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The net reproduction rate and the type-
reproduction number in multiregional 
demography 

Hisashi Inaba* 

Abstract 

In order to study effects of migration on demographic changes of multiregional 
populations, multiregional population modelling is a useful traditional tool. 
Although multiregional mathematical demography has been extensively explored 
since the beginning of the 1970s, its key concept, the multiregional net 
reproduction rate, has been long neglected. In this review, we focus on a 
multiregional stable population system and elaborate the definition of the 
multiregional net reproduction rate. Next we introduce the type-reproduction 
number from mathematical epidemiology and show that it becomes a useful index 
to formulate a simple control relation for a multiregional population. 
Mathematical ideas presented here will help us to reconsider multiregional 
mathematical demography, which is a useful theoretical framework to study 
effects of interregional migration on population dynamics and composition. 
 
 
1  Introduction 

Multiregional population modelling is a traditional tool used to study effects of 
migration on population dynamics and composition. In fact, the multiregional 
(more generally speaking, multistate) approach has been used in the literature in 
the context of international migration and its long-run effects on multinational 
population system (Coleman 2006). From a theoretical point of view, 
multiregional life table, multiregional stable population model and multiregional 
Leslie matrix are basic tools to allow for a consistent multiregional (multistate) 
population projection under the Markovian assumption for interregional 
migration. Those techniques were extensively developed and became very 
popular through the IIASA project “Migration and Settlement” (1976-1983) under 
the leadership of Andrei Rogers. In many cases, the multiregional population 
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projection model focused on the quantitative assessment of internal migration 
patterns and spatial population dynamics in each country, and it is clear that as 
long as a bottleneck of data availability is dissolved the multiregional 
demographic method can be applied to study effects of international migration on 
multinational population systems as was shown early on by Rogers and Willekens 
(1978). Looking at the age of the IIASA project, computing power has since made 
rapid progress, Eurostat is gradually developing its dataset and apparently aims at 
including migration flows within Europe, so improving the availability of data on 
international migration flows will eventually make it possible to use multiregional 
demographic modelling for the study of international migration. Some important 
aspects of the multistate demographic theory, however, are still not yet properly 
developed. This applies in particular to the concept of net reproduction rate, 
which proved to be a key idea in the classical (single-state) stable population 
model; the concept has not been properly extended to the multiregional case yet, 
although its definition was already suggested by Rogers and Willekens in 1978 
(Willekens 1977; Rogers and Willekens 1978). In this paper, our purpose is to 
address this deficiency and to suggest the potential of multiregional population 
dynamics models by which we examine effects of migration and consider 
population policy for multinational population systems. 

First we briefly sketch the historical development of the idea of the multistate 
net reproduction rate. Next we elaborate the general definition of a multiregional 
net reproduction rate based on the multiregional stable population model. Finally 
we introduce a new index, called the type-reproduction number, developed in 
mathematical epidemiology, and discuss its typical demographic application for 
the calculation of the critical fertility level to maintain a stationary multinational 
population. Although in this note we do not discuss substantive migration 
phenomena, the mathematical tools presented here will help us to reconsider 
multiregional mathematical demography, which is a useful theoretical framework 
to study effects of interregional migration on whole population dynamics and 
composition. 
 
 
2  Historical review of the net reproduction rate 

The net reproduction rate, denoted by R0, is one of most important indices in 
mathematical demography. The quantity is defined as the expected number of 
female newborns produced by a woman during her entire life. Under the regime 
of classical (single-state or uni-regional) stable population theory, R0 is calculated 
as   ℓ  ,∞
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where β(a) is the maternity function (the age-specific rate of having a female 
birth), ℓ(a) is the female’s survival rate at age a. Then := β(a)ℓ(a) is called 
the net maternity function and its normalised distribution  := /R0 gives 
the probability density of age at childbearing. 

