the function l is parametric and we extend the estimator of its

parameter vector θ from Chapter 2 in two directions. First, we allow for estima-

tion in arbitrary dimension d, d ≥ 2. Second, we use M-estimation instead of the

method of moments approach. The first extension addresses an important issue

in statistics of extremes, where the estimation of the tail dependence in high(er)

dimensions is a challenge, since the existing estimators are either likelihood based

or nonparametric. The maximum likelihood estimators can be notoriously dif-

ficult to compute due to the untractable form of the likelihood; moreover, the

assumptions on the model are restrictive, including higher-order differentiability

of l.

We choose a parametric approach as this enables us to impose some structure

on the form of dependence and potentially reduce the estimation error. As in

Chapter 2, it is important to note that the parametric assumptions are made only

at the level of the tail dependence structure, resulting in a large semiparametric

model. No assumptions on the marginal distributions of F were made; we do

not even assume a parametric model for the copula.

Again without the requirement of differentiability, we define an M-estimator of θ.

We prove consistency and asymptotic normality and present a test for a submodel

within a chosen parametric model. The simulation study for some examples,

including two different factor models, shows that the estimators perform well in

dimensions higher than two.



Chapter 2

A Method of Moments Estimator

of Bivariate Tail Dependence

[Based on joint work with J.H.J. Einmahl and J. Segers, A Method of Moments

Estimator of Tail Dependence, Bernoulli 14(2008), 1003–1026.]

Abstract. In the world of multivariate extremes, estimation of the dependence struc-

ture presents a challenge and an interesting problem. A procedure for the bivariate

case is presented that opens the road to a similar way of handling the problem in a

truly multivariate setting. We consider a semiparametric model in which the stable

tail dependence function is parametrically modeled. Given a random sample from a

bivariate distribution function, the problem is to estimate the unknown parameter.

A method of moments estimator is proposed where a certain integral of a nonpara-

metric, rank-based estimator of the stable tail dependence function is matched with

the corresponding parametric version. Under very weak conditions, the estimator is

shown to be consistent and asymptotically normal. Moreover, a comparison between

the parametric and nonparametric estimators leads to a goodness-of-fit test for the

semiparametric model. The performance of the estimator is illustrated for a discrete

spectral measure that arises in a factor-type model and for which likelihood based

methods break down. A second example is that of a family of stable tail dependence

functions of certain meta-elliptical distributions.
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2.1 Introduction

A bivariate distribution function F with continuous marginal distribution func-

tions F1 and F2 is said to have a stable tail dependence function l if for all x ≥ 0

and y ≥ 0 the following limit exists:

lim
t→0

t−1
P (1 − F1(X) ≤ tx or 1 − F2(Y ) ≤ ty) = l(x, y); (2.1.1)

see Huang (1992); Drees and Huang (1998). Here (X, Y ) is a bivariate random

vector with distribution F .

The relevance of condition (2.1.1) comes from multivariate extreme value theory:

if F1 and F2 are in the max-domains of attraction of extreme value distributions

G1 and G2 and if (2.1.1) holds, then F is in the max-domain of attraction of

an extreme value distribution G with marginals G1 and G2 and with copula

determined by l; see Section 2.2 for more details.

Inference problems on multivariate extremes therefore generally fall apart into

two parts. The first one concerns the marginal distributions and is simplified

by the fact that univariate extreme value distributions constitute a parametric

family. The second one concerns the dependence structure in the tail of F and

forms the subject of this chapter. In particular, we are interested in the estima-

tion of the function l. The marginals will not be assumed to be known and will

be estimated nonparametrically. As a consequence, the new inference procedures

are rank-based and therefore invariant with respect to the marginal distribution,

in accordance with (2.1.1).

The class of stable tail dependence functions does not constitute a finite-dimensional

family. This is an argument for nonparametric, model-free approaches. However,

the accuracy of these nonparametric approaches is often poor in higher dimen-

sions. Moreover, stable tail dependence functions satisfy a number of shape con-

straints (bounds, homogeneity, convexity; see Section 2.2), which are typically

not satisfied by nonparametric estimators.

The other approach is the semiparametric one, i.e. we model l parametrically.

At the price of an additional model risk, parametric methods yield estimates that

are always proper stable tail dependence functions. Moreover, they do not suffer
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from the curse of dimensionality. A large number of models have been proposed

in the literature, allowing for various degrees of dependence and asymmetry, and

new models continue to be invented; see Beirlant, Goegebeur, Segers, and Teugels

(2004); Kotz and Nadarajah (2000) for an overview of the most common ones.

In this chapter, we propose an estimator based on the method of moments: given

a parametric family {l(·; θ) : θ ∈ Θ} with Θ ⊆ R
p and a function g : [0, 1]2 → R

p,

the moment estimator θ̂n is defined as the solution to the system of equations

∫∫

[0,1]2
g(x, y)l(x, y; θ̂n) dx dy =

∫∫

[0,1]2
g(x, y)l̂n(x, y) dx dy.

Here l̂n is the nonparametric estimator of l. Moreover, a comparison of the

parametric and nonparametric estimators yields a goodness-of-fit test for the

postulated model.

The method of moments estimator is to be contrasted with the maximum like-

lihood estimator in point process models for extremes Coles and Tawn (1991);

Joe, Smith, and Weissman (1992) or the censored likelihood approach proposed in

Smith (1994); Ledford and Tawn (1996) and studied for single-parameter families

in de Haan, Neves, and Peng (2008). In parametric models, moment estimators

yield consistent estimators but often with a lower efficiency than the maximum

likelihood estimator. However, as we shall see, the set of conditions required for

the moment estimator is smaller, the conditions that remain to be imposed are

much simpler, and most importantly, there are no restrictions whatsoever on the

smoothness (not even on the existence) of the partial derivatives of l. Even for

nonparametric estimators of l, theorems on asymptotic normality require l to be

differentiable Huang (1992); Drees and Huang (1998); Einmahl, de Haan, and Li

(2006).

Such a degree of generality is needed for instance if the spectral measure un-

derlying l is discrete. In this case, there is no likelihood at all, so the maxi-

mum likelihood method breaks down. An example is the linear factor model

X = βF + ε, where X and ε are 2 × 1 random vectors, F is a r × 1 random

vector of factor variables and β is a constant 2 × r matrix of factor loadings. If

the r factor variables are mutually independent and if their common marginal

tail is of Pareto-type and heavier than the ones of the noise variables ε1, ε2, then
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the spectral measure of the distribution of X is discrete with point masses de-

termined by β and the tail index of the factor variables. The heuristic is that if

X is far from the origin, then with high probability it will be dominated by a

single component of F . Therefore, in the limit, there are only a finite number of

directions for extreme outcomes of X. Section 2.5 deals with a two-factor model

of the above type, which gives rise to a discrete spectral measure concentrated

only on two atoms. For more examples of factor models and further references

see Geluk, de Haan, and de Vries (2007).

The outline of the chapter is as follows. Basic properties of stable tail dependence

functions and spectral measures are reviewed in Section 2.2. The estimator and

goodness-of-fit test statistic are defined in Section 2.3. Section 2.4 states the main

results on the large-sample properties of the new procedures. In Section 2.5, the

example of a spectral measure with two atoms is worked out, and the finite-

sample performance of the moment estimator is evaluated through simulations.

Section 2.6 follows the same program for the stable tail dependence functions of

elliptical distributions. All proofs are deferred to Section 2.7.

2.2 Tail dependence

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent random vectors in R
2 with

common continuous distribution function F and marginal distribution func-

tions F1 and F2. The central assumption in this chapter is the existence for

all (x, y) ∈ [0,∞)2 of the limit l in (2.1.1). Obviously, by the probability inte-

gral transform and the inclusion-exclusion formula, (2.1.1) is equivalent to the

existence for all (x, y) ∈ [0,∞]2 \ {(∞,∞)} of the limit

lim
t→0

t−1
P (1 − F1(X) ≤ tx, 1 − F2(Y ) ≤ ty) = R(x, y), (2.2.1)

so R(x,∞) = R(∞, x) = x. The functions l and R are related by R(x, y) =

x+y− l(x, y), for (x, y) ∈ [0,∞)2. Note that R(1, 1) is the upper tail dependence

coefficient.
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If C denotes the copula of F , that is, if F (x, y) = C{F1(x), F2(y)}, then (2.1.1)

is equivalent to

lim
t→0

t−1 (1 − C(1 − tx, 1 − ty)) = l(x, y) (2.2.2)

for all x, y ≥ 0, and also to

lim
n→∞

Cn(u1/n, v1/n) = exp{−l(− log u,− log v)} =: C∞(u, v)

for all (u, v) ∈ (0, 1]2. The left-hand side in the previous display is the copula of

the pair of componentwise maxima (maxi=1,...,nXi,maxi=1,...,n Yi) and the right-

hand side is the copula of a bivariate max-stable distribution. If in addition the

marginal distribution functions F1 and F2 are in the max-domains of attraction

of extreme value distributions G1 and G2, that is, if there exist positive sequences

(an), (cn), and sequences (bn) ∈ R and (dn) ∈ R such that F n
1 (anx+bn)

d→ G1(x)

and F n
2 (cny + dn)

d→ G2(y), then actually

F n(anx+ bn, cny + dn)
d→ G(x, y) = C∞ (G1(x), G2(y)) ,

that is, F is in the max-domain of attraction of a bivariate extreme value distri-

bution G with marginals G1 and G2 and copula C∞. However, in this chapter we

shall make no assumptions on the marginal distributions F1 and F2 whatsoever

except for continuity.

Directly from the definition of l it follows that x ∨ y ≤ l(x, y) ≤ x + y for all

(x, y) ∈ [0,∞)2. Similarly, 0 ≤ R(x, y) ≤ x ∧ y for (x, y) ∈ [0,∞)2. Moreover,

the functions l and R are homogenous of order one: for all (x, y) ∈ [0,∞)2 and

all t > 0,

l(tx, ty) = tl(x, y),

R(tx, ty) = tR(x, y).

In addition, l is convex and R is concave. It can be shown that these requirements

on l (or, equivalently, R) are necessary and sufficient for l to be a stable tail

dependence function.
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The following representation of the tail dependence functions will be highly use-

ful: there exists a finite Borel measure H on [0, 1], called spectral or angular

measure, such that for all (x, y) ∈ [0,∞)2

l(x, y) =

∫

[0,1]

max{wx, (1 − w)y}H(dw),

R(x, y) =

∫

[0,1]

min{wx, (1 − w)y}H(dw).
(2.2.3)

The identities l(x, 0) = l(0, x) = x for all x ≥ 0 imply the following moment

constraints for H :
∫

[0,1]

wH(dw) =

∫

[0,1]

(1 − w)H(dw) = 1. (2.2.4)

Again, equation (2.2.4) constitutes a necessary and sufficient condition for l in

(2.2.3) to be a stable tail dependence function. For more details on multivariate

extreme value theory, see for instance Beirlant, Goegebeur, Segers, and Teugels

(2004); Coles (2001); Falk, Hüsler, and Reiss (2004); Galambos (1987); de Haan

and Ferreira (2006); Resnick (1987).

2.3 Estimation and testing

Let RX
i and RY

i be the rank of Xi among X1, . . . , Xn and the rank of Yi among

Y1, . . . , Yn respectively, where i = 1, . . . , n. Replacing P, F1, F2 on the left-hand

side of (2.1.1) by their empirical counterparts, we obtain a nonparametric esti-

mator for l. Estimators obtained in this way are

L̂1
n(x, y) :=

1

k

n
∑

i=1

1
{

RX
i > n+ 1 − kx or RY

i > n+ 1 − ky
}

,

L̂2
n(x, y) :=

1

k

n
∑

i=1

1
{

RX
i ≥ n+ 1 − kx or RY

i ≥ n+ 1 − ky
}

,

defined in Einmahl, de Haan, and Li (2006) and Drees and Huang (1998); Huang

(1992), respectively; here k ∈ {1, . . . , n}. The estimator we will use here is
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similar to those above and is defined by

l̂n(x, y) :=
1

k

n
∑

i=1

1

{

RX
i > n+

1

2
− kx or RY

i > n+
1

2
− ky

}

.
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For finite samples, simulation experiments show that the latter estimator usually

performs slightly better. The large sample behaviors of the three estimators

coincide however, since L̂1
n ≤ L̂2

n ≤ l̂n and as n→ ∞

sup
0≤x,y≤1

∣

∣

∣

√
k
(

l̂n(x, y) − L̂1
n(x, y)

)∣

∣

∣
≤ 2√

k
→ 0, (2.3.1)

where k = kn is an intermediate sequence, that is, k → ∞ and k/n→ 0.

Assume that the stable tail dependence function l belongs to some parametric

family {l( · , · ; θ) : θ ∈ Θ}, where Θ ⊂ R
p, p ≥ 1. Observe that this does not

mean that C (or F ) belongs to a parametric family, i.e. we have constructed a

semiparametric model. Let g : [0, 1]2 → R
p be an integrable function such that

ϕ : Θ → R
p defined by

ϕ(θ) :=

∫∫

[0,1]2
g(x, y)l(x, y; θ) dx dy (2.3.2)

is a homeomorphism between Θo, the interior of the parameter space Θ, and its

image ϕ(Θo). For examples of the function ϕ see Section 2.5 and Section 2.6.

Let θ0 denote the true parameter value and assume θ0 ∈ Θo.

The method of moments estimator θ̂n of θ0 is defined as the solution of

∫∫

[0,1]2
g(x, y)l̂n(x, y) dx dy =

∫∫

[0,1]2
g(x, y)l(x, y; θ̂n)dxdy = ϕ(θ̂n),

that is,

θ̂n := ϕ−1

(
∫∫

[0,1]2
g(x, y)l̂n(x, y) dx dy

)

, (2.3.3)

whenever the right-hand side is defined. For definiteness, if
∫∫

gl̂n 6∈ ϕ(Θo), let

θ̂n be some arbitrary, fixed value in Θ.

Consider the goodness-of-fit testing problem, H0 : l ∈ {l( · , · ; θ) : θ ∈ Θ}
against Ha : l /∈ {l( · , · ; θ) : θ ∈ Θ}. We propose the test statistic

∫∫

[0,1]2

(

l̂n(x, y) − l(x, y; θ̂n)
)2

dx dy, (2.3.4)



Chapter 2. A Method of Moments Estimator of Tail Dependence 17

with θ̂n as in (2.3.3). The null hypothesis is rejected for large values of the test

statistic.

2.4 Results

The method of moments estimator is consistent for every intermediate sequence

k = kn under minimal conditions on the model and the function g.

Theorem 2.4.1 (Consistency). Let g : [0, 1]2 → R
p be integrable. If ϕ in (2.3.2)

is a homeomorphism between Θo and ϕ(Θo) and if θ0 ∈ Θo, then as n→ ∞, k →
∞ and k/n → 0, the right-hand side of (2.3.3) is well-defined with probability

tending to one and θ̂n
P→ θ0.

Denote by W a mean-zero Wiener process on [0,∞]2 \{(∞,∞)} with covariance

function

EW (x1, y1)W (x2, y2) = R(x1 ∧ x2, y1 ∧ y2),

and for x, y ∈ [0,∞) denote

W1(x) := W (x,∞), W2(y) := W (∞, y).

Further, for (x, y) ∈ [0,∞)2 let R1(x, y) and R2(x, y) be the right-hand partial

derivatives of R at the point (x, y) with respect to the first and second coordinate,

respectively. Since R is concave, R1 and R2 defined in this way always exist,

although they are discontinuous at points where ∂
∂x
R(x, y) or ∂

∂y
R(x, y) do not

exist.

Finally, define the stochastic process B on [0,∞)2 and the p-variate random

vector B̃ by

B(x, y) = W (x, y) −R1(x, y)W1(x) − R2(x, y)W2(y),

B̃ =

∫∫

[0,1]2
g(x, y)B(x, y) dx dy.

Theorem 2.4.2 (Asymptotic Normality). In addition to the conditions in The-

orem 2.4.1, assume:
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(C1) The function ϕ is continuously differentiable in some neighborhood of θ0

and its derivative matrix Dϕ(θ0) is invertible.

(C2) There exists α > 0 such that as t→ 0,

t−1
P (1 − F1(X) ≤ tx, 1 − F2(Y ) ≤ ty) − R(x, y) = O(tα),

uniformly on the set {(x, y) : x+ y = 1, x ≥ 0, y ≥ 0}.

(C3) k = kn → ∞ and k = o(n2α/(1+2α)) as n→ ∞.

Then √
k(θ̂n − θ0)

d→ Dϕ(θ0)
−1B̃. (2.4.1)

Note that condition (C2) is a second-order condition quantifying the speed of

convergence in (2.2.1). Condition (C3) gives an upper bound on the speed with

which k can grow to infinity. This upper bound is related to the speed of con-

vergence in (C2) and ensures that θ̂n is asymptotically unbiased.

The limiting distribution in (2.4.1) depends on the model and on the auxiliary

function g. The optimal g would be the one minimizing the asymptotic variance,

but this minimization problem is typically difficult to solve. In the examples in

Section 2.5 and Section 2.6 the functions g were chosen so as to simplify the

calculations.

From the definition of the process B it follows that the distribution of B̃ is

p-variate normal with mean zero and covariance matrix

Σ(θ0) = Var(B̃) =

∫∫∫∫

[0,1]4
g(x, y)g(u, v)⊤σ(x, y, u, v; θ0) dx dy du dv, (2.4.2)

where σ is the covariance function of the process B, that is, for θ ∈ Θ,

σ(x, y, u, v; θ) = EB(x, y)B(u, v)

= R(x ∧ u, y ∧ v; θ) +R1(x, y; θ)R1(u, v; θ)(x ∧ u)

+R2(x, y; θ)R2(u, v; θ)(y ∧ v) − 2R1(u, v; θ)R(x ∧ u, y; θ)

− 2R2(u, v; θ)R(x, y ∧ v; θ) + 2R1(x, y; θ)R2(u, v; θ)R(x, v; θ). (2.4.3)
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Denote by Hθ the spectral measure corresponding to l(·, ·; θ). The following

corollary allows the construction of confidence regions.

Corollary 2.4.3. Under the assumptions of Theorem 2.4.2, if the map θ 7→ Hθ

is weakly continuous at θ0 and if Σ(θ0) is non-singular, then as n→ ∞,

k(θ̂n − θ0)
⊤Dϕ(θ̂n)⊤Σ(θ̂n)−1Dϕ(θ̂n)(θ̂n − θ0)

d→ χ2
p.

Finally, we derive the limit distribution of the test statistic in (2.3.4).