Another crucial index is the asymptotic growth rate, denoted by λ0, of the 
number of newborns of a closed population with time-independent vital rates, 
called the intrinsic rate of natural increase. According to the classical stable 
population theory (Dublin and Lotka 1925; Lotka 1998; Keyfitz and Caswell 
2005), λ0 is a unique real root of the Lotka’s characteristic equation: 

(2.1) 1 .∞
 

Then it is proved that λ0 > 0 if R0 > 1, λ0 = 0 if R0 = 1 and λ0 < 0 if R0 < 1. 
Therefore the net reproduction rate R0 formulates the threshold condition for 
population growth based on parameters capturing the average behaviour of 
individuals, i.e. it connects individual life cycle parameters to the growth 
character of the whole population. 

On the other hand, if once we try to take into account many facets of 
heterogeneity at individual level, the classical stable population theory should be 
extended to the multistate stable population theory.1 In fact, a real-world 
population is divided into many regions of residence and connected by 
interregional migration, and each regional population has its own vital rates. In 
such a case, the classical stable population model relying on a homogeneous 
population or an averaged person is insufficient to reflect the diversity of 
individuals and their heterogeneous behaviour. In his early book in 1975 as well 
as in its update from 1995 (Rogers 1975; Rogers 1995), Andrei Rogers developed 
a multiregional extension of the stable population model,2 and defined the net 
reproduction matrix3 as follows (Rogers 1975, p.106):  Ψ   ,∞∞  
                                                 
1  Although here we treat a case in which the state space of the parameter describing individual 

heterogeneity is finite-dimensional, we can also construct a stable population theory with 
infinite dimensional parameter space (Metz and Diekmann 1986). Moreover, as we focus on a 
closed multistate population system here, it is possible to extend the model to take into account 
immigration from exogeneous source (Inaba 1988b). 

2  The idea of multiregional stable population originated in his earlier paper and book published 
in 1966 and 1968 (Rogers 1966; Rogers 1968). As far as I know, Le Bras (1971) independently 
formulated the continuous-time multiregional stable population model. The reader may also 
refer to Land and Rogers (1982) for historical aspects of multistate demography. 

3  Rogers (1995) called K the net reproduction rate matrix, but we are consistently using the term  
‘net reproduction matrix’. 
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where M(a) is an N-dimensional diagonal matrix whose (i, i)-th entry mi(a) 
denotes the maternity function in i-th region,4 ℓ ,  is the 
survival rate matrix whose (i, j)-th entry ℓij(a) denotes the probability that a baby 
girl born in region j will survive to age a in region i and Ψ(a) := M(a)L(a) is 
called the multiregional net maternity function. Let kij be the (i, j)-th entry of K. 
Then kij is the expected number of female newborns in region i produced by a 
woman born in region j during her entire life. 

The Laplace transform of the net maternity function Ψ  Ψ  , 
is defined as the multiregional characteristic matrix. Though his mathematical 
argument was not necessarily rigorous,5 Rogers stated that the intrinsic rate of 
natural increase of a multiregional stable population is given by the real number 
λ0 such that 

(2.2) Ψ  1 , 
where r(A) denotes the spectral radius6 of a matrix A. From the well-known 
Perron-Frobenius theory, r(A) becomes a nonnegative eigenvalue when A is a 
nonnegative matrix, and it is the largest positive eigenvalue of A associated with a 
positive eigenvector when A is irreducible.7 That is, Equation (2.2) implies that 
there exists a positive vector such that 

(2.3)  Ψ
∞  0 , 

where I is N × N identity matrix when Ψ ,  is irreducible. Equation 
(2.3) is a multiregional analogue of the characteristic Equation (2.1). 

Rogers and Willekens, however, did not necessarily consistently define the 
multiregional version of the net reproduction rate R0 by which the threshold 

                                                 
4  The diagonal fertility matrix implies that newborns and their mothers belong to the same state. 

This assumption is reasonable for multiregional models, but it is not necessarily the case for 
other multistate models. 