Theorem 2.4.4 (Test). Assume that the null hypothesis H0 holds and let θH0

denote the true parameter. If

1) for all θ0 ∈ Θ the conditions of Theorem 2.4.2 are satisfied (and hence Θ

is open);

2) on Θ, the mapping θ 7→ l(x, y; θ) is differentiable for all (x, y) ∈ [0, 1]2, and

its gradient is bounded in (x, y) ∈ [0, 1]2,

then

∫∫

[0,1]2
k
(

l̂n(x, y) − l(x, y; θ̂n)
)2

dxdy

d→
∫∫

[0,1]2

(

B(x, y) −Dl(x,y;θ)(θH0
)Dϕ(θH0

)−1B̃
)2

dxdy

as n→ ∞, where Dl(x,y;θ)(θH0
) is the gradient of θ 7→ l(x, y; θ) at θH0

.

2.5 Example 1: Two-point spectral measure

The two-point spectral measure is a spectral measure H that is concentrated on

only two points in (0, 1) \ {1/2}, call them a and 1 − b. The moment conditions

(2.2.4) imply that one of those points is less than 1/2 and the other one is greater

than 1/2, and the masses on those points are determined by their locations.

For definiteness, let a ∈ (0, 1/2) and 1 − b ∈ (1/2, 1), so the parameter vector
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θ = (a, b) takes values in the square Θ = (0, 1/2)2. The masses assigned to a and

1 − b are

q := H({a}) =
1 − 2b

1 − a− b
and 2 − q = H({1 − b}) =

1 − 2a

1 − a− b
.

This model is also known as the natural model and was first described in Tiago de

Oliveira (1980, 1989).

By (2.2.3), the corresponding stable tail dependence function is

l(x, y; a, b) = qmax{ax, (1 − a)y} + (2 − q) max{(1 − b)x, by}.

The partial derivatives of l with respect to x and y are

∂l(x, y; a, b)

∂x
=























1 if y < a
1−a

x,

(1 − b)(2 − q) if a
1−a

x < y < 1−b
b
x,

0 if y > 1−b
b
x,

and (∂/∂y)l(x, y; a, b) = (∂/∂y)l(y, x; b, a). Note that the partial derivatives do

not exist on the lines y = a
1−a

x and y = 1−b
b
x. The same is true for the partial

derivatives of R. As a consequence, the maximum likelihood method is not

applicable and the asymptotic normality of the nonparametric estimator breaks

down. However, the method of moments estimator can still be used since in

Theorem 2.4.2 no smoothness assumptions are made on l whatsoever.

As explained in the introduction, discrete spectral measures arise whenever ex-

tremes are determined by a finite number of independent, heavy tailed factors.

Specifically, let the random vector (X, Y ) be given by

(X, Y ) = (αZ1 + (1 − α)Z2 + ε1, (1 − β)Z1 + βZ2 + ε2), (2.5.1)

where 0 < α < 1 and 0 < β < 1 are coefficients and where Z1, Z2, ε1 and ε2

are independent random variables satisfying the following conditions: there exist

ν > 0 and a slowly varying function L such that P(Zi > z) = z−νL(z) for some

ν > 0, i = 1, 2; P(εj > z)/P(Z1 > z) → 0 as z → ∞, j = 1, 2. (Recall that

a positive, measurable function L defined in a neighborhood of infinity is called
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slowly varying if L(yz)/L(z) → 1 as z → ∞ for all y > 0.) Straightforward

but lengthy computations show that the spectral measure of the random vector

(X, Y ) is a two-point spectral measure having masses q and 2 − q at the points

a and 1 − b, where

q :=
(1 − α)ν

αν + (1 − α)ν
+

βν

βν + (1 − β)ν

a :=
(1 − α)ν

αν + (1 − α)ν
q−1,

1 − b :=
αν

αν + (1 − α)ν
(2 − q)−1.

Write ∆ = {(x, y) ∈ [0, 1]2 : x + y ≤ 1} and let 1∆ be its indicator function.

The function g∆ : [0, 1]2 → R
2 defined by g∆(x, y) = 1∆(x, y)(x, y)⊤ is obviously

integrable, and the function ϕ in (2.3.2) is given by

ϕ(a, b) =

∫∫

∆

(x, y)⊤l(x, y; a, b) dx dy = (J(a, b), K(a, b))⊤

where K(a, b) = J(b, a) and

J(a, b) =
1

24
{(2ab− a− b)(b− a+ 1) + a(b− 1) + 3}.

Nonparametric estimators of J and K are given by

(Ĵn, K̂n) =

∫∫

∆

(x, y)⊤l̂n(x, y) dx dy,

and the method of moment estimators (ân, b̂n) are defined as the solutions to the

equations
(Ĵn, K̂n) = (J(ân, b̂n), K(ân, b̂n)).

Due to the explicit nature of the functions J and K, these equations can be

simplified: if we denote cJ,n := 3(8Ĵn − 1) and cK,n := 3(8K̂n − 1), the estimator

b̂n of b will be a solution of the quadratic equation

3(2cJ,n + 2cK,n + 3)b2 + 3(−5cJ,n + cK,n − 3)b+ 3cJ,n − 6cK,n − (cJ,n + cK,n)
2 = 0
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that falls into the interval (0, 1/2), and the estimator of a is

ân =
3b̂n + cJ,n + cK,n

6b̂n − 3
.

In the simulations we used the following models:

(i) Z1, Z2 ∼ Fréchet(1), so ν = 1, and ε1, ε2 ∼ N(0, 1) (Figures 2.1, 2.2, 2.3);

(ii) Z1, Z2 ∼ t2, so ν = 1/2, and ε1, ε2 ∼ N(0, 0.52) (Figures 2.4, 2.5, 2.6).

The figures show the bias and the root mean squared error (RMSE) of ân and b̂n

for 1000 samples of size n = 1000. The method of moments estimator performs

well in general. We see a very good behavior when a0 = b0 ≈ 0. Of course, the

heavier the tail of Z1, the better the performance of the estimator.
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Figure 2.1: Model (2.5.1) with Z1, Z2 ∼ Fréchet(1), ε1, ε2 ∼ N(0, 1), a0 =
b0 = 0.001
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Figure 2.2: Model (2.5.1) with Z1, Z2 ∼ Fréchet(1), ε1, ε2 ∼ N(0, 1), a0 =
b0 = 0.3125
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Figure 2.3: Model (2.5.1) with Z1, Z2 ∼ Fréchet(1), ε1, ε2 ∼ N(0, 1), a0 =
0.125, b0 = 0.375
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Figure 2.4: Model (2.5.1) with Z1, Z2 ∼ t2, ε1, ε2 ∼ N(0, 0.52), a0 = b0 =
0.001
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Figure 2.5: Model (2.5.1) with Z1, Z2 ∼ t2, ε1, ε2 ∼ N(0, 0.52), a0 = b0 =
0.3125mala recenica mala recenica mala recenica mala recenica mala recenica mala

recenica mala recenica mala recenicamala recenica mala recenica mala recenica

mala recenicamala recenica mala recenica mala recenica mala recenicamala recenica



Chapter 2. A Method of Moments Estimator of Tail Dependence 25

0.025 0.075 0.125 0.175 0.25

−0.1

−0.05

0

0.05

t
2
, a

0
=0.125, b

0
=0.375

k/n

Bias(a
n
)

Bias(b
n
)

(a) Bias of estimators of a and b

0.025 0.075 0.125 0.175 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t
2
, a

0
=0.125, b

0
=0.375

k/n

RMSE(a
n
)

RMSE(b
n
)

(b) RMSE of estimators of a and b

Figure 2.6: Model (2.5.1) with Z1, Z2 ∼ t2, ε1, ε2 ∼ N(0, 0.52), a0 = 0.125,
b0 = 0.375
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2.6 Example 2: Parallel meta-elliptical model

A random vector (X, Y ) is said to be elliptically distributed if it satisfies the

distributional equality

(X, Y )⊤
d
= µ + ZAU , (2.6.1)

where µ is a 2×1 column vector, Z is a positive random variable called generating

random variable, A is a 2× 2 matrix such that Σ = AA⊤ is of full rank, and U

is a two-dimensional random vector independent of Z and uniformly distributed

on the unit circle {(x, y) ∈ R
2 : x2 + y2 = 1}. Under the above assumptions, the

matrix Σ can be written as

Σ =

(

σ2 ρσv

ρσv v2

)

(2.6.2)

where σ > 0, v > 0, and −1 < ρ < 1. The special case ρ = 0 yields the subclass

of parallel elliptical distributions.
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By Hult and Lindskog (2002), the distribution of Z satisfies P(Z > z) = z−νL(z)

with ν > 0 and L slowly varying if and only if the distribution of (X, Y ) is

(multivariate) regularly varying with the same index. Under this assumption,

the function R of the distribution of (X, Y ) was derived in Klüppelberg, Kuhn,

and Peng (2007). In case ρ = 0, the formula specializes to

R(x, y; ν) =
x
∫ π/2

f(x,y;ν)
(cos φ)νdφ+ y

∫ f(x,y;ν)

0
(sinφ)νdφ

∫ π/2

−π/2
(cos φ)νdφ

, (2.6.3)

with f(x, y; ν) = arctan{(x/y)1/ν}. Hence, the class of stable tail dependence

functions belonging to parallel elliptical vectors with regularly varying generating

random variables forms a one-dimensional parametric family indexed by the index

of regular variation ν ∈ (0,∞) = Θ of Z. We will call the corresponding stable

tail dependence functions l parallel elliptical.

In Fang, Fang, and Kotz (2002), meta-elliptical distributions are defined as the

distributions of random vectors of the form (s(X), t(Y )), where the distribution

of (X, Y ) is elliptical and s and t are increasing functions. In other words, a

distribution is meta-elliptical if and only if its copula is that of an elliptical

distribution. Such copulas are called meta-elliptical in Genest, Favre, Béliveau,

and Jacques (2007); note that a copula, as a distribution function on the unit

square, cannot be elliptical in the sense of (2.6.1). Since a stable tail dependence

function l of a bivariate distribution F is only determined by F through its copula

C, see (2.2.2), the results in the preceding paragraph continue to hold for meta-

elliptical distributions. In case ρ = 0, we will speak of parallel meta-elliptical

distributions. In case the generating random variable Z is regularly varying with

index ν, the function R is given by (2.6.3).

For parallel meta-elliptical distributions, the second-order condition (C2) in The-

orem 2.4.2 can be checked via second-order regular variation of Z.

Lemma 2.6.1. Let F be a parallel meta-elliptical distribution with generating

random variable Z. If there exist ν > 0, β < 0 and a function A(t) → 0 of

constant sign near infinity such that

lim
t→∞

P(Z > tx)/P(Z > t) − x−ν

A(t)
= x−ν x

β − 1

β
, (2.6.4)
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then condition (C2) in Theorem 2.4.2 holds for every α ∈ (0,−β/ν).

Note that although the generating random variable is only defined up to a multi-

plicative constant, condition (2.6.4) does makes sense: that is, if (2.6.4) holds for

a random variable Z, then it also holds for cZ with c > 0, for the same constants

ν and β and for the rate function A∗(t) := A(t/c). Note that |A| is necessarily

regularly varying with index β, see equation (3.0.3) in Bingham, Goldie, and

Teugels (1987).

Now assume that (X1, Y1), . . . , (Xn, Yn) is a random sample from a bivariate

distribution F with parallel elliptical stable tail dependence function l, that is

l ∈ {l( · , · ; ν) : ν ∈ (0,∞)}, where l(x, y; ν) = x+ y−R(x, y; ν) and R(x, y; ν) is

as in (2.6.3). We will apply the method of moments to estimate the parameter

ν. Since l is defined by a limit relation, our assumption on F is weaker than the

assumption that F is parallel meta-elliptical with regularly varying Z, which, as

explained above, is in turn weaker than the assumption that F itself is parallel

elliptical with regularly varying Z. The problem of estimating the R for elliptical

distributions was addressed in Klüppelberg, Kuhn, and Peng (2007) and for meta-

elliptical distributions in Klüppelberg, Kuhn, and Peng (2008).

We simulated 1000 random samples of size n = 1000 from models for which the

assumptions of Theorem 2.4.2 hold, and which have the function R( · , · ; ν) as in

(2.6.3), with ν ∈ {1, 5}. The three models we used are of the type (X1, Y1)
⊤ =

ZU . In the first model the generating random variable Z is such that P(Z >

z) = (1+z2)−1/2 for z ≥ 0, that is the first model is the bivariate Cauchy (ν = 1).

In the other two models Z is Fréchet(ν) with ν ∈ {1, 5}.

Figures 2.7, 2.8, 2.9 show the bias and the RMSE of the moment estimator of

ν. The auxiliary function g : [0, 1]2 → R is g(x, y) = 1{x + y ≤ 1}. For

comparison, Figure 2.10 and Figure 2.11 show the plots of the means and RMSE

of the parametric and nonparametric estimates R(1, 1; ν̂n) and R̂n(1, 1) = 2 −
l̂n(1, 1) of the upper tail dependence coefficient R(1, 1). We can see that the

method of moments estimator of the upper tail dependence coefficient R(1, 1; ν)

performs well. In particular, it is much less sensitive to the choice of k than the

nonparametric estimator.
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Figure 2.7: Estimation of ν = 1 in the bivariate Cauchy model.
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Figure 2.8: Estimation of ν = 1 in the model (X1, Y1)
⊤ = ZU , where Z is

Fréchet(1).
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Figure 2.9: Estimation of ν = 5 in the model (X1, Y1)
⊤ = ZU , where Z is

Fréchet(5).
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Figure 2.10: Estimation of R(1, 1; 1) in the bivariate Cauchy model.
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Figure 2.11: Estimation of R(1, 1; 5) in the model (X1, Y1)
⊤ = ZU , where

Z is Fréchet(5).
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2.7 Proofs

Proof of Theorem 2.4.1 First note that

∣

∣

∣

∣

∫∫

[0,1]2
g(x, y)l̂n(x, y) dx dy −

∫∫

[0,1]2
g(x, y)l(x, y; θ0) dx dy

∣

∣

∣

∣

≤ sup
0≤x,y≤1

|l̂n(x, y) − l(x, y; θ0)|
∫∫

[0,1]2
|g(x, y)| dx dy.

The second term is finite by assumption, and

sup
0≤x,y≤1

|l̂n(x, y) − l(x, y; θ0)| P→ 0

by (2.3.1) and Theorem 1 in Huang (1992), see also Drees and Huang (1998).

Therefore, as n→ ∞,

∫∫

[0,1]2
g(x, y)l̂n(x, y) dx dy

P→
∫∫

[0,1]2
g(x, y)l(x, y; θ0) dx dy = ϕ(θ0).

Since ϕ(θ0) ∈ ϕ(Θo), which is open, and since ϕ−1 is continuous at ϕ(θ0) by

assumption, we can apply the function ϕ−1 on both sides of the previous limit

relation, so that, by the continuous mapping theorem, indeed θ̂n
P→ θ0. �

For the proof of Theorem 2.4.2 we will need the following lemma, the proof of

which follows from Lemma 6.2.1 in Falk, Hüsler, and Reiss (2004).

Lemma 2.7.1. The function R in (2.2.3) is differentiable at (x, y) ∈ (0,∞)2

if H({z}) = 0 with z = y/(x + y). In that case, the gradient of R is given by

(R1(x, y), R2(x, y))
⊤, where

R1(x, y) =

∫ z

0

wH(dw), R2(x, y) =

∫ 1

z

(1 − w)H(dw). (2.7.1)

For i = 1, . . . , n denote Ui := 1 − F1(Xi) and Vi := 1 − F2(Yi). Let Q1n and Q2n

denote the empirical quantile functions of (U1, . . . , Un) and (V1, . . . , Vn) respec-

tively, that is

Q1n

(

kx

n

)

= U⌈kx⌉:n, Q2n

(

ky

n

)

= V⌈ky⌉:n,
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where U1:n ≤ · · · ≤ Un:n and V1:n ≤ · · · ≤ Vn:n are the order statistics and where

⌈a⌉ is the smallest integer not smaller than a. Denote

S1n(x) :=
n

k
Q1n

(

kx

n

)

, S2n(y) :=
n

k
Q2n

(

ky

n

)

and define

R̂1
n(x, y) :=

1

k

n
∑

i=1

1

{

Ui <
k

n
S1n(x), Vi <

k

n
S2n(y)

}

,

=
1

k

n
∑

i=1

1
{

Ui < U⌈kx⌉:n, Vi < V⌈ky⌉:n

}

,

=
1

k

n
∑

i=1

1
{

RX
i > n+ 1 − kx, RY

i > n+ 1 − ky
}

,

Rn(x, y) :=
n

k
P

(

U1 ≤
kx

n
, V1 ≤

ky

n

)

,

Tn(x, y) :=
1

k

n
∑

i=1

1

{

Ui <
kx

n
, Vi <

ky

n

}

.

Further, note that

R̂1
n(x, y) = Tn (S1n(x), S2n(y)) .

Write vn(x, y) =
√
k (Tn(x, y) −Rn(x, y)) , vn,1(x) := vn(x,∞) and vn,2(y) :=

vn(∞, y). From Proposition 3.1 in Einmahl, de Haan, and Li (2006) we get

(vn(x, y), x, y ∈ [0, 1]; vn,1(x), x ∈ [0, 1]; vn,2(y), y ∈ [0, 1])

d→ (W (x, y), x, y ∈ [0, 1];W1(x), x ∈ [0, 1];W2(y), y ∈ [0, 1])

in the topology of uniform convergence, as n → ∞. Invoking the Skorohod con-

struction, see for instance van der Vaart and Wellner (1996), we get a new prob-

ability space containing all ṽn, ṽn,1, ṽn,2, W̃ , W̃1, W̃2 for which it holds

(ṽn, ṽn,1, ṽn,2)
d
= (vn, vn,1, vn,2),

(W̃ , W̃1, W̃2)
d
= (W,W1,W2)
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as well as

sup
0≤x,y≤1

|ṽn(x, y) − W̃ (x, y)| a.s.→ 0,

sup
0≤x≤1

|ṽn,j(x) − W̃j(x)| a.s.→ 0, j = 1, 2.

We will work on this space from now on, but keep the old notation (without

tildes). The following consequence of the above and Vervaat’s lemma (Vervaat

(1972)), will be useful

sup
0≤x≤1

|
√
k(Sjn(x) − x) +Wj(x)| a.s.→ 0, j = 1, 2. (2.7.2)

Proof of Theorem 2.4.2 In this proof we will write l(x, y) and R(x, y) instead

of l(x, y; θ0) and R(x, y; θ0), respectively.