5  The reader may consult Inaba (1987, 1988a) for a detailed proof. 
6  max | | where σ(A) denotes the set of eigenvalues of A and it follows that A  lim /  . 
7  A N × N matrix A = (aij )1≤i,j≤N is called reducible (decomposable) if the set of numbers L = {1, 

2, ...,N} is the sum of two disjoint subsets K and H such that L = K  H, aij = 0 if i  K and j  
H. If a matrix is not reducible, it is called irreducible (indecomposable). If A is irreducible and 
let  ,  , for any i and j there exists an integer n0 such that 0, so any 

one state is accessible from any other state by multiple transitions (Minc 1988). 
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condition for population growth should be formulated. In a book published in 
1986 (Rogers and Willekens 1986, Chapter 9, p. 378), Rogers and Willekens 
called kij the ‘spatial net reproduction rate’, but it is a misleading definition 
because each region-dependent reproduction number kij can tell us nothing about 
the threshold of population growth. On the other hand, Rogers and Willekens 
(1978) argued that for a spatial zero-growth population to be maintained, the 
dominant eigenvalue of the net reproduction matrix (which is given by r(K)) must 
be unity. Moreover, they argued, 

A multiregional population system that is growing at a positive rate of growth 
exhibits a net-reproduction matrix R(0) with a dominant characteristic root 
λ1[R(0)] that is greater than unity. [Rogers and Willekens (1978), p. 505] 

This observation suggests that the multiregional net reproduction rate may be 
given by the spectral radius (the dominant positive eigenvalue) of the net 
reproduction matrix. Afterwards Rogers (1995, pp. 128-129) again stated that ‘an 
overall net reproduction rate’ is the dominant characteristic root of the net 
reproduction matrix, but did not elaborate his idea of ‘overall net reproduction 
rate’ any further. 

On one hand, Inaba (1987, 1988a) proved that λ0 > 0 if r(K) > 1, λ0 = 0 if r(K) 
= 1 and λ0 < 0 if r(K) < 1 for the continuous-time multistate stable population 
model,8 and stated that the multiregional analogue of the net reproduction rate is 
r(K). However, this result also had no influence on the later course of multistate 
demography, which mainly focused on practical methods for multiregional 
population projection and comparative quantitative assessment of migration 
patterns and spatial population dynamics; up to now, the concept of multistate net 
reproduction rate has been given less attention by demographers.9 

It is regrettable that the multistate R0 is not being used in multiregional 
demographic analysis. In fact, although many EU countries and USA now adopt 
the multiregional demographic model for their population projection purposes, if 
we do not use the multiregional R0, we cannot discuss the intrinsic reproductive 
potential of the multiregional population, and it is also difficult to argue 
population policy quantitatively, taking into account regional heterogeneity. 

In the field of mathematical epidemiology, Diekmann et al. (1990) established 
a general definition of the basic reproduction number R0 for the spread of 
infectious diseases. The basic reproduction number in epidemiology originates 
from the concept of the net reproduction rate in demography (Dietz 1993; 

                                                 
8  The corresponding threshold result and the definition of R0 for the generalised Leslie matrix 

model are given in Inaba (1986). 
9  In fact, typical (mathematical) demographic texts such as Schoen (1988), Preston et al. (2001) 

and Keyfitz and Caswell (2005) do not refer to the multistate net reproduction rate although 
they introduce multistate demography. On the other hand, the reader may refer to Inaba (1995) 
and Billari et al. (2000) for realistic examples where R0 is extended to multistate demographic 
models. 
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Heesterbeek 2002), and it is defined as the expected number of secondary cases 
produced by a typical infected individual in a totally susceptible host population 
during its entire infectious period. If the number of states of an individual at 
‘birth’ (in the epidemiological sense, i.e. at a new infection) is finite, the basic 
reproduction number is given by the dominant positive eigenvalue (the spectral 
radius) of the next generation matrix ,  whose (i, j)-th entry kij 
denotes the expected number of i-th secondary cases produced by a new case in 
state j in a totally susceptible host population during its entire infectious period. 
Those developments in mathematical epidemiology clearly suggest that the 
multistate net reproduction rate in demography also should be the positive 
dominant eigenvalue (the spectral radius) of the net reproduction matrix K. 