First we will show that as n→ ∞,

∣

∣

∣

∣

√
k

(
∫∫

[0,1]2
g(x, y)L̂1

n(x, y)dxdy − ϕ(θ0)

)

+ B̃

∣

∣

∣

∣

P→ 0. (2.7.3)

Since for each x, y ∈ (0, 1]

(

L̂1
n + R̂1

n

)

(x, y) =
⌈kx⌉ + ⌈ky⌉ − 2

k

almost surely, from
∣

∣

∣

∣

⌈kx⌉ + ⌈ky⌉ − 2

k
− x− y

∣

∣

∣

∣

≤ 2

k

it follows that

∣

∣

∣

∣

√
k

(
∫∫

[0,1]2
g(x, y)L̂1

n(x, y)dxdy −
∫∫

[0,1]2
g(x, y)l(x, y)dxdy

)

+
√
k

(
∫∫

[0,1]2
g(x, y)R̂1

n(x, y)dxdy −
∫∫

[0,1]2
g(x, y)R(x, y)dxdy

)∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

[0,1]2
g(x, y)

√
k

(⌈kx⌉ + ⌈ky⌉ − 2

k
− x− y

)

dxdy

∣

∣

∣

∣

= O

(

1√
k

)
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almost surely. Hence, to show (2.7.3) we will prove

∣

∣

∣

∣

∫∫

[0,1]2
g(x, y)

√
k
(

R̂1
n(x, y) −R(x, y)

)

dxdy − B̃

∣

∣

∣

∣

P→ 0. (2.7.4)

First we write

√
k
(

R̂1
n(x, y) − R(x, y)

)

=
√
k
(

R̂1
n(x, y) − Rn (S1n(x), S2n(y))

)

+
√
k
(

Rn (S1n(x), S2n(y)) −R (S1n(x), S2n(y))
)

+
√
k
(

R (S1n(x), S2n(y)) − R(x, y)
)

.

From the assumption on integrability of g and the proof of Theorem 2.2 in Ein-

mahl, de Haan, and Li (2006), p. 2003, we get

∫∫

[0,1]2
|g(x, y)|

∣

∣

∣

√
k
(

R̂1
n(x, y) −Rn(S1n(x), S2n(y))

)

−W (x, y)
∣

∣

∣
dxdy

≤ sup
0≤x,y≤1

∣

∣

∣

√
k
(

R̂1
n(x, y) − Rn(S1n(x), S2n(y))

)

−W (x, y)
∣

∣

∣

·
∫∫

[0,1]2
|g(x, y)|dxdy

P→ 0

(2.7.5)

and, by conditions (C2) and (C3)

∫∫

[0,1]2
|g(x, y)|

∣

∣

∣

√
k
(

Rn(S1n(x), S2n(y)) −R(S1n(x), S2n(y))
)

∣

∣

∣
dxdy

≤ sup
0≤x,y≤1

∣

∣

∣

√
k
(

Rn(S1n(x), S2n(y)) − R(S1n(x), S2n(y))
)

∣

∣

∣

·
∫∫

[0,1]2
|g(x, y)|dxdy

P→ 0.

(2.7.6)

Take ω in the Skorohod probability space introduced above such that

sup0≤x≤1 |W1(x)| and sup0≤y≤1 |W2(y)| are finite and (2.7.2) holds. For such ω
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we will show by means of dominated convergence that

∫∫

[0,1]2
|g(x, y)|

∣

∣

√
k
(

R(S1n(x), S2n(y)) − R(x, y)
)

+R1(x, y)W1(x) +R2(x, y)W2(y)
∣

∣dxdy → 0.

(2.7.7)

(i) Pointwise convergence of the integrand to zero for almost all (x, y) ∈ [0, 1]2.

Convergence in (x, y) follows from (2.7.2), provided R(x, y) is differentiable. The

set of points in which this might fail is by Lemma 2.7.1 equal to

DR :=

{

(x, y) ∈ [0, 1]2 : H({z}) > 0, z =
y

x+ y

}

.

Since H is a finite measure, there can be at most countably many z for which

H({z}) > 0. The set DR is then a union of at most countably many lines through

the origin, and hence has Lebesgue measure zero.

(ii) The domination of the integrand for all (x, y) ∈ [0, 1]2.

Comparing (2.7.1) and the moment conditions (2.2.4) we see that for all (x, y) ∈
[0, 1]2 it holds that |R1(x, y)| ≤ 1 and |R2(x, y)| ≤ 1. Hence for all (x, y) ∈ [0, 1]2,

|g(x, y)|
∣

∣

∣

√
k
(

R (S1n(x), S2n(y)) − R(x, y)
)

+R1(x, y)W1(x) +R2(x, y)W2(y)
∣

∣

∣

≤ |g(x, y)|
(√

k |R (S1n(x), S2n(y)) − R(x, y)| + |W1(x)| + |W2(y)|
)

.

We will show that the right-hand side in the inequality above is less than or equal

to M |g(x, y)| for all (x, y) ∈ [0, 1]2 and some positive constant M (depending on

ω). For that purpose we prove

sup
0≤x,y≤1

√
k|R(S1n(x), S2n(y)) −R(x, y)| = O(1).

The representation (2.2.1) implies that for all x, x1, x2, y, y1, y2 ∈ [0, 1]

|R(x1, y) −R(x2, y)| ≤ |x1 − x2|,

|R(x, y1) − R(x, y2)| ≤ |y1 − y2|.
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By these inequalities and (2.7.2) we now have

sup
0≤x,y≤1

√
k |R(S1n(x), S2n(y)) − R(x, y)|

≤ sup
0≤x,y≤1

√
k |R(S1n(x), S2n(y)) − R(S1n(x), y)|

+ sup
0≤x,y≤1

√
k |R(S1n(x), y) −R(x, y)|

≤ sup
0≤x≤1

√
k |S1n(x) − x| + sup

0≤y≤1

√
k |S2n(y) − y|

= O(1).

Recalling that sup0≤x≤1 |W1(x)| and sup0≤y≤1 |W2(y)| are finite completes the

proof of the domination, and hence the proof of (2.7.7).

Combining (2.7.5), (2.7.6) and (2.7.7) we get (2.7.4), and therefore (2.7.3) too.

Property (2.3.1) provides us with a statement analogous to (2.7.3), but with L̂1
n

replaced by l̂n. That is, we have

∣

∣

∣

∣

√
k

(
∫∫

[0,1]2
g(x, y)l̂n(x, y)dxdy − ϕ(θ0)

)

+ B̃

∣

∣

∣

∣

P→ 0. (2.7.8)

Using condition (C1) and the inverse mapping theorem we get that ϕ−1 is con-

tinuously differentiable in a neighborhood of ϕ(θ0) and Dϕ−1 (ϕ(θ0)) is equal

to Dϕ(θ0)
−1. By a routine argument, using the delta method (see for instance

Theorem 3.1 in van der Vaart (1998)), (2.7.8) implies

√
k(θ̂n − θ0)

P→ −Dϕ(θ0)
−1B̃

and, since B̃ is mean zero normally distributed (B̃
d
= −B̃),

√
k(θ̂n − θ0)

d→ Dϕ(θ0)
−1B̃.

�

Lemma 2.7.2. Let Hθ be the spectral measure and Σ(θ) the covariance matrix

in (2.4.2). If the mapping θ 7→ Hθ is weakly continuous at θ0, then θ 7→ Σ(θ) is

continuous at θ0.
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Proof of Lemma 2.7.2 Let θn → θ0. In view of the expression for Σ(θ) in

(2.4.2) and (2.4.3), the assumption that g is integrable and the fact that R, |R1|
and |R2| are bounded by 1 for all θ and (x, y) ∈ [0, 1]2, it suffices to show that

R(x, y; θn) → R(x, y; θ) and Ri(x, y; θ) → Ri(x, y; θ) for i = 1, 2 and for almost

all (x, y) ∈ [0, 1]2.

Convergence of R for all (x, y) ∈ [0, 1]2 follows directly from the representation of

R in terms of H in (2.2.3) and the definition of weak convergence. Convergence

of R1 and R2 in the points (x, y) ∈ (0, 1]2 for which Hθ0
({y/(x + y)}) = 0

follows from Lemma 2.7.1; see for instance in Billingsley (1968), Theorem 5.2(iii)

(note that by the moment constraints (2.2.4), Hθ/2 is a probability measure).

Since Hθ0
can have at most countably many atoms, R1 and R2 converge in all

(x, y) ∈ (0, 1]2 except for at most countably many rays through the origin. �

Proof of Corollary 2.4.3 By the continuous mapping theorem, it suffices to

show that

(Σ(θ̂n))−1/2Dϕ(θ̂n)
√
k(θ̂n − θ0)

d→ N(0, Ip),

with Ip the p× p identity matrix. By condition (C1) of Theorem 2.4.2, the map

θ 7→ Dϕ(θ) is continuous at θ0, so that, by the continuous mapping theorem,

Dϕ(θ̂n)
P→ Dϕ(θ0) as n→ ∞. Slutsky’s lemma and (2.4.1) yield

Dϕ(θ̂n)
√
k(θ̂n − θ0)

d→ Dϕ(θ0)Dϕ(θ0)
−1B̃ = B̃,

as n → ∞. By Lemma 2.7.2 and the assumption that the map θ 7→ Hθ is

weakly continuous, Σ(θ̂n)−1/2 P→ Σ(θ0)
−1/2. Apply Slutsky’s lemma once more to

conclude the proof. �

Proof of Theorem 2.4.4 We will show that, for the Skorohod construction

introduced before the proof of Theorem 2.4.2,

∣

∣

∣

∣

∫∫

[0,1]2

(

k
(

l̂n(x, y) − l(x, y; θ̂n)
)2

−
(

B(x, y) −Dl(x,y;θ)(θH0
)Dϕ(θH0

)−1B̃
)2
)

dxdy

∣

∣

∣

∣

P→ 0
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as n→ ∞. The left-hand side of the previous expression is less than or equal to

sup
0≤x,y≤1

∣

∣

∣

√
k
(

l̂n(x, y) − l(x, y; θ̂n)
)

− B(x, y) +Dl(x,y;θ)(θH0
)Dϕ(θH0

)−1B̃
∣

∣

∣

·
(∣

∣

∣

∣

∫∫

[0,1]2

(√
k
(

l̂n(x, y) − l(x, y; θH0
)
)

+B(x, y)
)

dxdy

∣

∣

∣

∣

+

∫∫

[0,1]2

∣

∣

∣

√
k
(

l(x, y; θH0
) − l(x, y; θ̂n)

)

−Dl(x,y;θ)(θH0
)Dϕ(θH0

)−1B̃
∣

∣

∣
dxdy

)

=: S(I1 + I2).

From (2.7.8) with g ≡ 1, 1 ∈ R
p, we read I1

P→ 0. We need to prove that

S = OP(1) and I2 = oP(1).

Proof of S = OP(1) We have

S ≤ sup
0≤x,y≤1

|B(x, y)| + sup
0≤x,y≤1

∣

∣

∣

√
k
(

l̂n(x, y) − l(x, y; θH0
)
)∣

∣

∣

+ sup
0≤x,y≤1

∣

∣

∣

√
k
(

l(x, y; θH0
) − l(x, y; θ̂n)

)

+Dl(x,y;θ)(θH0
)Dϕ(θH0

)−1B̃
∣

∣

∣

=: sup
0≤x,y≤1

|B(x, y)| + S1 + S2.

From the definition of process B it follows that |B(x, y)| is almost surely bounded.

Furthermore, we have

S1 = sup
0≤x,y≤1

∣

∣

∣

√
k
(

R̂1
n(x, y) −R(x, y; θH0

)
)∣

∣

∣
+ o(1)

≤ sup
0≤x,y≤1

∣

∣

∣

√
k
(

R̂1
n(x, y) −Rn(S1n(x), S2n(y))

)∣

∣

∣

+ sup
0≤x,y≤1

∣

∣

∣

√
k
(

Rn(S1n(x), S2n(y)) − R(S1n(x), S2n(y); θH0
)
)

∣

∣

∣

+ sup
0≤x,y≤1

∣

∣

∣

√
k
(

R(S1n(x), S2n(y); θH0
) −R(x, y; θH0

)
)

∣

∣

∣
+ o(1)

almost surely. In the last part of the proof of Theorem 2.4.2 we have shown that

the third term is almost surely bounded, and by the proof of Theorem 2.2 in
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Einmahl, de Haan, and Li (2006) we know that the first two terms are bounded in

probability. Let M denote a constant (depending on θH0
) bounding the gradient

of θ → l(x, y; θ) at θH0
in (x, y) ∈ [0, 1]2. Then by (2.4.1)

S2 ≤M
∥

∥

∥

√
k(θ̂n − θH0

)
∥

∥

∥
+M

∥

∥

∥
Dϕ(θH0

)−1B̃
∥

∥

∥
= OP(1).

Proof of I2 = oP(1) In Theorem 2.4.2 we have shown

Tn :=
√
k(θ̂n − θH0

)
P→ −Dϕ(θH0

)−1B̃ =: N.

By Slutsky’s lemma, it is also true that (Tn, N)
P→ (N,N). By Skorohod con-

struction there exists a probability space, call it Ω∗, such that it contains both

T ∗n and N∗n, where (T ∗n , N
∗
n)

d
= (Tn, N) and

(T ∗n , N
∗
n)

a.s.→ (N∗, N∗). (2.7.9)

Set θ̂∗n := T ∗n/
√
k+ θH0

d
= Tn/

√
k+ θH0

= θ̂n. Let Ω∗0 ⊂ Ω∗ be a set of probability

one on which N∗ is finite and the convergence in (2.7.9) holds. We will show

that on Ω∗0

I∗2 :=

∫∫

[0,1]2
X∗n(x, y)dxdy

:=

∫∫

[0,1]2

∣

∣

∣

√
k
(

l(x, y; θ̂∗n) − l(x, y; θH0
)
)

−Dl(x,y;θ)(θH0
)N∗n

∣

∣

∣
dxdy

converges to zero. Since I∗2
d
= I2, the above convergence (namely I∗2

a.s.→ 0) will

imply I2
P→ 0. To show that I∗2 converges to zero on Ω∗0 we will once more apply

the dominated convergence theorem. From now on we work on Ω∗0.

(i) Pointwise convergence of X∗n(x, y) to zero.

We have that

X∗n(x, y) ≤
∣

∣

∣

√
k
(

l(x, y; θ̂∗n) − l(x, y; θH0
) −Dl(x,y;θ)(θH0

)(θ̂∗n − θH0
)
)∣

∣

∣

+
∣

∣Dl(x,y;θ)(θH0
)(T ∗n −N∗n)

∣

∣ .
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Because of (2.7.9), differentiability of θ 7→ l(x, y; θ) and continuity of matrix

multiplication, the right-hand side of the above inequality converges to zero, for

all (x, y) ∈ [0, 1]2.

(ii) Domination of X∗n(x, y).

Let M be as above. Since the sequences (T ∗n) = (
√
k(θ̂∗n − θH0

)) and (N∗n) are

convergent and hence bounded, we have

sup
0≤x,y≤1

X∗n(x, y) ≤M
∥

∥

∥

√
k(θ̂∗n − θH0

)
∥

∥

∥
+M ‖N∗n‖ = O(1).

This concludes the proof of the domination, and hence the proof of I2
P→ 0. �

Proof of Lemma 2.6.1 Without loss of generality, we can assume that F is

itself a parallel elliptical distribution, that is, (X, Y ) is given as in (2.6.1) with

ρ = 0 in (2.6.2). Under the assumptions of the lemma and by Theorem 2.3 in

Klüppelberg, Kuhn, and Peng (2007), there exists a function h : [0,∞)2 → R

such that as t ↓ 0 and for all (x, y) ∈ [0,∞)2,

t−1
P (1 − F1(X) ≤ tx, 1 − F2(Y ) ≤ ty) − R(x, y; ν)

A(F←2 (1 − t))
→ h(x, y). (2.7.10)

Moreover, the convergence in (2.7.10) holds uniformly on {(x, y) ∈ [0,∞)2 :

x2 + y2 = 1}, and the function h is bounded on that region; see Klüppelberg,

Kuhn, and Peng (2007) for an explicit expression of the function h.

Condition (2.6.4) obviously implies that z 7→ P(Z > z) is regularly varying

at infinity with index −ν. Hence, the same is true for the function 1 − F2,

see Hult and Lindskog (2002). By Proposition 1.5.7 and Theorem 1.5.12 in

Bingham, Goldie, and Teugels (1987), the function x 7→ |A(F←2 (1 − 1/x))| is

regularly varying at infinity with index β/ν. Hence, for every α < −β/ν we have

A(F←2 (1 − 1/x)) = o(x−α) as x → ∞, or A(F←2 (1 − t)) = o(tα) as t ↓ 0. As a

consequence, for every α < −β/ν we have as t ↓ 0,

t−1
P (1 − F1(X) ≤ tx, 1 − F2(Y ) ≤ ty) −R(x, y; ν) = O(tα),



Chapter 2. A Method of Moments Estimator of Tail Dependence 40

uniformly on {(x, y) ∈ [0,∞)2 : x2 + y2 = 1}. Uniformity on {(x, y) ∈ [0,∞)2 :

x+ y = 1} now follows as in the proof of Theorem 2.2 in Einmahl, de Haan, and

Li (2006). �



Chapter 3

A Method of Moments Estimator

of Tail Dependence in Elliptical

Copula Models

[Based on A. Krajina, A Method of Moments Estimator of Tail Dependence in

Elliptical Copula Models, CentER Discussion Paper Series 2009-42.]

Abstract. An elliptical copula model is a distribution function whose copula is that of

an elliptical distribution. The tail dependence function in such a bivariate model has

a parametric representation with two parameters: a tail parameter and a correlation

parameter. The correlation parameter can be estimated by robust methods based on

the whole sample. Using the estimated correlation parameter as plug-in estimator, we

then estimate the tail parameter applying a modification of the method of moments

approach proposed in the paper by J.H.J. Einmahl, A. Krajina and J. Segers [Bernoulli

14(4), 2008, 1003-1026]. We show that such an estimator is consistent and asymptoti-

cally normal. Also, we derive the joint limit distribution of the estimators of the two

parameters. By a simulation study, we illustrate the small sample behavior of the es-

timator of the tail parameter and we compare its performance to that of the estimator

proposed in the paper by C. Klüppelberg, G. Kuhn and L. Peng [Scandinavian Journal

of Statistics 35(4), 2008, 701-718].
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3.1 Introduction

The bivariate elliptical distributions, see for example Fang, Kotz, and Ng (1990);

Berman (1992), are frequently used in various areas of statistical application,

mainly in different branches of financial mathematics, such as risk management,

see Embrechts, McNeil, and Straumann (2002); Landsman and Valdez (2003);

Kaynar, Birbil, and Frenk (2007). They are a natural extension of Gaussian

and t-distributions, and a family wide enough to capture many traits of real-life

problems. A number of recent papers have studied the tail behavior of bivari-

ate elliptical distributions, see Abdous, Fougères, and Ghoudi (2005); Asimit and

Jones (2007); Hashorva (2005); Demarta and McNeil (2005). An estimator of the

tail dependence function of elliptical distributions was suggested in Klüppelberg,

Kuhn, and Peng (2007). To model the tail dependence, a wider class of so-called

elliptical copula models can be considered instead of the elliptical distributions,

since the (tail) dependence structure does not depend on the marginal distribu-

tions. The distribution function from an elliptical copula model is a distribution

function which has the copula of an elliptical distribution. The tail dependence

of the elliptical copula models was estimated in Klüppelberg, Kuhn, and Peng

(2008).

Let (X, Y ) be a random vector with continuous distribution function F and

marginals F1, F2. To study the upper tail dependence structure, the tail depen-

dence function of (X, Y ) is defined as

R(x, y) = lim
t↓0

t−1
P (1 − F1(X) ≤ tx, 1 − F2(Y ) ≤ ty) ,

where x ≥ 0 and y ≥ 0, see for example Beirlant, Goegebeur, Segers, and

Teugels (2004); de Haan and Ferreira (2006); Falk, Hüsler, and Reiss (2004);

Huang (1992). The function R is concave; 1 ≤ R(x, y) ≤ min{x, y}, for all x ≥ 0

and y ≥ 0; and R is homogeneous of order one: R(tx, ty) = tR(x, y), for all

x ≥ 0, y ≥ 0 and t ≥ 0. The upper tail dependence coefficient, R(1, 1), is often

used as a simple measure of tail dependence.

For an elliptical copula model the tail dependence function depends only on

the distribution function, through its copula. Since the copula of an elliptical

distribution, and hence the tail dependence function of an elliptical copula model
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too, belongs to a two-parameter family, the estimation of the tail dependence

function reduces to the estimation of the two copula parameters: the correlation

parameter and the tail parameter.

The correlation can be estimated using the whole sample, from the rank cor-

relations, which are independent of the precise model. In Klüppelberg, Kuhn,

and Peng (2008), the tail parameter was estimated by matching the empirical

tail dependence function and the theoretical one, after plugging in the estimated

correlation. Using the estimated correlation coefficient as plug-in estimator, in

the present chapter we apply the method of moments procedure from Einmahl,

Krajina, and Segers (2008) to estimate the tail parameter. The method provides

a computationally straightforward estimator which is obtained as a solution of

a single equation. The estimator is consistent and asymptotically normal. An

interesting result that does not appear in the similar literature, namely the joint

limit distribution of the tail parameter and the correlation parameter, is derived.

A simulation study shows that the small sample behavior of the estimator of the

tail parameter is comparable to and competitive with the small sample behavior

of the estimator derived in Klüppelberg, Kuhn, and Peng (2008).

The chapter is organized as follows. In Section 3.2 we state and describe the

model. We formulate the problem and present the estimation method in Sec-

tion 3.3. The main results are given in Section 3.4. In Section 3.5 the perfor-

mance of the estimator is illustrated using simulated data. All proofs are deferred

to Section 3.6.

3.2 Tail dependence in elliptical copula models

Let (Z1, Z2) be an elliptically distributed random vector, that is, it satisfies the

distributional equality

(Z1, Z2)
d
= GAU ,

where G > 0 is the generating random variable, A is a 2 × 2 matrix such that

Σ = AA⊤ is of full rank, and U is a two-dimensional random vector independent

of G and uniformly distributed on the unit circle {(z1, z2) ∈ R
2 : z2

1 + z2
2 = 1}.
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In this case, the matrix Σ can be written as

Σ =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

,

where σ1 > 0, σ2 > 0, and −1 < ρ < 1. The parameter ρ is called the correlation

coefficient and coincides with the usual correlation, if second moments exist.

A distribution function F follows an elliptical copula model if the copula of F

is the same as the copula of some elliptical distribution with generating ran-

dom variable G and correlation coefficient ρ. This model is also known as

the meta-elliptical model, as introduced in Fang, Fang, and Kotz (2002). If G

is regularly varying with index ν > 0 and if |ρ| < 1, the expression (3.2.1)

for the tail dependence function R was derived in Klüppelberg, Kuhn, and

Peng (2007). (Recall that a random variable G is regularly varying with in-

dex ν > 0 if P(G > x) = x−νL(x), and L is a slowly varying function.) Setting

f(x, y; ρ, ν) = arctan(((x/y)1/ν − ρ)/
√

1 − ρ2) ∈ [− arcsin ρ, π/2] for x, y > 0,

that expression reads

R(x, y; ρ, ν) =
x
∫ π/2

f(x,y;ρ,ν)
(cosφ)νdφ+ y

∫ f(x,y;ρ,ν)

− arcsin ρ
(sin(φ+ arcsin ρ))νdφ

∫ π/2

−π/2
(cos φ)νdφ

, (3.2.1)

and equivalently,

R(x, y; ρ, ν) =
x
∫ π/2

f(x,y;ρ,ν)
(cosφ)νdφ+ y

∫ π/2

f(y,x;ρ,ν)
(cosφ)νdφ

∫ π/2

−π/2
(cosφ)νdφ

(3.2.2)

=

∫ π/2

− arcsin ρ
min {x(cos φ)ν , y(sin(φ+ arcsin ρ))ν}dφ

∫ π/2

−π/2
(cosφ)νdφ

. (3.2.3)

The expression in (3.2.2) was derived in Klüppelberg, Kuhn, and Peng (2008).

The one in (3.2.3) is easily obtained from the above formulas.
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An expression for Pickands dependence function A(x) := 1 − R(1 − x, x) of the

bivariate t-distribution was derived in Demarta and McNeil (2005),

A(x) = xFt(ν+1)

(

( x
1−x

)
1

ν − ρ
√

1 − ρ2

√
ν + 1

)

+ (1 − x)Ft(ν+1)

(

(1−x
x

)
1

ν − ρ
√

1 − ρ2

√
ν + 1

)

,

where Ft(ν+1) is the distribution function of t-distributed random variable with

ν+1 degrees of freedom. It was shown in Asimit and Jones (2007) that Pickands

dependence function of an elliptical distribution for which the generating variable

G is regularly varying with index ν > 0 is the same. Despite the different

appearance, expressions (3.2.1)-(3.2.3) lead to the same Pickands dependence

function.

3.3 Estimation

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a continuous distribution

function F with marginals F1 and F2. Assume that F follows an elliptical copula

model with underlying generating variable G > 0 and correlation coefficient

ρ. To estimate the tail dependence function R, we will estimate the unknown

parameters, namely the correlation coefficient ρ and the tail index ν, under the

assumptions that |ρ| < 1 and that G is regularly varying with index ν > 0.

The above assumption corresponds to asymptotic dependence. If ρ = 1 or ρ =

−1, we get complete dependence, R(1−x, x) = min{1−x, x}, for any ν. In case

of −1 < ρ < 1 and ν ↓ 0 we have a mixture between complete dependence and

independence, R(1−x, x) = π−1(π/2+arcsin ρ) min{1−x, x}. If ν ↑ ∞, then for

any ρ we are in the case of asymptotic independence, since then R(1− x, x) ↓ 0.

The estimation consists of two steps. We first estimate the correlation coefficient

ρ using Kendall’s τ , see Kendall (1938, 1948), and the relation τ = (2/π) arcsin ρ

obtained in Lindskog, McNeil, and Schmock (2003), see also Theorem 4.2 in

Hult and Lindskog (2002). Then, using expression (3.2.1) with the consistent

estimator ρ̂ from the previous step plugged in for the true correlation coefficient

ρ, we apply the method of moments estimation procedure introduced in Ein-

mahl, Krajina, and Segers (2008) to estimate ν. A similar approach appears



Chapter 3. An Estimator of Tail Dependence in Elliptical Copula Models 46

in Klüppelberg, Kuhn, and Peng (2008), where the tail parameter is estimated

using the pointwise inverse of R(x, y; ρ, ν) with respect to ν, after the correlation

coefficient ρ in R has been replaced by the same consistent estimator as above.

3.3.1 Estimation of the correlation parameter

Kendall’s τ of two random variables X and Y is defined by

τ = P ((X −X ′)(Y − Y ′) > 0) − P ((X −X ′)(Y − Y ′) < 0) ,

where (X ′, Y ′) is independent of and identically distributed as (X, Y ). To esti-

mate τ , we will use the classical estimator

τ̂ =
2

n(n− 1)

∑

1≤i<j≤n

sign ((Xi −Xj)(Yi − Yj)) ,

and define the estimator of ρ by

ρ̂ := sin
(π

2
τ̂
)

.

This is a consistent and asymptotically normal estimator of ρ, with rate of con-

vergence 1/
√
n, which follows from the corresponding properties of τ̂ , see for

instance Lee (1990).

3.3.2 Estimation of the tail parameter

Denote by RX
i and RY

i the rank of Xi among X1, . . . , Xn and the rank of Yi

among Y1, . . . , Yn, respectively. Then for 1 ≤ k ≤ n,

R̂n(x, y) :=
1

k

n
∑

i=1

1

{

RX
i > n+

1

2
− kx, RY

i > n+
1

2
− ky

}

is a nonparametric estimator of R. When studying the asymptotic properties of

this estimator, k = kn is an intermediate sequence, that is, k → ∞ and k/n→ 0

as n→ ∞.
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Denote the parameter space by Θ̄ := Θ̄ρ × Θ̄ν , with Θ̄ρ = (−1, 1) and Θ̄ν =

(0,∞). Its elements are pairs θ̄ := (ρ, ν). The tail dependence function of an ellip-

tical copula model belongs to a parametric family {R(·, ·; θ̄) : θ̄ ∈ Θ̄}. Given the

correlation parameter ρ, it reduces to a single-parameter family {R(·, ·; ρ, ν) : ν ∈
Θ̄ν}. We use the approach from Einmahl, Krajina, and Segers (2008) to esti-

mate ν: for a given ρ and an integrable function g : [0, 1]2 → R, the method of

moments estimator of ν is defined as the solution to

∫∫

[0,1]2
g(x, y)R̂n(x, y)dxdy =

∫∫

[0,1]2
g(x, y)R(x, y; ρ, ν̂n)dxdy. (3.3.1)

We can simplify the above equation by an appropriate choice of the function g.

Choosing g(x, y) = 1{x+ y ≤ 1}, (x, y) ∈ [0, 1]2, reduces the area of integration

from the unit square to the triangle {(x, y) ∈ [0, 1]2 : x+ y ≤ 1}. Due to homo-

geneity of R, see for instance Beirlant, Goegebeur, Segers, and Teugels (2004);

de Haan and Ferreira (2006), we get that

∫∫

[0,1]2
1{x+ y ≤ 1}R(x,y; ρ, ν)dxdy =

1

3

∫

[0,1]

R(1 − x, x; ρ, ν)dx.

Instead of solving the equation (3.3.1), for a given ρ we define the estimator of

ν as the solution to

∫

[0,1]

R̂n(1 − x, x)dx =

∫

[0,1]

R(1 − x, x; ρ, ν̂)dx.

That is, for a given ρ ∈ Θ̄ρ, we define the estimator of ν as the inverse of the

function ϕ̄ρ : Θ̄ν → R, defined by

ϕ̄ρ(ν) :=

∫

[0,1]

R(1 − x, x; ρ, ν)dx,

in the point
∫

[0,1]
R̂n(1 − x, x)dx. However, if ρ > 0 this is not possible for all ν,

since for positive ρ the function ϕ̄ρ is not invertible on its whole domain (0,∞).

For each ρ > 0 there exists a point ν∗ = ν∗(ρ), such that the function ν 7→ ϕ̄ρ(ν)

is increasing on (0, ν∗(ρ)) and decreasing on (ν∗(ρ),∞), see Figure 3.1.

We will restrict the parameter space so to avoid the fact that ν∗ changes with
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Figure 3.1: Graph of ν 7→ ϕ̄ρ(ν) for ρ ∈ {0.7, 0.9}. The function is decreasing
on the interval (ν∗(ρ),∞), as indicated by the vertical lines.

ρ, while retaining as much flexibility as possible. We choose some ρ∗ < 1, nu-

merically approximate the value of ν∗(ρ∗), and restrict Θ̄ = (−1, 1) × (0,∞) to

(−1, ρ∗) × (ν∗,∞) =: Θρ × Θν =: Θ. For example, if ρ∗ = 0.9, we can take

ν∗ = 0.66, what leads to a parameter space that is appropriate for applications.

For every ρ ∈ Θρ denote by ϕρ the restriction of ϕ̄ρ to Θν , that is, for every

ρ ∈ Θρ,

ϕρ(ν) :=

∫

[0,1]

R(1 − x, x; ρ, ν)dx , ν ∈ Θν .

Finally, for ρ̂ ∈ Θρ, we define ν̂n, the moment estimator of the tail parameter ν,

as the solution to

∫

[0,1]

R̂n(1 − x, x)dx =

∫

[0,1]

R(1 − x, x; ρ̂, ν̂)dx,

that is,

ν̂n := ϕ−1
ρ̂

(
∫

[0,1]

R̂n(1 − x, x)dx

)

. (3.3.2)
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The estimator is well-defined with probability tending to one, as a consequence

of the consistency of ρ̂ and the uniform consistency of R̂n(1− x, x). If ρ̂ /∈ Θρ or

if
∫

[0,1]
R̂n(1 − x, x)dx /∈ Θν , let ν̂n be some fixed value in Θν .

Remark 3.3.1. (i) In the central part of the interval [0, 1] the functions x 7→
R(1−x, x; ρ, ν), ρ > 0, behave in a favorable way, that is, they are decreas-

ing in ν, see Figure 3.2(a). To keep the parameter space as large as possible,

we could restrict the area of integration from [0, 1] to [1/2− δ, 1/2 + δ], for

some δ ∈ (0, 1/2], see Figure 3.2(b). However, this may result in a less

efficient estimator.

(ii) Note that the set Θ = Θρ ×Θν is not unique. For any fixed ρ∗ we can take

Θ = (−1, ρ∗) × (ν,∞), with ν ≥ ν∗(ρ∗), see Figure 3.2(b), the solid line.

Also, one could fix ν∗ > 0 in advance, and appropriately restrict ρ to the

interval (−1, ρ∗(ν∗)).
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ρ = 0.5 and ν ∈ {0.01, 1, 3}.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

ρ

ν*
(ρ

)

δ=0.5
δ=0.25

(b) Graphs of ρ 7→ ν∗(ρ) for δ ∈
{0.25, 0.5}, where δ = 0.5 corresponds

to integration over [0, 1].

Figure 3.2



Chapter 3. An Estimator of Tail Dependence in Elliptical Copula Models 50

3.4 Main results

Let ρ̂ and ν̂n be as in Section 3.3 and let ρ0 ∈ Θρ and ν0 ∈ Θν be the true

values of the correlation coefficient and the tail index, respectively. The basic

assumption is that

(C0) g is integrable and g and Θ = Θρ×Θν are such that ϕρ is a homeomorphism

between Θν and its image, for every ρ ∈ Θρ.

For some of the results, we will need the following conditions:

(C1) there exists an α > 0 such that as t→ 0,

t−1
P (1 − F1(X1) ≤ tx, 1 − F2(Y1) ≤ ty) − R(x, y) = O(tα),

uniformly on {(x, y) ∈ (0,∞)2 : x+ y = 1};

(C2) k = kn → ∞ and k = o(n2α/(1+2α)) as n→ ∞, with α from (C1).

Proposition 3.4.1. Assume an elliptical copula model in R
2 with (ρ0, ν0) ∈ Θ.

If (C0) holds, then the function H : Θ → Θρ × R defined by

H(ρ, ν) :=

(

ρ,

∫

[0,1]

R(1 − x, x; ρ, ν)dx

)

, (3.4.1)

is continuously differentiable at (ρ0, ν0) and its differential in this point is regular.

An application of the inverse mapping theorem yields the following consequence

of Proposition 3.4.1. Let Df(x) denote the differential of f in x.

Corollary 3.4.2. Assume the situation as in Proposition 3.4.1. Then there exist

open neighborhoods U ⊆ Θ of (ρ0, ν0) and V ⊆ H(Θ) of H(ρ0, ν0) such that the

restriction H|U : U → V is one-to-one. Moreover, its inverse

K := (H|U)−1 : V → U (3.4.2)

is continuously differentiable and for the differential of K in H(ρ0, ν0) we have

DK (H (ρ0, ν0)) = (DH(ρ0, ν0))
−1 .
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Next we present the consistency and asymptotic normality results for ν̂n and

(ν̂n, ρ̂), respectively.

Theorem 3.4.3 (Consistency of ν̂n). Assume the situation as in Proposition

3.4.1. It holds that

ν̂n
P→ ν0, as n→ ∞, k → ∞, k/n→ 0.

Denote by W a mean-zero Wiener process on [0,∞)2 with covariance function

EW (x1, y1)W (x2, y2) = R(x1 ∧ x2, y1 ∧ y2; ρ0, ν0), (3.4.3)

and for x, y ∈ [0,∞) denote

W1(x) := W (x,∞), W2(y) := W (∞, y). (3.4.4)

Further, for (x, y) ∈ [0,∞)2 let Ṙ1(x, y) and Ṙ2(x, y) be the partial derivatives of

R in the point (x, y) with respect to the first and second coordinates, respectively.

Finally, define the stochastic process B on [0,∞)2 by

B(x, y) := W (x, y) − Ṙ1(x, y)W1(x) − Ṙ2(x, y)W2(y). (3.4.5)

Let Nρ ∼ N(0, σ2
ρ) be the normal limiting random variable of

√
n(ρ̂ − ρ0) and

denote by Nν ∼ N(0, σ2
ν) the normal random variable Nν := c

∫

[0,1]
B(1−x, x)dx,

where

c :=

(

∂/∂ν

∫

[0,1]

R(1 − x, x; ρ0, ν)dx
∣

∣

∣

ν=ν0

)−1

. (3.4.6)

Theorem 3.4.4 (Asymptotic normality of (ν̂n, ρ̂)). Let k/n → 0. Assume the

situation as in Proposition 3.4.1 and assume that the conditions (C1) and (C2)

hold. Then as n→ ∞ and k → ∞,

(√
k(ν̂n − ν0),

√
n(ρ̂− ρ0)

)

d→ (Nν , Nρ),

where Nν and Nρ are independent.
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Remark 3.4.5. The above results are not tied to the Kendall’s tau based esti-

mator of ρ. The consistency and the asymptotic normality of ν̂n hold whenever

the rate of convergence of the estimator of ρ is faster than 1/
√
k.