As suggested by the recent rapid developments in mathematical epidemiology 
after introducing the appropriate definition of R0, neglecting the (multistate) net 
reproduction rate is a serious obstacle for theoretical developments in multistate 
demography, because the multistate net reproduction rate is the key concept 
which combines life cycle parameters capturing individual heterogeneity with 
macro population dynamics, hence it is essential to formulate population control 
criteria based on the heterogeneity of individual behaviour. 

 
 

3  The net reproduction rate for a multiregional stable 
population 

In this section, we elaborate on the idea of multiregional net reproduction rate.10 
In the following, we mainly deal with ‘multiregional’ populations instead of 
‘multistate’ populations in order to focus on the application to a multiregional 
system with inter-regional migration, although the reader may easily understand 
that the basic idea is not restricted to multiregional systems, which are just one 
example of more general multistate population models.11 

Suppose that a large-scale closed female population were divided into N 
regions. Let pj(t, a) (1 ≤ j ≤ N) be the age density of j-th regional population at 
time t and age a. Let p(t, a) := (p1(t, a), . . . , pN(t, a))T12 be an N-dimensional 
column vector of the multiregional population at time t. By using the 
multiregional survival rate matrix L(a), the population vector p(t, a), t ≥ 0 is 
expressed as follows: 

                                                 
10  Although the net reproduction rate is in fact not a ‘rate’ but a non-dimensional number or ratio, 

in this paper we use the conventional term ‘rate’. 
11  In general, we remark that the state-dependency often requires assumptions different from that 

of the regional dependency. 
12  T denotes the transpose of the vector. 



Hisashi Inaba 203 

(3.1) ,  ,                              0,,        0, 
where B(t) := p(t, 0) is the number (vector) of newborns per unit time at time t and 
p0(a) := p(0, a) is the initial data. Let M(a) be an N × N diagonal fertility rate 
matrix, whose i-th diagonal element is the age-specific fertility rate of i-th region. 

Then we have 

(3.2)   ,  . 
Inserting the Expression (3.1) into the boundary condition (3.2), we obtain the 

multiregional renewal equation (Lotka’s integral equation) as13 

(3.3)    Ψ ,      0 , 
where Ψ(a) = M(a)L(a) and G is given by   . 

If we define the m-th generation of newborns, denoted by Bm(t), iteratively as   ,  
(3.4)   Ψ ,        1,2, …, 
then B1(t) denotes the number of daughters produced by the initial population per 
unit time at time t, B2(t) is the number of granddaughters (of the initial 
population) per unit time at time t and so on. It is well known that the solution of 
the renewal Equation (3.3) is given by   . 

Integrating the iterative relation (3.4) and changing the order of integrals, we 
observe that 

                                                 
13  In the following we assume Ψ to be a nonnegative integrable (matrix valued) function on [0, ∞), which is a reasonable assumption for our purpose because M(a) is zero outside of finite 

reproductive period. 
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(3.5)                            Ψ  

                        . 
If we define  ,        1 , 

then Xm denotes the size distribution of m-th generation (the total number of 
offspring belong to m-th generation). Therefore it follows from (3.5) that 

Xm+1 = KXm = KmX1,        m = 1, 2, .., 

where  Ψ  , 
is the multiregional net reproduction matrix.14 

If the multiregional net reproduction matrix K is a primitive matrix,15 its 
spectral radius r(K) becomes the dominant positive eigenvalue of K, i.e. |λ| < r(K) 
for any eigenvalue λ of K other than r(K). Moreover it can be proved that 

(3.6) lim   , 
where u0 and 0 are the right and left positive eigenvectors of K associated with 
the dominant eigenvalue r(K). 