3.5 Simulation study

We simulated 50 random samples of size n = 1000 from two elliptical copula

models with correlation coefficient ρ0 = 0.3 and tail parameter ν0 ∈ {1, 5}.

The two estimators that we compare are the MoME, the method of moments

estimator ν̂n defined in (3.3.2), and the KKP estimator of tail parameter from

Klüppelberg, Kuhn, and Peng (2008) with the weight function m(ψ) = 1 −
(4ψ/π − 1)2, 0 ≤ ψ ≤ π/2. The KKP estimator is defined by

ν̂KKP :=
1

M(Q̂ ∩ Q̂∗)

∫

Q̂∩Q̂∗

ν̃
(√

2 cosψ,
√

2 sinψ
)

M(dψ),

where M is the measure defined by m, ν̃(x, y) is the inverse of R(x, y; ρ̂, ν) with

respect to ν in the point R̂n(x, y), for x > 0, y > 0, and the sets Q̂ and Q̂∗ are

the subsets of [0, π/2] defined in such a way so that ν̂KKP is well-defined and that

it has desired asymptotic properties, see Klüppelberg, Kuhn, and Peng (2008).

In Figure 3.3 we plot for those two estimators the bias and the root mean squared

error (RMSE) against the effective sample size k.

The plots show that the MoME has much smaller bias than the KKP estimator.

Further, it appears to be more robust with respect to the choice of k, and better

than the KKP estimator for k large enough. Also, the value of k after which the

MoME performs better gets smaller as the tail parameter that is estimated gets

larger.
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Figure 3.3: The bias and the RMSE of two different estimators of tail coef-
ficient ν; MoME (−−−−), KKP (· · · · · · ).
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3.6 Proofs

Proof of Proposition 3.4.1 To show that the function H is continuously

differentiable we will show that its partial derivatives exist and are continuous

on Θ. Since H(ρ, ν) = (H1(ρ, ν), H2(ρ, ν)), where Hi : Θ → R, i = 1, 2, are given

by

H1(ρ, ν) = ρ,

H2(ρ, ν) =

∫

[0,1]

R(1 − x, x; ρ, ν)dx,

we have

∂H1

∂ρ
(ρ, ν) = 1,

∂H1

∂ν
(ρ, ν) = 0,

∂H2

∂ρ
(ρ, ν) = c−1

0 (1 − ρ2)ν/2

∫

[0,1]

x(1 − x)

(x2/ν + (1 − x)2/ν − 2ρx1/ν(1 − x)1/ν)
ν/2

dx,

∂H2

∂ν
(ρ, ν) = c−2

0

∫

[0,1]

(1 − x)C

(

ν, arctan

(

1−x
x

)1/ν − ρ
√

1 − ρ2

)

dx.

The last partial derivative relies on a similar result in Klüppelberg, Kuhn, and

Peng (2008); the notation used above also comes from that paper:

c0 =

∫ π/2

−π/2

(cosφ)νdφ, c1 =

∫ π/2

−π/2

(cosφ)ν ln(cosφ)dφ,

D(ν, z) = c0

∫ π/2

z

(cosφ)ν ln(cosφ)dφ− c1

∫ π/2

z

(cos φ)νdφ,

C(ν, z) = D(ν, z) + (ρ+
√

1 − ρ2 tan z)−νD(ν, arccos ρ− z).

All four partial derivatives exist and are continuous functions on Θ.

It can be shown that the partial derivative ∂H2/∂ν is negative for all (ρ, ν) ∈ Θ,

which implies that the differential is regular in every point in Θ. �
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Proof of Theorem 3.4.3 Let p2 : R
2 → R denote the projection onto the

second coordinate and let H and K be the mappings introduced in (3.4.1) and

(3.4.2), respectively. Note that ν0 can be written as

ν0 = (p2 ◦K)

(

ρ0,

∫

[0,1]

R(1 − x, x; ρ0, ν0)dx

)

.

Moreover, the estimator ν̂n has the representation

ν̂n = (p2 ◦K)

(

ρ̂,

∫

[0,1]

R̂n(1 − x, x)dx

)

. (3.6.1)

The uniform consistency of R̂n, see the proof of Theorem 2.2 in Einmahl, de Haan,

and Li (2006), and the equation (3.1) in Einmahl, Krajina, and Segers (2008)

imply
∫

[0,1]

R̂n(1 − x, x)dx
P→
∫

[0,1]

R(1 − x, x)dx. (3.6.2)

Hence the right-hand side of (3.6.1) is well defined with probability tending to

one. Further, from the continuous mapping theorem and Lee (1990) we know

that

ρ̂
P→ ρ0, (3.6.3)

as n → ∞. Using (3.6.2), (3.6.3) and continuity of p2 ◦ K, we obtain ν̂n
P→ ν0,

as n→ ∞, k → ∞ and k/n→ 0. �

Some more notation and technical results are needed for the proof of Theorem

3.4.4. For i = 1, . . . , n denote Ui := 1 − F1(Xi) and Vi := 1 − F2(Yi). Let

U1:n ≤ · · · ≤ Un:n and V1:n ≤ · · · ≤ Vn:n be the corresponding order statistics and

by ⌈a⌉ denote the smallest integer not smaller than a. Define

R̂1
n(x, y) :=

1

k

n
∑

i=1

1
{

RX
i > n+ 1 − kx, RY

i > n+ 1 − ky
}

,

Rn(x, y) :=
n

k
P

(

U1 ≤
kx

n
, V1 ≤

ky

n

)

,

Tn(x, y) :=
1

k

n
∑

i=1

1

{

Ui <
kx

n
, Vi <

ky

n

}

,
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and note that

R̂1
n(x, y) = Tn

(n

k
U⌈kx⌉:n,

n

k
V⌈ky⌉:n

)

.

It is easily seen that

sup
(x,y)∈[0,n/k]2

√
k
∣

∣

∣
R̂1

n(x, y) − R̂n(x, y)
∣

∣

∣
≤ 1√

k
→ 0,

as n→ ∞.

Let W , W1 and W2 be as in (3.4.3) and (3.4.4). Write

vn(x, y) =
√
k (Tn(x, y) −Rn(x, y)) , vn,1(x) := vn(x,∞) and vn,2(y) := vn(∞, y).

Proposition 3.1 in Einmahl, de Haan, and Li (2006) shows that for any T > 0

(

vn(x, y), (x, y) ∈ [0, T ]2; vn1(x), x ∈ [0, T ]; vn2(y), y ∈ [0, T ]
)

d→
(

W (x, y), (x, y) ∈ [0, T ]2; W1(x), x ∈ [0, T ]; W2(y), y ∈ [0, T ]
)

,

in the topology of uniform convergence, as n→ ∞.

Let Fn(x, y) = (1/n)
∑n

i=1 1{Xi ≤ x, Yi ≤ y} be the empirical distribution

function of F , and let Fn1 and Fn2 be the empirical distribution functions of

the marginals F1 and F2, respectively. Define the empirical process rn(x, y) :=√
n(Fn(x, y)−F (x, y)), (x, y) ∈ [−∞,∞]2 =: R̄

2, and denote by WB a Brownian

bridge on [−∞,∞]2 with covariance structure

EWB(x1, y1)WB(x2, y2) = F (min{x1, x2},min{y1, y2}) − F (x1, y1)F (x2, y2).

We know, see e.g. Neuhaus (1971), that rn
d→ WB in the topology of uniform

convergence, as n → ∞. Hence we obtain for the marginal processes, rnj
d→

WBj , where rnj(x) :=
√
n(Fnj(x) − Fj(x)), j = 1, 2, WB1(x) = WB(x,∞) and

WB2(x) = WB(∞, x).

Lemma 3.6.1. For fixed (x, y) ∈ [0,∞]2 and (t, w) ∈ [−∞,∞]2 it holds that as

n→ ∞, k → ∞, k/n→ 0,

Evn(x, y)rn(t, w) → 0.
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Proof Fix (x, y) ∈ [0,∞]2 and (t, w) ∈ R̄
2. Then,

Evn(x, y)rn(t, w) = E

[√
k (Tn(x, y) − Rn(x, y)) ·

√
n (Fn(x, y) − F (x, y))

]

=
1√
kn

E

[

n
∑

i=1

(

1

{

Ui <
kx

n
, Vi <

ky

n

}

− P

(

U1 ≤
kx

n
, V1 ≤

ky

n

))

·
n
∑

j=1

(1{Xj ≤ t, Yj ≤ w} − F (t, w))

]

=
1√
kn

E

[

n
∑∑

i,j=1,i6=j

(

1

{

Ui <
kx

n
, Vi <

ky

n

}

− P

(

U1 ≤
kx

n
, V1 ≤

ky

n

))

· (1{Xj ≤ t, Yj ≤ w} − F (t, w))

]

+
1√
kn

E

[

n
∑

i=1

(

1

{

Ui <
kx

n
, Vi <

ky

n

}

− P

(

U1 ≤
kx

n
, V1 ≤

ky

n

))

· (1{Xi ≤ t, Yi ≤ w} − F (t, w))

]

=: E1 + E2.

Using independence of the sample, we get

E1 =
1√
kn

n
∑

i,j=1,i6=j

E

[

1

{

Ui <
kx

n
, Vi <

ky

n

}

− P

(

U1 ≤
kx

n
, V1 ≤

ky

n

)]

·E [1{Xj ≤ t, Yj ≤ w} − F (t, w)]

= 0.
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Since the factors in the sum in E2 have the same distribution, we get

|E2| =

√

n

k

∣

∣

∣

∣

∣

E

[

(

1

{

U1 <
kx

n
, V1 <

ky

n

}

− P

(

U1 ≤
kx

n
, V1 ≤

ky

n

))

· (1{X1 ≤ t, Y1 ≤ w} − F (t, w))

]∣

∣

∣

∣

∣

≤
√

n

k

(∣

∣

∣

∣

∣

E

[

1

{

U1 <
kx

n
, V1 <

ky

n

}

1{X1 ≤ t, Y1 ≤ w}
]

∣

∣

∣

∣

∣

+ P

(

U1 ≤
kx

n
, V1 ≤

ky

n

)

F (t, w)

)

≤
√

n

k
P

(

U1 <
kx

n
, V1 <

ky

n

)

(1 + F (t, w))

≤ 2

√

k

n
min{x, y} → 0,

as n→ ∞, k → ∞ and k/n→ 0. �

Lemma 3.6.2. Let T > 0. In the topology of uniform convergence, as n → ∞,

k → ∞, k/n→ 0, the process

(vn(x, y), (x, y) ∈ [0, T ]2; vn1(x), x ∈ [0, T ]; vn2(y), y ∈ [0, T ], rn(x, y), (x, y) ∈ R̄
2)

(3.6.4)

converges in distribution to

(W (x, y), (x, y) ∈ [0, T ]2; W1(x), x ∈ [0, T ]; W2(y), y ∈ [0, T ], WB(x, y), (x, y) ∈ R̄
2),

(3.6.5)

with

(W (x, y), (x, y) ∈ [0, T ]2; W1(x), x ∈ [0, T ]; W2(y), y ∈ [0, T ])

and (WB(x, y), (x, y) ∈ R̄
2) independent.

Proof From the weak convergence, and hence tightness, of

(

vn(x, y), (x, y) ∈ [0, T ]2; vn1(x), x ∈ [0, T ]; vn2(y), y ∈ [0, T ]
)
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and (rn(x, y), (x, y) ∈ R̄
2), we get the tightness of the process in (3.6.4).

By the Cramér-Wold device, see for example Shorack and Wellner (1986), and

the univariate Lindeberg-Feller central limit theorem, using Lemma 3.6.1, we get

convergence of the finite-dimensional distributions. �

Using the Skorohod construction we get a probability space containing all pro-

cesses ṽn, ṽn1, ṽn2, r̃n, W̃ , W̃1, W̃2 and W̃B, where

(ṽn, ṽn1, ṽn2, r̃n)
d
= (vn, vn1, vn2, rn),

(W̃ , W̃1, W̃2, W̃B)
d
= (W,W1,W2,WB),

and it holds that as n→ ∞, k → ∞, k/n→ 0,

sup
(x,y)∈[0,T ]2

|ṽn(x, y) − W̃ (x, y)| → 0 a.s., (3.6.6)

sup
(x,y)∈R̄2

|r̃n(x, y) − W̃B(x, y)| → 0 a.s., (3.6.7)

and the analogous statements hold for marginal processes vn1, vn2, rn1 and rn2

as well. We work on this space from now on, but keep the old notation (without

tilde’s).

Lemma 3.6.3. Assume the situation as in Theorem 3.4.4. On the probability

space of the Skorohod construction

(√
k

(
∫

[0,1]

R̂n(1 − x, x)dx−
∫

[0,1]

R(1 − x, x)dx

)

,
√
n(ρ̂− ρ0)

)

P→
(
∫

[0,1]

B(1 − x, x)dx,Nρ

)

, (3.6.8)

as n→ ∞, k → ∞ and k/n→ 0, where
∫

[0,1]
B(1− x, x)dx and Nρ are indepen-

dent, and B is the process defined in (3.4.5).

Proof By Lemma 3.6.2 it is sufficient to show that

√
k
(

∫

[0,1]
R̂n(1 − x, x)dx−

∫

[0,1]
R(1 − x, x)dx

)

P→
∫

B(1 − x, x)dx, (3.6.9)
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and √
n(ρ̂− ρ0)

P→ Nρ, (3.6.10)

since Nρ is a functional of WB, by (3.6.12) and the delta method.

For the convergence in (3.6.10) we will first show that
√
n(τ̂ − τ0)

P→ Nτ , where

Nτ is the limiting normal random variable for τ̂ , see for example Kendall (1948)

or Lee (1990). By the Hoeffding representation of U-statistics and its properties,

see for example Lee (1990), we get that

√
n(τ̂ − τ0) = 2

√
n

(
∫∫

R̄2

Φ(x, y)dFn(x, y) −
∫∫

R̄2

Φ(x, y)dF (x, y)

)

+ oP(1),

where Φ(x, y) = 1 − 2F1(x) − 2F2(y) + 4F (x, y). Let rn, rn1, rn2, WB, WB1 and

WB2 be as defined before Lemma 3.6.1. From integration by parts we get

√
n(τ̂ − τ0) = −8

∫∫

R2

rn(x, y)dF (x, y) + 4

∫

R

rn1(x)dF1(x)

+4

∫

R

rn2(y)dF2(y) + oP(1). (3.6.11)

Denote

Nτ := −8

∫∫

R2

WB(x, y)dF (x, y) + 4

∫

R

WB1(x)dF1(x) + 4

∫

R

WB2(y)dF2(y).

(3.6.12)

The result in (3.6.7), its marginal versions and (3.6.11) yield that
√
n(τ̂ − τ0)

P→
Nτ . Since ρ̂ = sin((π/2)τ̂), the delta method yields (3.6.10), where Nρ is an

appropriate function of Nτ . Note that Nρ is a normally distributed random

variable with mean zero and some variance, σ2
ρ, say. �

Lemma 3.6.4. Assume the situation as in Proposition 3.4.1. As n → ∞, k →
∞ and k/n→ 0,

ϕ−1
ρ̂ (
∫

[0,1]
R̂n(1 − x, x)dx) − ϕ−1

ρ̂ (
∫

[0,1]
R(1 − x, x; ρ0, ν0)dx)

∫

[0,1]
R̂n(1 − x, x)dx−

∫

[0,1]
R(1 − x, x; ρ0, ν0)dx

P→ c, (3.6.13)
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where c is defined in (3.4.6), and

√
k

(

ϕ−1
ρ̂

(
∫

[0,1]

R(1 − x, x; ρ0, ν0)dx

)

− ϕ−1
ρ0

(
∫

[0,1]

R(1 − x, x; ρ0, ν0)dx

))

P→ 0. (3.6.14)

Proof Throughout the proof we omit writing the region of integration, [0, 1].

As before, let H be the function on Θ given by H(ρ, ν) = (ρ, ϕρ(ν)), let K be

its local inverse, and let p2 be the projection onto the second coordinate. Since

K(ρ, µ) = (ρ, ν), where ν is such that µ =
∫

[0,1]
R(1 − x, x; ρ, ν)dx, we see that

(p2 ◦K)(ρ, µ) = ϕ−1
ρ (µ). Denote µ0 :=

∫

R(1 − x, x; ρ0, ν0)dx.

First we prove (3.6.13). Define the function f : [0, 1] → R by

f(t) := (p2 ◦K)
(

ρ̂, µ0 + t
(

∫

R̂n(1 − x, x)dx− µ0

))

.

Using the mean value theorem for f on [0, 1] we get

f(1) − f(0) = (1 − 0) · f ′(t)
∣

∣

t=t∗
, t∗ ∈ (0, 1).

Since f(1) = (p2 ◦K)(ρ̂,
∫

R̂n(1 − x, x)dx) = ϕ−1
ρ̂ (
∫

R̂n(1 − x, x)dx) and f(0) =

(p2 ◦K)(ρ̂, µ0) = ϕ−1
ρ̂ (µ0), we get

ϕ−1
ρ̂ (
∫

R̂n(1−x, x)dx)−ϕ−1
ρ̂ (µ0) =

∂

∂µ
(p2◦K)(ρ̂, µ)

∣

∣

µ=µ∗

(

∫

R̂n(1 − x, x)dx− µ0

)

,

with µ∗ = µ0 + t∗(
∫

R̂n(1 − x, x)dx − µ0). Because µ∗ is between
∫

R̂n(1 −
x, x)dx and µ0, the consistency of

∫

R̂n(1 − x, x)dx implies that µ∗
P→ µ0, as

n → ∞, k → ∞ and k/n → 0. This, together with the consistency of ρ̂

and the continuous differentiability of K, see Corollary 3.4.2, implies that the

left-hand side of (3.6.13) converges in probability to (∂/∂µ)(p2 ◦ K)(ρ0, µ0) =

(∂/∂µ)ϕ−1
ρ0

(µ0). By the inverse mapping theorem, this constant equals c.