As (3.6) shows that the size of each generation is asymptotically expanding or 
shrinking with the geometric growth rate r(K), hence it is reasonable that we 
define the multiregional net reproduction rate R0 as 

R0 = r(K) . 

Let kij be the (i, j)-th entry of the net reproduction matrix K. Then 

                                                 
14  In mathematical epidemiology, K is called the next generation matrix and R0 = r(K) is called 

the basic reproduction number (Diekmann and Heesterbeek 2000), because K maps a 
distribution (vector) of primary case to a distribution of secondary case. 

15  A nonnegative matrix is primitive if and only if there exists an integer n such that An is strictly 
positive. 
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 , 
is the total number of female offspring of a woman born in region j, so we may 
call it the native-dependent net reproduction rate, which is a cohort net 
reproduction rate of a woman born in region j. As was pointed out by Rogers and 
Willekens (1978), R0 = r(K) = 1 if Rj = 1 for all j, which is a most simple criterion 
for attaining the multiregional population replacement level. It is also well known 
in mathematical economics that R0 = r(K) < 1 if maxj Rj < 1 (Brauer-Solow 
condition), or if I−K has N positive upper left-hand corner principal minors 
(Hawkins-Simon condition). Although according to neglect of the multiregional 
R0, there are not so many examples of the net reproduction matrix K estimated 
from real data, Rogers and Willekens (1978) gave the two-regional net 
reproduction matrix for urban-rural data for India, the Soviet Union and the USA. 
The urban-rural net reproduction matrix for India in 1970 is computed as  1.10 0.250.50 1.55  , 
where Region one denotes urban area and Region two denotes rural area. Then 
the native-dependent net reproduction rate of urban area is R1 = k11+k21 = 1.6, 
while for rural area R2 = k12 + k22 = 1.8. The two-regional net reproduction rate R0 
= r(K) is 1.74. 

As we see above, the net reproduction rate formulates the threshold condition 
for population growth in the generational perspective, but we still have to check 
whether it also gives the threshold condition for population growth in real time. In 
fact, we can show that the intrinsic rate of natural increase is given by the real 
number λ0 satisfying (2.2) and it follows that 

(3.7) lim  , 
where the coefficient Q0 is given by 

Ψ ,         , 
and are the right and the left positive eigenvectors of Ψ  associated with 

eigenvalue unity and Ψ Ψ Ψ  . 
Since r(Ψ(λ)) is strictly decreasing with respect to λ   and R0 = r(Ψ((0)) = 

r(K), we obtain the threshold result that λ0 > 0 if R0 > 1, λ0 = 0 if R0 = 1 and λ0 < 0 
if R0 < 1. 

Define the multiregional stable age distribution by 
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 . 
Then it follows from (3.1) and (3.7), we can prove that the following holds 

uniformly for any finite age interval: lim ,   . 
Then the multiregional age profile converges to a multiregional stable age 

distribution as time evolves. This is the strong ergodicity theorem for the 
multiregional stable population model.16 
 

 
4  The type-reproduction number and control criteria 

As is discussed above, the idea of the multiregional (multistate) net reproduction 
rate has been long neglected and underutilised by demographers. However, 
without the net reproduction rate we cannot formulate the control measure for 
population growth in a heterogeneous population. In contrast to demography, 
mathematical epidemiology has successfully developed mathematical models 
dealing with heterogeneous population for disease prevention policy since the 
introduction of the general definition of the basic reproduction number. Here we 
consider applications of epidemic ideas based on the basic reproduction number 
and the type-reproduction number to demographic problems. 

Using the net reproduction matrix K, we can consider effects of fertility 
changes on the net reproduction rate. The most basic question is how to control 
the entries of K so that the multiregional net reproduction rate becomes unity, i.e. 
how we can lead to a stationary population, because it is a sustainable state in the 
long run. If we consider a homogeneous (uni-regional) population with R0 > 1 and 
  denotes the proportion of fertility reduction, the critical proportion of reduction, 

denoted by , to lead to a demographic stationary state is determined by the 
equation (1 − )R0 = 1, i.e., 

(4.1)   

 

which is the demographic analogue of the famous control relation (the critical 
proportion of immunisation) in mathematical epidemiology. On the other hand, if 
R0 < 1, the critical proportion of fertility increase to attain the replacement level is 
given by 1/R0 − 1. 