Next we show that (3.6.14) holds. Similarly, we define the function f : [0, 1] → R

by

f(t) := (p2 ◦K)(ρ0 + t(ρ̂− ρ0), µ0).
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The mean value theorem applied to f on [0, 1] yields

f(1) − f(0) = (1 − 0) · f ′(t)
∣

∣

t=t∗
, t∗ ∈ (0, 1).

Write ρ∗ := ρ0 + t∗(ρ̂ − ρ0). Since f(1) = ϕ−1
ρ̂ (µ0), and f(0) = ϕ−1

ρ0
(µ0), the

left-hand side of (3.6.14) is equal to

∂

∂ρ
ϕ−1

ρ (µ0)
∣

∣

ρ=ρ∗

√
k(ρ̂− ρ0). (3.6.15)

By Corollary 3.4.2, ρ 7→ (∂/∂ρ)ϕ−1
ρ (µ0) is continuous, hence it is bounded on a

closed neighborhood of ρ0. The consistency of ρ̂ then implies that (∂/∂ρ)ϕ−1
ρ (µ0)

∣

∣

ρ=ρ∗

is bounded with probability tending to one. Since the rate of convergence of ρ̂

is 1/
√
n, the expression in (3.6.15) converges to zero in probability as n → ∞,

k → ∞ and k/n→ 0. �

Proof of Theorem 3.4.4 Here we again omit writing the region of integration,

[0, 1], and we write R(1 − x, x) instead of R(1 − x, x; ρ0, ν0). We have

√
k (ν̂n − ν0) =

ϕ−1
ρ̂ (
∫

R̂n(1 − x, x)dx) − ϕ−1
ρ̂ (
∫

R(1 − x, x)dx)
∫

R̂n(1 − x, x)dx−
∫

R(1 − x, x)dx

·
√
k
(

∫

R̂n(1 − x, x)dx−
∫

[0,1]
R(1 − x, x)dx

)

+
√
k
(

ϕ−1
ρ̂ (
∫

R(1 − x, x)dx) − ϕ−1
ρ0

(
∫

R(1 − x, x)dx)
)

.

By Lemma 3.6.4 it follows that

√
k (ν̂n − ν0) = c(1 + oP(1))

√
k
(

∫

R̂n(1 − x, x)dx−
∫

R(1 − x, x)dx
)

+ oP(1).

(3.6.16)

Combining (3.6.8) and (3.6.16) we conclude that

(√
k(ν̂n − ν0),

√
n(ρ̂− ρ0)

)

d→ (Nν , Nρ),

where Nν and Nρ are independent, and if σ2
R is the variance of

∫

B(1 − x, x)dx,

we have that σ2
ν = c2σ2

R. �



Chapter 4

An M-Estimator of Tail

Dependence in Arbitrary

Dimensions

[Based on joint project with J.H.J. Einmahl and J. Segers, An M-Estimator of

Tail Dependence in Arbitrary Dimensions, work in progress.]

Abstract. Consider the situation of a random sample from a multivariate distribu-

tion in the max-domain of attraction of an extreme-value distribution. Assume that

the dependence structure of the extreme-value attractor belongs to a given parametric

model. A new estimator for the unknown parameter vector of the model is proposed.

The estimator is an extension of the one introduced in J.H.J. Einmahl, A. Krajina and

J. Segers [Method of Moments Estimator of Tail Dependence, Bernoulli 14(4), 2008] in

two respects: (i) the number of variables is arbitrary; (ii) the number of moment equa-

tions can exceed the dimension of the parameter space. More precisely, the estimator

is defined as the value of the parameter vector that minimizes the distance between a

vector of weighted integrals of the tail dependence function on the one hand and empir-

ical counterparts of these integrals on the other hand. Under minimal conditions, this

minimization problem has with probability tending to one a unique, global solution.

The estimator is consistent and asymptotically normal. The asymptotic covariance

matrix can be estimated consistently as well, allowing for the construction of asymp-

totic confidence regions. The method, not being likelihood based, applies to discrete
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and continuous models alike. We demonstrate the performance and applicability of

the estimator on examples.

4.1 Introduction

As the number of variables increases, modeling tail dependence becomes more

complex. For instance, in dimension d there are d(d− 1)/2 bivariate marginals,

which in general can be different up to some consistency requirements. In order

to simplify the problem, it is customary to impose a parametric model. Here, we

will assume that the stable tail dependence function l, defined by

l(x) = lim
t↓0

t−1
P (1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd) ,

belongs to a parametric family, l ∈ {l(·; θ) : θ ∈ Θ}, Θ ⊆ R
p. The existing

estimators of θ are all likelihood based and as such, apply only to d times differ-

entiable functions l; see Joe, Smith, and Weissman (1992); Smith (1994); Ledford

and Tawn (1996); de Haan, Neves, and Peng (2008); Coles and Tawn (1991).

In Chapter 2, we introduced the method of moments estimator of the bivariate

parametric stable tail dependence function, which did not require differentiability

of l. Here we extend that estimator in two directions. First we consider models in

arbitrary dimensions. Second, we extend the method of moments estimation to

general M-estimation by allowing for more estimating equations than parameters.

If θ ∈ Θ ⊆ R
p is the unknown parameter, g : [0, 1]d → R

q, q ≥ p is an auxiliary

function and l̂n is the nonparametric estimator of l, we define θ̂n, the M-estimator

of θ, as the minimizer of the Euclidean distance in R
q between

∫

[0,1]d
g(x)l̂n(x)dx and

∫

[0,1]d
g(x)l(x; θ)dx.

Under minimal conditions, the unique, global minimizer exists with probability

tending to one, and it is a consistent and asymptotically normal estimator of θ.

The absence of smoothness assumptions on l makes it possible to estimate the tail

dependence structure of factor models like (1.2.3). The factor model in (1.2.3) is
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used in our simulation studies. The same tail dependence structure appears in

the factor model X = (X1, . . . , Xd), with

Xj =

r
∑

i=1

bijZi + εj, j = 1, . . . , d,

where all bij are nonnegative,
∑

i bij = 1 for all j, Zi are independent heavy

tailed factors (for example, they could be standard Fréchet distributed, F (x) =

exp{−1/x}), and εj, j = 1, . . . , d, are independent random variables which are

lighter tailed than the main factors and which are independent of them. This kind

of factor model is often used in finance, for example in credit risk modeling or in

stock returns modeling; see Fama and French (1993); Malevergne and Sornette

(2004); Geluk, de Haan, and de Vries (2007).

The organization of this chapter is as follows. The basics of the tail dependence

structures in multivariate models are presented in Section 4.2. The M-estimator

is defined in Section 4.3. Section 4.4 contains the main theoretical results: con-

sistency and asymptotic normality of the M-estimator, and some consequences of

the asymptotic normality result that can be used for construction of confidence

regions and testing. In Section 4.5 we apply the M-estimator on the well-known

logistic stable tail dependence function. The tail dependence structure of factor

models is studied and estimated in Section 4.6. The behavior of the M-estimator

is illustrated on two examples. The proofs are deferred to Section 4.7.

4.2 Tail dependence

We will write points in R
d as x := (x1, . . . , xd) and random vectors as Xi :=

(Xi1, . . . , Xid), for i = 1, . . . , n. Let X1, . . . , Xn be independent random vectors

in R
d with common continuous distribution function F and marginal distribution

functions F1, . . . , Fd. We assume that F has a stable tail dependence function l,

that is, we assume that for all x = (x1, . . . , xd) ∈ [0,∞)d the following limit

exists:

lim
t↓0

t−1
P (1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd) = l(x). (4.2.1)
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The function l has the following properties:

• l(x1, 0, . . . , 0) = · · · = l(0, . . . , 0, x1) = x1 for any x1 > 0;

• max{x1, . . . , xd} ≤ l(x) ≤ x1 + · · ·+ xd;

• l is convex: l(λx + (1 − λ)y) ≤ λl(x) + (1 − λ)l(y), for λ ∈ [0, 1] and

x, y ∈ [0,∞)d; and

• l is homogeneous of order one: l(tx1, . . . , txd) = t l(x1, . . . , xd), for all

(x1, . . . , xd) ∈ [0,∞)d and t > 0.

Let ∆d−1 := {w ∈ R
d : wj ≥ 0, w1 + · · ·+ wd = 1} be the unit simplex in R

d. A

finite Borel measure H on ∆d−1 satisfying the d moment conditions

∫

∆d−1

wjH(dw) = 1, j = 1, . . . , d, (4.2.2)

is called a spectral or angular measure. There is a one-to-one correspondence

between the stable tail dependence function and the spectral measure: it holds

that there exists a unique spectral measure H such that

l(x) =

∫

∆d−1

max
j=1,...,d

{wjxj}H(dw). (4.2.3)

It can be shown that there exists a measure Λ on [0,∞]d \ {(∞, . . . ,∞)} such

that

(1) l(x) = Λ
(

{u ∈ [0,∞]d : u1 ≤ x1 or . . . or ud ≤ xd}
)

,

(2) Λ(tA) = tΛ(A), for any t > 0 and any Borel set A ⊂ [0,∞]d\{(∞, . . . ,∞)},
with tA := {tx : x ∈ A},

see for example Resnick (1987); Beirlant, Goegebeur, Segers, and Teugels (2004);

de Haan and Ferreira (2006). The measure Λ is called the exponent measure and

it is yet another way of defining the tail dependence structure. Property (1) above

connects the exponent measure and the function l. If µ is the measure Λ after
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the transformation (x1, . . . , xd) 7→ (1/x1, . . . , 1/xd), the relationship between the

spectral measure H and the exponent measure Λ (and µ) is given by

H(B) = µ

({

x ∈ [0,∞)d :

d
∑

j=1

xj ≥ 1, x/

d
∑

j=1

xj ∈ B

})

,

for any Borel set B on ∆d−1. By (2) we get that for any t > 0 and any Borel set

B on ∆d−1,

1

t
H(B) = µ

({

x ∈ [0,∞)d :
d
∑

j=1

xj ≥ t, x/
d
∑

j=1

xj ∈ B

})

,

which is a version of the spectral decomposition of the exponent measure, see

de Haan and Resnick (1977) or Resnick (1987).

The right-hand partial derivatives of l always exist; indeed, by bounded conver-

gence it follows that for j = 1, . . . , d, as h ↓ 0,

1

h

(

l(x1, . . . , xj−1, xj + h, xj+1, . . . , xd) − l(x1, . . . , xj−1, xj , xj+1, . . . , xd)
)

=

∫

∆d−1

1

h

(

max{wjxj + wjh,max
s 6=j

{wsxs}} − max{wjxj ,max
s 6=j

{wsxs}}
)

H(dw)

→
∫

∆d−1

wj1{wjxj ≥ max
s 6=j

{wsxs}}H(dw). (4.2.4)

Similarly, the left-hand partial derivatives exist for all x ∈ (0,∞)d. By convexity,

the function l is almost everywhere continuously differentiable, with its gradient

vector of (right-hand) partial derivatives being given by (4.2.4). Also, if l is

differentiable, its partial derivatives are continuous.
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4.3 Estimation

Let Rj
i denote the rank of Xij among X1j , . . . , Xnj, i = 1, . . . , n, j = 1, . . . , d.

For k ∈ {1, . . . , n}, define a nonparametric estimator of l by

l̂n(x) :=
1

k

n
∑

i=1

1

{

R1
i > n+

1

2
− kx1 or . . . or Rd

i > n+
1

2
− kxd

}

.

When we study asymptotic properties of this estimator, k = kn is an intermediate

sequence, that is, k → ∞ and k/n → 0 as n → ∞. In the literature, the

stable tail dependence function is often modeled parametrically. We impose

that the stable tail dependence function l belongs to some parametric family

{l( · ; θ) : θ ∈ Θ}, where Θ ⊂ R
p, p ≥ 1 and we propose an M-estimator of θ. Let

q ≥ p. Let g ≡ (g1, . . . , gq)
T : [0, 1]d → R

q be an integrable function such that

ϕ : Θ → R
q defined by

ϕ(θ) :=

∫

[0,1]d
g(x)l(x; θ) dx (4.3.1)

is a homeomorphism between Θ and its image ϕ(Θ). Let θ0 denote the true

parameter value. The M-estimator θ̂n of θ0 is defined as a minimizer of the

criterion function

Qk,n(θ) = ‖ϕ(θ) −
∫

gl̂n‖2

=

q
∑

m=1

(
∫

[0,1]d
gm(x)

(

l̂n(x) − l(x; θ)
)

dx

)2

,

where ‖ ·‖ is the L2 norm. In other words, if Ŷn = arg miny∈ϕ(Θ) ‖y−
∫

gl̂n‖, then

θ̂n ∈ ϕ−1(Ŷn). Later we show that θ̂n is, with probability tending to one, unique.
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4.4 Main results

4.4.1 Notation

LetWΛ be a mean-zero Wiener process indexed by Borel sets of [0,∞]d\{(∞, . . . ,∞)}
with “time” Λ: its covariance structure is given by

EWΛ(A1)WΛ(A2) = Λ(A1 ∩A2),

for any two Borel sets A1 and A2 in [0,∞]d \ {(∞, . . . ,∞)}. Define

Wl(x) := WΛ({u ∈ [0,∞]d \ {(∞, . . . ,∞)} : u1 ≤ x1 or . . . or ud ≤ xd}).

Let Wj, j = 1, . . . , d, be the marginal processes

Wj(xj) := Wl(0, . . . , 0, xj , 0, . . . , 0), xj ≥ 0.

Define lj(x) to be the right-hand partial derivatives of l with respect to xj, j =

1, . . . , d; if l is differentiable, these are equal to the partial derivatives of l, see

(4.2.4). Denote

B(x) := Wl(x) −
d
∑

j=1

lj(x)Wj(xj),

and let

B̃ :=

∫

[0,1]d
g(x)B(x)dx.

The distribution of B̃ is zero-mean Gaussian with covariance matrix

Σ := E

[
∫

[0,1]d
g(x)B(x)dx ·

∫

[0,1]d
g(y)TB(y)dy

]

=

∫∫

([0,1]d)2
E[B(x)B(y)]g(x)g(y)Tdxdy ∈ R

q×q. (4.4.1)

Note that if l is parametric, Σ depends on the parameter, that is Σ = Σ(θ).

Let ∇Qk,n(θ) ∈ R
p×1 be the gradient vector of Qk,n at θ; for every x ∈ [0, 1]d let

∇l(x; θ) ∈ R
p×1 be the gradient vector of l(x; ·) in θ; let ϕ̇(θ) ∈ R

q×p be the total
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derivative of ϕ at θ; and put

V (θ) := 4ϕ̇(θ)T Σ(θ)ϕ̇(θ) ∈ R
p×p.

Further let Hk,n(θ) ∈ R
p×p denote the Hessian matrix of Qk,n in θ. Let H(θ) be

the deterministic and symmetric matrix given by its (i, j)th element, i = 1, . . . , p,

j = 1, . . . , p,

(H(θ))ij = 2

(

∂

∂θi

ϕ(θ)

)T (
∂

∂θj

ϕ(θ)

)

− 2

(

∂2

∂θi∂θj

ϕ(θ)

)T

(ϕ(θ0) − ϕ(θ)).

Observe that

H(θ0) = 2ϕ̇(θ0)
T ϕ̇(θ0),

and define

M(θ) :=
(

ϕ̇(θ)T ϕ̇(θ)
)−1

ϕ̇(θ)T Σ(θ)ϕ̇(θ)
(

ϕ̇(θ)T ϕ̇(θ)
)−1 ∈ R

p×p. (4.4.2)

For the proofs of the results we require subsets of the following list of conditions:

(C1) t−1
P (1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd) − l(x) = O(tα), uni-

formly in x ∈ ∆d−1 as t ↓ 0, for some α > 0 ;

(C2) k = o
(

n
2α

1+2α

)

, for the α of (C1);

(C3) l is differentiable;

(C4) ϕ is twice continuously differentiable and ϕ̇(θ0) is of full rank.

4.4.2 Results

Let Θ̂n be the set of minimizers of Qk,n,

Θ̂n := arg min
θ∈Θ

‖ϕ(θ) −
∫

gl̂n‖2.

Note that Θ̂n may be empty or may contain more than one element.
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Theorem 4.4.1 (Existence, uniqueness and consistency of θ̂n). Let g : [0, 1]d →
R

q be integrable.

(i) If ϕ is a homeomorphism from Θ to ϕ(Θ) and if there exists ε0 > 0 such

that the set {θ ∈ Θ : ‖θ − θ0‖ ≤ ε0} is closed, then for every ε such that

ε0 ≥ ε > 0,

P

(

Θ̂n 6= ∅ and Θ̂n ⊆ {θ ∈ Θ : ‖θ − θ0‖ ≤ ε}
)

→ 1,

as n→ ∞, k → ∞ and k/n→ 0.

(ii) If in addition to the assumptions of (i), condition (C4) holds, then, with

probability tending to one, Qk,n has a unique minimizer θ̂n. Hence θ̂n
P→ θ0,

as n→ ∞, k → ∞ and k/n→ 0.

We prove the asymptotic normality of l̂n. This result is of independent interest

and can be found in the literature for d = 2 only, see Huang (1992); Drees and

Huang (1998). Here it is used as a main tool for asymptotic normality of θ̂n.

The result is stated in an approximation setting, where l̂n and B are defined on

the same probability space obtained by a Skorohod construction. The random

quantities involved are only in distribution equal to the original ones, but for

convenience this is not expressed in the notation.

Theorem 4.4.2 (Asymptotic normality of l̂n in arbitrary dimensions). If the

conditions (C1), (C2), (C3) hold, then for every T > 0, as n→ ∞ and k → ∞,

sup
x∈[0,T ]d

∣

∣

∣

√
k
(

l̂n(x) − l(x)
)

− B(x)
∣

∣

∣

P→ 0. (4.4.3)

Theorem 4.4.3 (Asymptotic normality of θ̂n). If in addition to the assumptions

of Theorem 4.4.1(i), the conditions (C1), (C2), (C4) hold, then as n → ∞ and

k → ∞, √
k(θ̂n − θ0)

d→ N(0,M(θ0)). (4.4.4)

The following consequence of Theorem 4.4.3 can be used for construction of the

confidence regions.
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Corollary 4.4.4. If in addition to conditions of Theorem 4.4.3, the mapping

θ 7→ Hθ is weakly continuous at θ0 and if M(θ0) is non-singular, then as n→ ∞
and k → ∞,

k(θ̂n − θ0)
TM(θ̂n)−1(θ̂n − θ0)

d→ χ2
p. (4.4.5)

Let 1 ≤ r < p and θ = (θ1, θ2) ∈ Θ ⊂ R
p, where θ1 ∈ R

p−r, θ2 ∈ R
r. We want

to test θ2 = θ∗2 against θ2 6= θ∗2, where θ∗2 corresponds to the submodel. Denote

θ̂n = (θ̂1n, θ̂2n), and let M2(θ) be the r × r matrix corresponding to the lower

right corner of M , as in (4.4.6) below,

M =

(

· · · · · ·
· · · M2

)

∈ R
p×p. (4.4.6)

Corollary 4.4.5 (Test). If the assumptions of Corollary 4.4.4 are satisfied, and

θ0 = (θ1, θ
∗
2) ∈ Θ for some θ1, then as n→ ∞ and k → ∞,

k(θ̂2n − θ∗2)
TM2(θ̂1n, θ

∗
2)
−1(θ̂2n − θ∗2)

d→ χ2
r. (4.4.7)

The above result can be used for testing for a submodel. For example, we could

test for the symmetric logistic model within the asymmetric logistic one, or for

the 2-factor model within the 3-factor one.

Remark 4.4.6. The matrices M and M2 are needed for the computation of

the confidence regions and the test statistic. Computing these matrices can be

challenging, mostly due to the complicated expression for Σ, see (4.4.1).

4.5 Example 1: Logistic model

The stable tail dependence function corresponding to the multivariate symmetric

logistic model is

lθ(x1, . . . , xd) =
(

x
1/θ
1 + · · ·+ x

1/θ
d

)θ

, (4.5.1)

with θ ∈ [0, 1], xj > 0, j = 1, . . . , d. The bivariate logistic tail dependence func-

tion was first introduced in Gumbel (1960), and it is one of the oldest parametric
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models of tail dependence. The multivariate logistic distribution function defined

by

Fθ(x1, . . . , xd) = exp







−
(

d
∑

j=1

x
−1/θ
j

)θ






,

x1 > 0, . . . , xd > 0, with θ ∈ [0, 1] has the stable tail dependence function lθ

above.

We simulate 500 samples of size n = 3000 from a five-dimensional logistic distri-

bution function with θ0 = 0.5. We define θ̂n, an M-estimator of θ0, by choosing

g1 ≡ 1 and g2(x) = 25x1 · · · · · x5. The bias and the Root Mean Squared Error

(RMSE) of this estimator are shown in Figure 4.1.

Also, we consider the estimation of lθ(1, 1, 1, 1, 1), based on θ̂n defined above.

From (4.5.1) it follows that lθ(1, 1, 1, 1, 1) = 5θ. The estimator of this quantity

is then defined as 5θ̂n. Since θ0 = 0.5, the true parameter here is 5θ0 =
√

5.

We compare the bias and the RMSEs of this estimator and the nonparametric

estimator l̂n(1, 1, 1, 1, 1). Figure 4.2 shows that our estimator performs better

than the nonparametric estimator for almost every choice of k.
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Figure 4.1: Five-dimensional logistic model, θ0 = 0.5
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Figure 4.2: Five-dimensional logistic model, θ0 = 0.5

4.6 Example 2: Discrete spectral measure

Consider the r-factor model, r ∈ N, in dimension d: X = (X1, . . . , Xd) and

Xj = max
i=1,...,r

{aijZi}, j ∈ {1, . . . , d}

with Zi independent Fréchet(ν) random variables, ν > 0, and aij nonnegative

constants such that
∑

j aij > 0 for all i. Let Wi = Zν
i , i = 1, . . . , r, and note that

the Wi are standard Fréchet random variables. Define a d-dimensional random

vector Y = (Y1, . . . , Yd) by

Yj := Xν
j = max

i=1,...,r
{aν

ijWi}, j ∈ {1, . . . , d}.

It is easily seen that as x→ ∞,

1 − FYj
(x) = 1 − exp

{

−
∑r

i=1 a
ν
ij

x

}

∼ 1 −
∑r

i=1 a
ν
ij

x
.

Since Xj are monotone transformations of the Yj, the (tail) dependence structure

of X and Y is the same. We will determine the tail dependence function l and

the spectral measure H of X.
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Lemma 4.6.1. For x = (x1, . . . , xd) ∈ [0,∞)d,

l(x1, . . . , xd) =

r
∑

i=1

max
j=1,...,d

{bijxj}, with bij :=
aν

ij
∑r

i=1 a
ν
ij

.

Next, we are looking for a measure H on the unit simplex ∆d−1 = {w ∈ [0,∞)d :

w1 + · · · + wd = 1} such that for all x ∈ [0,∞)d,

r
∑

i=1

max
j=1,...,d

{bijxj} = l(x1, . . . , xd) =

∫

∆d−1

max
j=1,...,d

{wjxj}H(dw).

This H must be a discrete measure with r atoms given by

(

bi1
∑

j bij
, . . . ,

bid
∑

j bij

)

, i ∈ {1, . . . , r},

the atom receiving mass
∑

j bij , which is positive by assumption. Note that H

is indeed a spectral measure, for

∫

∆d

wj H(dw) =

r
∑

i=1

bij = 1, j ∈ {1, . . . , d}. (4.6.1)

Every discrete spectral measure can arise in this way.

The spectral measure is completely determined by the rd parameters bij , but

by the d moment conditions from (4.6.1), the actual number of parameters is

p = d(r − 1). The parameter vector θ ∈ R
p, which is to be estimated, can be

constructed in many ways. For identification purposes, the definition of θ should

be unambiguous. We opt for the following approach. Consider the matrix of the

coefficients bij ,






b11 · · · br1
...

. . .
...

b1d · · · brd






∈ R

d×r.

In the ith column of this matrix are the coefficients corresponding to the ith

factor, i = 1, . . . , r. We define θ by stacking the above columns in decreasing

order of their sums, leaving out the column with the lowest sum. (If two columns

have the same sum, we order them then in decreasing order lexicographically.)
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The definition of the M-estimator of θ involves integrals of the form

∫

[0,1]d
gs(x)l(x) dx =

r
∑

i=1

∫

[0,1]d
gs(x) max

j=1,...,d
{bijxj} dx,

where gs : [0, 1]d → R is integrable and s = 1, . . . , q.

A possible choice is gs(x) = xm
k , where k ∈ {1, . . . , d} and m ≥ 0.

Lemma 4.6.2. It holds that

∫

[0,1]d
xm

k l(x) dx =
r
∑

i=1

d
∑

j=1

bij
1 +m(1 − δjk)

∫ 1

0

(

bij
bik
x ∧ 1

)m d
∏

l=1

(

bij
bil
x ∧ 1

)

dx,

where δjk is 1 if j = k and 0 if j 6= k.

The integral on the right-hand side is to be computed numerically.

We illustrate the performance of the M-estimator of the unknown parameters on

two factor models: a four-dimensional factor model with 2 factors (p = 4×1 = 4),

and a three-dimensional factor model with 3 factors (p = 3 × 2 = 6).

Four-dimensional model with 2 factors. We simulated 500 samples of size

n = 5000 from a four-dimensional model

X1 = 0.8Z1 ∨ 0.2Z2

X2 = 0.5Z1 ∨ 0.5Z2

X3 = 0.3Z1 ∨ 0.7Z2

X4 = 0.1Z1 ∨ 0.9Z2,

with independent standard Fréchet distributed factors Z1 and Z2. The unknown

parameter θ consists of p = d(r − 1) = 4 elements, and we could choose θ to

be the coefficients of the first factor (0.8, 0.5, 0.3, 0.1) or the coefficients of the

second factor (0.2, 0.5, 0.7, 0.9), for example. Since the latter quadruple has a

higher sum, it in a sense corresponds to a more important factor, and we choose

θ = (0.2, 0.5, 0.7, 0.9).
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In Figures 4.3 and 4.4 we show the bias and the RMSE of the M-estimator based

on q = 5 moment equations, with auxiliary functions gi(x) = xi, for i = 1, 2, 3, 4

and g5 ≡ 1. Estimation in this particular example benefited from the extension

of the method of moments estimator to the M-estimator. Adding a fifth moment

equation via g5 ≡ 1 to gi(x) = xi, i = 1, 2, 3, 4, reduced the RMSE of the

estimator in most cases and for most values of k.
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Figure 4.3: Four-dimensional 2-factor model, estimation of θ1 = 0.2, θ2 = 0.5
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Figure 4.4: Four-dimensional 2-factor model, estimation of θ3 = 0.7, θ4 = 0.9
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Three-dimensional model with 3 factors. We simulated 500 samples of

size n = 5000 from a three-dimensional model

X1 = 0.2Z1 ∨ 0.5Z2 ∨ 0.3Z3

X2 = 0.5Z1 ∨ 0.4Z2 ∨ 0.1Z3

X3 = 0.3Z1 ∨ 0.3Z2 ∨ 0.4Z3,

with independent Z1, Z2 and Z3 following the standard Fréchet distribution.

The unknown parameter θ consists of p = d(r − 1) = 6 elements. Accord-

ing to the above described method for constructing the parameter vector, θ =

(0.5, 0.4, 0.3, 0.2, 0.5, 0.3). The q = p = 6 auxiliary functions are gi(x) = xi,

gi+3(x) = x2
i , i = 1, 2, 3. The estimator is a method of moments estimator since

the number of the functions g we used corresponds to the number of parameters.

Figure 4.5 and Figure 4.6 show the bias and the RMSE of the estimator of θ. The

6 parameters seem to have been estimated rather well, the root mean squared

errors being in the range from 0.01 up to 0.015. However, unlike in the previous

example, adding an extra equation corresponding to g7 ≡ 1 did not prove effective

here, in the sense that the smaller RMSEs appeared mostly in the case of method

of moments estimation.
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Figure 4.5: Three-dimensional 3-factor model, estimation of θ1 = 0.5, θ2 =
0.4, θ3 = 0.3

Remark 4.6.3. The three examples we have presented show good performance

of the estimator, but they also show how this performance can depend on the

choice of function g. The optimal choice of g is a difficult issue, which we do not
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Figure 4.6: Three-dimensional 3-factor model, estimation of θ4 = 0.2, θ5 =
0.5, θ6 = 0.3

address. The choice of g in the examples is driven by computational simplicity,

see Lemma 4.6.2, for example.

4.7 Proofs

The asymptotic properties of the nonparametric estimator l̂n are required for the

proofs of the asymptotic properties of the M-estimator θ̂n. Consistency of l̂n (see

(4.7.1)) for dimension d = 2 was shown in Huang (1992), cf. Drees and Huang

(1998). In particular, it was shown that for every T > 0, as n→ ∞, k → ∞ and

k/n→ 0,

sup
(x1,x2)∈[0,T ]2

|l̂n(x1, x2) − l(x1, x2)| P→ 0.

The proof translates straightforwardly to general dimension d, and together with

integrability of g yields consistency of
∫

gl̂n for
∫

gl = ϕ(θ0). Before the proof of

Theorem 4.4.1, a technical result is needed.

Lemma 4.7.1. If k/n → 0 and if in addition to the assumptions of Theorem

4.4.1 condition (C4) holds, then as n → ∞ and k → ∞, on some closed neigh-

borhood of θ0:

(i) Hk,n(θ)
P→ H(θ) uniformly in θ, and

(ii) P (Hk,n(θ) is positive definite) → 1.
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Proof (i) The Hessian matrix of Qk,n in θ is a p × p matrix with elements

(Hk,n(θ))ij , i = 1, . . . , p, j = 1, . . . , p given by

(Hk,n(θ))ij :=
∂2Qk,n(θ)

∂θj∂θi

= 2

q
∑

m=1

∫

[0,1]d
gm(x)

∂

∂θj
l(x; θ)dx ·

∫

[0,1]d
gm(x)

∂

∂θi
l(x; θ)dx

−2

q
∑

m=1

∫

[0,1]d
gm(x)

∂2

∂θj∂θi

l(x; θ)dx ·
∫

[0,1]d
gm(x)(l̂n(x) − l(x; θ))dx

= 2

(

∂

∂θi
ϕ(θ)

)T (
∂

∂θj
ϕ(θ)

)

− 2

(

∂2

∂θi∂θj
ϕ(θ)

)T

·
(
∫

[0,1]d
g(x)l̂n(x) − ϕ(θ)

)

.

The consistency of
∫

gl̂n for ϕ(θ0) implies

(Hk,n(θ))ij

P→ 2

(

∂

∂θi

ϕ(θ)

)T (
∂

∂θj

ϕ(θ)

)

− 2

(

∂2

∂θi∂θj

ϕ(θ)

)T

(ϕ(θ0) − ϕ(θ))

=: (H(θ))ij .

Since we assumed that there exists ε0 > 0 such that the set {θ ∈ Θ : ‖θ − θ0‖ ≤
ε0} =: Bε0

(θ0) is closed, and since ϕ is assumed to be C2, the second derivatives

of ϕ are uniformly bounded on Bε0
(θ0), and hence, the convergence above is

uniform on Bε0
(θ0).

(ii) For θ = θ0 we get

(H(θ0))ij = 2

(

∂

∂θi
ϕ(θ)

∣

∣

∣

θ=θ0

)T (
∂

∂θj
ϕ(θ)

∣

∣

∣

θ=θ0

)

,

that is,

H(θ0) = 2ϕ̇(θ0)
T ϕ̇(θ0).

Since ϕ̇(θ0) is assumed to be of full rank, H(θ0) is positive definite. For θ close

to θ0, H(θ) is also positive definite. Due to the uniform convergence of Hk,n(θ)

to H(θ) on Bε0
(θ0), the matrix Hk,n(θ) is also positive definite on Bε0

(θ0) with

probability tending to one. �
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Proof of Theorem 4.4.1 (i) Fix ε > 0 such that 0 < ε ≤ ε0. Since ϕ is a

homeomorphism, there exists δ > 0 such that θ ∈ Θ and ‖ϕ(θ) − ϕ(θ0)‖ ≤ δ

implies ‖θ− θ0‖ ≤ ε. In other words, for every θ ∈ Θ such that ‖θ− θ0‖ > ε, we

have ‖ϕ(θ) − ϕ(θ0)‖ > δ. Hence, on the event

An = {‖ϕ(θ0) −
∫

gl̂n‖ ≤ δ/2},

for every θ ∈ Θ with ‖θ − θ0‖ > ε, necessarily

‖ϕ(θ)−
∫

gl̂n‖ ≥ ‖ϕ(θ)−ϕ(θ0)‖−‖ϕ(θ0)−
∫

gl̂n‖ > δ−δ/2 = δ/2 ≥ ‖ϕ(θ0)−
∫

gl̂n‖.

As a consequence, on the event An, we have

inf
θ:‖θ−θ0‖>ε

‖ϕ(θ) −
∫

gl̂n‖ > min
θ:‖θ−θ0‖≤ε

‖ϕ(θ) −
∫

gl̂n‖.

Hence, on the event An, the “argmin” set Θ̂n is non-empty and is contained in

the closed ball of radius ε centered at θ0. Finally, P(An) → 1 by weak consistency

of
∫

gl̂n for
∫

gl = ϕ(θ0).

(ii) In the proof of (i) we have seen that with probability tending to one the

proposed M-estimator exists and it is contained in a closed ball around θ0. In

Lemma 4.7.1 we have shown that the criterion function is with probability tending

to one strictly convex on such a closed ball around θ0, and hence, with probability

tending to one, the minimizer of the criterion function is unique. �

For i = 1, . . . , n let

Ui := (Ui1, . . . , Uid) := (1 − F1(Xi1), . . . , 1 − Fd(Xid)),

and denote

Qnj(uj) := U⌈nuj⌉:n,j, j = 1, . . . , d,

Snj(xj) :=
n

k
Qnj

(

kxj

n

)

, j = 1, . . . , d,

Sn(x) := (Sn1(x1), . . . , Snd(xd)),
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where U1:n,j ≤ · · · ≤ Un:n,j are the order statistics of U1j , . . . , Unj , j = 1, . . . , d,

and ⌈a⌉ is the smallest integer not smaller than a. Write

Vn(x) :=
n

k
P

(

U11 ≤
kx1

n
or . . . or U1d ≤ kxd

n

)

,

Tn(x) :=
1

k

n
∑

i=1

1

{

Ui1 <
kx1

n
or . . . or Uid <

kxd

n

}

,

L̂n(x) :=
1

k

n
∑

i=1

1

{

Ui1 <
k

n
Sn1(x1) or . . . or Uid <

k

n
Snd(xd)

}

,

=
1

k

n
∑

i=1

1
{

R1
i > n+ 1 − kx1 or . . . or Rd

i > n+ 1 − kxd

}

,

and note that

L̂n(x) = Tn(Sn(x)).

Since

sup
x∈[0,1]d

√
k
∣

∣

∣
l̂n(x) − L̂n(x)

∣

∣

∣
≤ d√

k
→ 0, (4.7.1)

the asymptotic properties of l̂n and L̂n are the same. With the notation vn(x) =√
k(Tn(x) − Vn(x)), we have the following result.

Proposition 4.7.2. Let T > 0 and denote Ax := {u ∈ [0,∞]d : u1 ≤ x1 or · · · or ud ≤
xd}. There exists a sequence of processes ṽn such that for all n ṽn

d
= vn and there

exist a Wiener process Wl(x) := WΛ(Ax) such that as n→ ∞,

sup
x∈[0,2T ]d

|ṽn(x) −Wl(x)| P→ 0. (4.7.2)

The result follows from Theorem 3.1 in Einmahl (1997). From the proofs there

it follows that a single Wiener process, instead of the sequence in the original

statement of the theorem, can be used, and that convergence holds almost surely,

instead of in probability, once the Skorohod construction is introduced. From

now on, we work on this new (Skorohod) probability space, but keep the old

notation, without the tildes. In particular we have convergence of the marginal

processes:

sup
xj∈[0,2T ]

|vnj(x) −Wj(xj)| → 0 a.s., j = 1, . . . , d,
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where vnj(xj) := vn((0, . . . , 0, xj, 0, . . . , 0)). Vervaat’s lemma, Vervaat (1972),

implies

sup
xj∈[0,2T ]

|
√
k(Snj(xj) − xj) +Wj(xj)| → 0 a.s., j = 1, . . . , d. (4.7.3)

Proof of Theorem 4.4.2 Write

√
k
(

L̂n(x) − l(x)
)

=
√
k (Tn(Sn(x)) − Vn(Sn(x))) +

√
k (Vn(Sn(x)) − l(Sn(x)))

+
√
k (l(Sn(x)) − l(x))

=: D1(x) +D2(x) +D3(x).

Proof of supx∈[0,T ]d |D1(x) −Wl(x)| P→ 0.