                                                 
16  A mathematically rigorous treatment of the multistate strong ergodicity theorem can be found 

in Inaba (1987, 1988a). An extension to the non-Markovian assumption is given in Inaba 
(1992). 
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However, for the multiregional model, it is not easy to see the effect of 
changes in entries of the net reproduction matrix K on R0, and not only fertility 
but also the force of migration becomes a control parameter affecting the entries 
of K. Since the effects of changes in pattern and intensity of migration on K are 
complex, in the following we mainly consider effects of fertility change under 
given multiregional survival rates. 

Again let us consider the urban-rural (two-regional) net reproduction matrix 
as 

(4.2)   , 
where we assume that R0 = r(K) > 1. If all entries are uniformly reduced as much 
as , it is clear that the multiregional net reproduction rate becomes (1 − )r(K). 
In this uniform reduction case, the critical proportion of reduction  with which a 
multiregional zero-growth population is maintained is again given by (4.1), while 
if the proportion of reduction is not uniform, it is not the case.  

Suppose that fertility of rural area (Region 2) is reduced as much as   (0, 1), 
hence the controlled net reproduction matrix, denoted by K( ), becomes  1 1 . 

Alternatively, if individuals born in rural areas reduce their fertility as much 
as , then the controlled net reproduction matrix becomes  11 . 

In both cases, the net reproduction rate is calculated as 

   1 1 4 1 det  ,  
which is a complex function of the reduction rate . Since the critical proportion 
of fertility reduction  is determined by r(K( )) = 1, there is no simple relation 
between   and R0. If the dimension of the state space becomes larger, it is 
almost impossible to give an explicit relationship between R0 and the critical 
proportion of fertility reduction. 

In order to obtain a simple control relation even for non-uniform changes in 
entries of the net reproduction matrix, we adopt a new reproduction number called 
the type-reproduction number introduced by Heesterbeek and Roberts (2003).17 
                                                 
17  Inaba and Nishiura (2008) formulated a similar type of reproduction number called the state-

reproduction number based on the multistate stable population model. The state-reproduction 
number coincides with the type-reproduction number when all states are birth state, while it can 
be applied to more general multistate models whose individual states are not necessarily birth 
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The type-reproduction number for a target region is defined as the total number of 
female offspring in the target region produced by a woman born in the target 
region during her whole reproductive life. Here it must be noted that the type-
reproduction number takes into account not only newborns born directly to 
women in the target region but also newborns in the target region produced by 
way of descendants of those women who were born in non-target regions. 

To explain the above definition, let us return to the urban-rural (two-regional) 
model (4.2). If k11 < 1, i.e. if the urban-born population cannot replace itself 
without the rural area, the type-reproduction number of the rural region (target 
region), denoted by T2, is calculated as 

(4.3)    1   . 
The first part k22 denotes the total number of female newborns in the rural 

region directly produced by a woman born in the rural region, the second part 

1  1  , 
denotes the number of rural offspring by way of urban-born individuals who are 
descendants of rural-born women with no intermediate rural-born descendants. In 
fact, a rural-born woman produces k12 female newborns in the urban area, an 
urban-born woman leaves 1/(1 − k11) = 1 + k11 +   + ··· descendants born in the 
urban area and each urban-born woman produces k21 offspring in the rural area. 
As shown in Mathematical Appendix, we can prove that R0 > 1 if T2 > 1, R0 = 1 if 
T2 = 1 and R0 < 1 if T2 < 1, i.e. the threshold condition for population growth is 
expressed by T2 = 1. 

It is easily seen from (4.3) that if rural fertility decreases as much as , i.e. if 
k22 and k21 are replaced by (1− )k22 and (1− )k21, respectively, or the fertility of 
females born in the rural area decreases as much as , i.e. if k22 and k12 are 
replaced by (1 − )k22 and (1 − )k12, respectively, then T2 becomes (1 − )T2, in 
both cases. Therefore the critical reduction rate is simply calculated as 1 1  . 

That is, if rural fertility decreases as much as , or if the native-dependent net 
reproduction rate of the rural area is reduced as much as , T2 and R0 become 
unity and the population converges to a stationary state. 

                                                                                                                 
state. The birth state is a state where a newborn can be produced. In the multiregional model, 
we usually assume that all regions are birth state, so we do not need to distinguish the type-
reproduction number and the state-reproduction number, but this is not necessarily the case for 
other multistate models. 
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Next let us consider a case where two control programs are acting 
independently. Suppose that the rural fertility is decreased as much as , and the 
native-dependent net reproduction rate of the rural area is reduced as much as . 
Then the net reproduction matrix is changed into ,  11 1 1  . 

Then the type-reproduction number of the rural area is (1 − )(1 − )T2, the 
critical reduction level, denoted by ( , ), is a set given by a nonlinear relation 
as: 

(4.4)  1 1  1  . 
In such a case, though we no longer have a simple linear control relation, the 

control set of parameters given by (4.4) is still much simpler than the control set 
defined by R0 = r(K( , )) = 1. 

As a numerical example, let us consider an urban-rural model given by 
Rogers (1995, p. 128). Suppose that the next generation matrix is given by  

  1  . 
Then the net reproduction rate of this two-region system is above replacement 

level:  12  4 54 1 . 
Since k11 < 1, we can calculate the type-reproduction number for the rural 

area as: 

1 32 . 
Therefore we know that  = 1 − 1/T2 = 1/3, hence the total population will be 

controlled to a stationary state if rural fertility, or the rural-born individuals’ 
fertility, decreases by as much as 33 per cent. On the other hand, the total 
population will go to a stationary state if we decrease everyone’s fertility by as 
much as (1 − 1/R0) × 100 = 20 per cent. 

 
 

  



210 The net reproduction rate and the type-reproduction number 

5  Discussion 

The type-reproduction number of a target region is not finitely defined if the net 
reproduction rate of the multiregional system composed of non-target regions is 
not less than unity. However, for example, as is observed in many developed 
countries (such as EU countries and Japan), not only the national fertility is below 
replacement level but all regional, subnational or prefectural fertilities as well. In 
such a case, we can compute the type-reproduction number for each region,18 and 
its theory tells us that we can increase the national (or multinational) fertility rate 
to above replacement level by increasing the fertility of some target regions 
intensively, instead of increasing every regional (or cohort) fertilities uniformly. 
This multistate perspective reflecting demographic heterogeneity is crucially 
important for discussing multiregional population policy, because uniformly 
effective control is not realistic. 

As is shown above, the type-reproduction number gives a useful index to 
formulate the critical fertility level of individuals at specific target states to which 
population control policy will be applied, provided that migration pattern and 
intensity are given. It is a future challenge to examine the effects of variation of 
migration on the net reproduction matrix and R0. On the other hand, as we see in 
the Appendix, we can formulate the renewal equation for the target population to 
calculate other demographic indices, including the generation time, the intrinsic 
growth rate and the momentum of population growth, which are also useful to 
study the impact of heterogeneous individual behaviour on population dynamics 
as a whole. Historically speaking, as Heesterbeek (2002) pointed out, the concept 
of the net reproduction rate R0 was already established at least in 1925 by Dublin 
and Lotka (Dublin and Lotka 1925; Lotka 1998) in demography,19 while it has 
taken more than 50 years for the concept to mature in epidemiology. Moreover it 
was not until recently that stable population theory became a popular tool in 
mathematical epidemiology (Wallinga and Lipsitch 2007) and I believe that there 
are still many ideas and concepts in demography that should be learned by 
epidemiologists. However, the progress of mathematical epidemiology during the 
last decade is remarkable, hence in some aspects R0 is more fully developed in 
epidemiology than in demography. The type-reproduction number (or the state-
reproduction number) is a typical result of those epidemiological developments in 