We have

D1(x) =
√
k (Tn(Sn(x)) − Vn(Sn(x))) = vn(Sn(x)).

It holds that

supx∈[0,T ]d |D1(x) −Wl(x)|

≤ sup
x∈[0,T ]d

|D1(x) −Wl(Sn(x))| + sup
x∈[0,T ]d

|Wl(Sn(x)) −Wl(x)| .

Because of (4.7.3), this is with probability tending to one less than or equal to

sup
y∈[0,2T ]d

|vn(y) −Wl(y)| + sup
x∈[0,T ]d

|Wl(Sn(x)) −Wl(x)| .

Both terms tend to zero in probability, the first one by Proposition 4.7.2, the

second one because of the uniform continuity of Wl and (4.7.3).

Proof of supx∈[0,T ]d |D2(x)| P→ 0.

Because of (4.7.3), with probability tending to one, supx∈[0,T ]d |D2(x)| is less than

or equal to supy∈[0,2T ]d

√
k|Vn(y)−l(y)|, which in turn, because of conditions (C1)
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and (C2), is equal to

√
k O

((

k

n

)α)

= O

(

(

k

n2α/(1+2α)

) 1

2
+α
)

= o(1).

Proof of supx∈[0,T ]d |D3(x) +
∑d

j=1 lj(x)Wj(xj)| P→ 0.

Due to the existence of the first derivatives, we can use the mean value theorem

to write

1√
k
D3(x) = l (Sn(x)) − l(x) =

d
∑

j=1

(Snj(xj) − xj) · lj(ξn),

with ξn between x and Sn(x). Therefore

sup
x∈[0,T ]d

|D3(x) +

d
∑

j=1

lj(x)Wj(xj)| ≤
d
∑

j=1

|lj(ξn)
√
k(Snj(xj) − xj) + lj(x)Wj(xj)|.

Note that all the terms on the right-hand side of the above inequality can be

dealt with in the same way. Consider the first term. It is bounded by

sup
x∈[0,T ]d

|l1(ξn)| · sup
x1∈[0,T ]

|
√
k(Sn1(x1) − x1) +W1(x1)|

+ sup
x∈[0,T ]d

|l1(ξn) − l1(x)| · sup
x1∈[0,T ]

|W1(x1)|

=: D4 ·D5 +D6 ·D7.

Since l1 is continuous on [0, 2T ]d, it is uniformly continuous and bounded. We

have D5
P→ 0 by (4.7.3), so D4 · D5 also converges to zero in probability. The

uniform continuity of l1 and the fact that almost surelyD7 <∞ yieldD6·D7
P→ 0.

Applying (4.7.1) completes the proof. �

Proposition 4.7.3. If the conditions (C1), (C2) hold, then as n → ∞ and

k → ∞, √
k

∫

[0,1]d
g(x)

(

l̂n(x) − l(x)
)

dx
d→ B̃. (4.7.4)
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Proof Throughout the proof we write l(x) instead of l(x; θ0). Also, since l does

not need to be differentiable, we will use notation lj(x), j = 1, . . . , d, to denote

the right-hand partial derivatives here. Let D1(x), D2(x), D3(x) be as in the

proof of Theorem 4.4.2 and take T = 1. Then

∣

∣

∣

√
k
(

∫

[0,1]d
g(x)L̂n(x)dx−

∫

[0,1]d
g(x)l(x)dx

)

− B̃
∣

∣

∣

≤ sup
x∈[0,1]d

|D1(x) −Wl(x)|
∫

[0,1]d
|g(x)|dx

+ sup
x∈[0,1]d

|D2(x)|
∫

[0,1]d
|g(x)|dx

+

∫

[0,1]d
|g(x, y)| ·

∣

∣

∣

∣

∣

D3(x) +

d
∑

j=1

lj(x)Wj(xj)

∣

∣

∣

∣

∣

dx.

The first two terms on the right hand side converge to zero in probability due to

integrability of g and uniform convergence of D1(x) and D2(x), which was shown

in the proof of Theorem 4.4.2. The third term needs to be treated separately,

as the condition on continuity (and existence) of partial derivatives is no longer

assumed to hold.

Let ω be a point in the Skorohod probability space introduced before the proof

of Theorem 4.4.2 such that for all j = 1, . . . , d,

sup
xj∈[0,1]

|Wj(xj)| < +∞ and sup
xj∈[0,1]

|
√
k(Snj(xj) − xj) +Wj(xj)| → 0.

For such ω we will show by means of dominated convergence that

∫

[0,1]d
|g(x)| ·

∣

∣

∣

∣

∣

√
k (l(Sn(x)) − l(x)) +

d
∑

j=1

lj(x)Wj(xj)

∣

∣

∣

∣

∣

dx → 0. (4.7.5)

Proof of the pointwise convergence. If l is differentiable, convergence of the above

integrand to zero follows from the definition of partial derivatives and (4.7.3).

Since this might fail only on a set of Lebesgue measure zero, the convergence of

the integrand to zero holds almost everywhere on [0, 1]d.

Proof of the domination. Note that from expressions for (one-sided) partial

derivatives (4.2.4), and the moment conditions (4.6.1) it follows that |lj(x)| ≤ 1,
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for all x ∈ [0, 1]d and all j = 1, . . . , d.

We get

|g(x)| ·
∣

∣

∣

∣

∣

√
k (l (Sn(x)) − l(x)) +

d
∑

j=1

lj(x)Wj(xj)

∣

∣

∣

∣

∣

≤ |g(x)| ·
(

√
k|l(Sn(x)) − l(x)| +

d
∑

j=1

|Wj(xj)|
)

.

Using the definition of function l and uniformity of 1 − Fj(X1j), we have for all

j = 1, . . . , d

|l(x1, . . . , xj−1, xj, xj+1, . . . , xd) − l(x1, . . . , xj−1, x
′
j , xj+1, . . . , xd)| ≤ |xj − x′j |.

Hence, we can write

sup
x∈[0,1]d

√
k|l(Sn(x)) − l(x)|

≤ sup
x∈[0,1]d

√
k|l(Sn(x)) − l(x1, Sn2(x2), . . . , Snd(xd))|

+ sup
x∈[0,1]d

√
k|l(x1, Sn2(x2), Sn3(x3), . . . , Snd(xd))

− l(x1, x2, Sn3(x3), . . . , Snd(xd))|

+ · · ·
+ sup

x∈[0,1]d

√
k|l(x1, . . . , xd−1, Snd(xd)) − l(x)|

≤
d
∑

j=1

sup
xj∈[0,1]

√
k|Snj(xj) − xj | = O(1).

Since for all j = 1, . . . , d we have supxj∈[0,1] |Wj(xj)| < +∞, the proof of (4.7.5)

is complete. This together with (4.7.1) finishes the proof of the proposition. �

Lemma 4.7.4. If in addition to assumptions of Theorem 4.4.1, conditions (C1),

(C2), (C4) hold, then as n→ ∞ and k → ∞,

√
k∇Qk,n(θ0)

d→ N(0, V (θ0)).
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Proof The gradient vector of Qk,n with respect to θ in θ0 is

∇Qk,n(θ0) =

(

∂

∂θ1
Qk,n(θ)

∣

∣

∣

θ=θ0

, . . . ,
∂

∂θp
Qk,n(θ)

∣

∣

∣

θ=θ0

)T

,

where for i = 1, . . . , p,

∂

∂θi

Qk,n(θ)
∣

∣

∣

θ=θ0

= −2

q
∑

m=1

∫

[0,1]d
gm(x)

∂

∂θi

l(x; θ)
∣

∣

∣

θ=θ0

dx

·
∫

[0,1]d
gm(x)(l̂n(x) − l(x; θ0))dx.

Using vector notation we obtain

∇Qk,n(θ0) = −2ϕ̇(θ0)
T ·
∫

[0,1]d
g(x)(l̂n(x) − l(x; θ0))dx.

Equation (4.7.1) and the proof of Proposition 4.7.3 imply that

√
k∇Qk,n(θ0) = −2ϕ̇(θ0)

T ·
∫

[0,1]d
g(x)

√
k
(

l̂n(x) − l(x; θ0)
)

dx
d→ −2ϕ̇(θ0)

T B̃.

The limit distribution of
√
k∇Qk,n(θ0) is, hence, zero-mean Gaussian with co-

variance matrix V (θ0) = 4ϕ̇(θ0)
T Σ(θ0)ϕ̇(θ0). �

Proof of Theorem 4.4.3 Consider the function f(t) := ∇Qk,n(θ0 + t(θ̂n − θ0)),

t ∈ [0, 1]. The mean value theorem yields

∇Qk,n(θ̂n) = ∇Qk,n(θ0) + Hk,n(θ̃n)(θ̂n − θ0),

for some θ̃n between θ0 and θ̂n. First note that with probability tending to one,

0 = ∇Qk,n(θ̂n), which follows from the fact that θ̂n is a minimizer of Qk,n and

that with probability tending to one θ̂n is in an open ball around θ0. By the

consistency of θ̂n we have that θ̃n
P→ θ0, and since the convergence of Hk,n to H

is uniform on a neighborhood of θ0, we get that Hk,n(θ̃n)
P→ H(θ0). Hence,

√
k(θ̂n − θ0)

d→ N(0,M(θ0)).

�
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Proof of Corollary 4.4.4 As in Lemma 7.2 in Einmahl, Krajina, and Segers

(2008), we can see that if θ 7→ Hθ is weakly continuous at θ0, then θ 7→ Σ(θ) is

continuous at θ0. This, together with condition (C4), yields that θ 7→ V (θ) is

continuous at θ0. Assumption (C4) also implies that θ 7→ H(θ) is continuous at

θ0, which, with the positive definiteness of H(θ) in a neighborhood of θ0, shows

that if θ 7→ Hθ is weakly continuous at θ0, then θ 7→M(θ) = H(θ)−1V (θ)H(θ)−1

is continuous at θ0. Hence, we obtain

M(θ̂n)−1/2
√
k(θ̂n − θ0)

d→ N(0, Ip),

which yields (4.4.4). �

Proof of Theorem 4.4.5 Theorem 4.4.3 and the arguments used in the proof

of Corollary 4.4.4 imply that as n→ ∞,

M
−1/2
2 (θ̂1, θ

∗
2)
√
k(θ̂2 − θ∗2)

d→ N(0, Ir), (4.7.6)

and hence (4.4.7). �

Proof of Lemma 4.6.1

l(x1, . . . , xd) = lim
t→∞

tP (1 − F1(X1) ≤ x1/t or . . . or 1 − Fd(Xd) ≤ xd/t)

= lim
t→∞

tP (1 − FY1
(Y1) ≤ x1/t or . . . or 1 − FYd

(Yd) ≤ xd/t)

= lim
t→∞

tP

(

Y1 ≥
t
∑r

i=1 a
ν
i1

x1
or . . . or Yd ≥ t

∑r
i=1 a

ν
id

xd

)

= lim
t→∞

tP

(

⋃

1≤j≤d

⋃

1≤i≤r

{

Wi ≥
t
∑r

i=1 a
ν
ij

aν
ijxj

}

)

= lim
t→∞

tP

(

⋃

1≤i≤r

{

Wi ≥ min
1≤j≤d

t
∑r

i=1 a
ν
ij

aν
ijxj

}

)

= lim
t→∞

t

r
∑

i=1

P

(

Wi ≥ min
1≤j≤d

t
∑r

i=1 a
ν
ij

aν
ijxj

)

= lim
t→∞

r
∑

i=1

t

(

1 − exp

{

−1

t
max
1≤j≤d

aν
ijxj

∑r
i=1 a

ν
ij

})



Chapter 4. An M-Estimator of Tail Dependence 89

=
r
∑

i=1

max
1≤j≤d

{

aν
ijxj

∑r
i=1 a

ν
ij

}

=:
r
∑

i=1

max
1≤j≤d

{bijxj}

as required. �

Proof of Lemma 4.6.2 Fix i ∈ {1, . . . , r}. We have

∫

[0,1]d
xm

k max
1≤j≤d

{bijxj}dx =
d
∑

j=1

∫

[0,1]d
xm

k (bijxj)1

(

bijxj ≥ max
l 6=j

{bilxl}
)

dx.

Write the integral as a double integral, the outer integral with respect to xj ∈
[0, 1] and the inner integral with respect to x−j = (xl)l 6=j ∈ R

d−1 over the relevant

domain. We find

∫

[0,1]d
xm

k max
1≤j≤d

{bijxj} dx =

d
∑

j=1

∫ 1

0

bijxj

∫

0<xl<
bij

bil
xj∧1

xm
k dx−j dxj .

After some long, but elementary computations, this simplifies to the stated ex-

pression. �
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Nederlandse Samenvatting

Een M-schatter voor multivariate staartafhanke-
lijkheid

Dit proefschrift richt zich op het schatten van de staartafhankelijkheidsstruc-

tuur in een semiparametrisch model, verkregen door de aanname dat de stabiele

staartafhankelijkheidsfunctie tot een parametrische familie behoort. Onderzoek

naar de staartafhankelijkheid behoort tot het deelgebied van de kansrekening en

statistiek dat extreme-waardentheorie wordt genoemd. Extreme-waardentheorie

levert de theoretische fundering voor het modelleren van gebeurtenissen die bi-

jna nooit plaatsvinden. Men is gëınteresseerd in deze gebeurtenissen vanwege

hun mogelijk grote gevolgen, zoals in het geval van een grote overstroming of

het instorten van de aandelenbeurs. Voorbeelden van extreme gebeurtenissen

komt men tegen in gebieden als metereologie (overstromingen, stormen, zware

regenval, grote bosbranden), financiering, schadeverzekering en herverzekering,

internet page ranking, etc. Dit proefschrift bevat vier hoofdstukken. Een korte

beschrijving van de hoofdstukken volgt.

In de inleiding worden enkele kernideeën uit de extreme-waardentheorie gepre-

senteerd, met nadruk op concepten die we in dit proefschrift gebruiken. Laat

X1, . . . , Xn een aselecte steekproef zijn uit een continue, d-dimensionale verdel-

ingsfunctie F , Xi = (Xi1, . . . , Xid), i = 1, . . . , n; F1, . . . , Fd zijn de marginale

verdelingsfuncties van F . We nemen aan dat de limiet

lim
t↓0

t−1
P (1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd) =: l(x), (4.7.7)

bestaat voor iedere x = (x1, . . . , d) ∈ [0,∞)d. De functie l heet de stabiele

staartafhankelijkheidsfunctie, en is één van de begrippen die worden gebruikt om

de staartafhankelijkheidsstructuur te beschrijven.

97



Samenvatting 98

Een nieuwe schatter voor de tweedimensionale stabiele staartafhankelijkheids-

functie wordt gëıntroduceerd in Hoofdstuk 2. Aannemende dat de stabiele staartafhanke-

lijkheidsfunctie tot een parametrische familie met onbekende parameter θ uit

parameterruimte Θ ⊆ R
p behoort, definiëren we een schatter θ̂n van θ als de

oplossing van
∫

[0,1]2
g(x)l̂ndx =

∫

[0,1]2
g(x)l(x; θ̂n)(x)dx,

waarbij l̂n de niet-parametrische schatter van l is en g : [0, 1]2 → R
p een door ons

gekozen hulpfunctie. Merk op dat we niet veronderstellen dat F1, F2 of de copula

van F parametrisch zijn: het model is semiparametrisch. We bewijzen dat de

schatter consistent en asymptotisch normaal is onder algemene voorwaarden. We

eisen niet dat de partiële afgeleiden van l (naar x) continu zijn, of zelfs bestaan.

Dit is een standaard vereiste voor asymptotische normaliteit van alle andere

schatters voor l, zowel de niet-parametrische als de meest aannemelijke schatter.

De afwezigheid van de aannames met betrekking tot de partiële afgeleiden laat

het schatten van de staartafhankelijkheidsstructuur in een grotere klasse van

modellen toe. Wij schatten bijvoorbeeld de discrete twee-punts spectraalmaat

die bij een bivariaat twee-factormodel hoort.

Elliptische verdelingen vormen een familie van modellen die veel gebruikt worden

op het gebied van financiering en verzekering. Bivariate elliptische verdelingen

leveren een expliciete uitdrukking van de functie l; ieder model met dezelfde cop-

ula leidt tot dezelfde functie l. Die verdelingen vormen de klasse van elliptische

copulamodellen, ook bekend als de meta-elliptische verdelingen. De functie l van

een elliptisch copulamodel hangt af van twee parameters, ρ en ν, die verschillende

betekenissen en eigenschappen hebben en daarom op verschillende manieren wor-

den behandeld in de schattingsprocedure. Aangezien de correlatiecoëfficiënt ρ

afhangt van de gehele copula, schatten we hem met behulp van de volledige

steekproef. Vervolgens substitueren we die schatter in de uitdrukking voor l en

schatten we de staartparameter ν met behulp van de momentenmethode gepre-

senteerd in Hoofdstuk 2. De toepassing is van belang aangezien de elliptische

modellen vaak gebruikt worden. Echter, zoewel het implementeren van de schat-

ter als het afleiden van zijn asymptotische eigenschappen is niet triviaal. De

schattingsprocedure, de asymptotische resultaten voor de schatter van het paar

(ν, ρ) en een simulatiestudie worden gepresenteerd in Hoofdstuk 3.
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In Hoofdstuk 4 nemen we weer aan dat l parametrisch is, zodat we een semi-

parametrisch model hebben. We breiden de schatter van Hoofdstuk 2 in twee

richtingen uit. Ten eerste maken we de procedure mogelijk voor een willekeurige

dimensie d, d ≥ 2. Ten tweede gebruiken we M-schatters in plaats van de mo-

mentenschatters. Alle bestaande schatters zijn niet-parametrisch, of meest aan-

nemelijke schatters. Het kan erg moeilijk zijn om deze meest aannemelijke schat-

ters uit te rekenen vanwege de ingewikkelde vorm van de aannemelijkheidsfunctie;

bovenal zijn de modelveronderstellingen erg restrictief, aangezien ze hogere orde

differentieerbaarheid van l omvatten. Wij kiezen een semiparametrische benader-

ing omdat dit ons in staat stelt structuur op te leggen aan de afhankelijkheid en

eventueel de schattingsfout te verminderen. Zonder differentieerbaarheid van l

op te leggen, definiëren we een M-schatter van θ. We bewijzen dat de schatter

consistent is en een normale limietverdeling heeft en we presenteren een toets

voor een submodel binnen een gekozen semiparametrisch model. De simulati-

estudies voor enkele voorbeelden, waaronder twee verschillende factormodellen,

laten zien dat de schatter goed presteert in dimensies hoger dan twee.
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