                                                 
18  In the N-regional system, if the target region is one, its type-reproduction number T1 is given by 

the Roberts-Heesterbeek formula (Roberts and Heesterbeek 2003) as  
 , 

 where P is a projection matrix to the first state (that is, the (1,1)-th entry is unity and all other 
entries are zero) and e1 is a unit vector whose entries other than the first entry are all zero, 
provided that r((I – P)K) < 1, that is, the net reproduction rate of multiregional system 
excluding the first state is below replacement level. 

19  In fact, the roots of R0 could be traced back to much earlier time (almost 18th century), and 
epidemic R0 has its roots in 19th century (Nishiura et al. 2006; Nishiura and Inaba 2007). 
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basic reproduction number theory. Now it would be the turn of demography to 
import epidemiological ideas. Just as in mathematical epidemiology, the net 
reproduction rate R0 must become a key concept to reactivate multistate 
mathematical demography, and then it would prove to be a useful tool for 
investigating multinational population dynamics with migration. 
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Mathematical appendix 

Here we briefly sketch the dynamical system formulation for the type-
reproduction number and its computation method. Although the type-reproduction 
number theory is formulated for any number of target states based on the general 
N-dimensional renewal system (Inaba and Nishiura 2008), for illustrative 
purposes, we here consider a two-regional stable population system:     , 
(6.1)     , 
where ij(a) is the (i, j)-th entry of the 2-regional net maternity function matrix 
Ψ(a) and  , 
gives the (i, j)-th entry of the 2-regional net reproduction matrix K. 

If we use a symbol for convolution integral as   , 
then (6.1) is simply expressed as follows:  , 
(6.2)  . 

In the following, we assume that k22 < 1, i.e. the net reproduction rate is 
below replacement level if a woman spends her entire reproductive life stage in 
the second region. Under this basic assumption, first let us solve the renewal 
equation of newborns in the second region. If we see B1(t) as a given function, we 
can formally solve the renewal equation for B2 as follows: 

 
(6.3)    

where  is the resolvent kernel corresponding to  defined by the solution of 
the resolvent equation: 

(6.4)   . 
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If we insert the expression (6.3) into the renewal equation for B1 in (6.2), we 
obtain a new renewal equation for B1: 

(6.5) 1 1 11 1 12 2 22 2 21 22 21 1             

Let us define the integral kernel and the initial data for the reduced system as   , 
(6.6)      . 

From (6.5) and (6.6), we arrive at a single renewal equation for B1: 

(6.7)    , 
where the integral kernel π1 describes not only the number of female children 
born in the first region to a woman born in the first region, but also the number of 
progeny born in the first region to females born in the second region whose 
family line started from individuals born in the first region without intermediate 
descendants born in the first region. Once we can determine the birth trajectory of 
the first-region population by (6.7), the birth trajectory of the second-region 
population is given by (6.3). 

Based on the renewal process described by (6.7), we define the type-
reproduction number for the first-region population, denoted by T1, as  . 

From (6.6), we can calculate T1 as 

(6.8)   1  . 
By integrating both sides of the resolvent Equation (6.4), we have  1  , 

where the integrability of the resolvent kernel 22 is guaranteed by our 
assumption that k22 < 1 (see Inaba and Nishiura 2008, Paley-Wiener Theorem). 
Then we have 

1  . 
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Inserting the above expression into (6.8), we obtain 

1   . 
Then we can easily confirm that if T1 > 1, then R0 > 1, if T1 = 1, then R0 = 1 

and if T1 < 1, then R0 < 1. In fact, let f(λ) = det(λI −K). Then R0 is the largest 
positive root of f(λ) = 0 and it follows that 

f(1) = (1 − k22)(1 − T1),      f’(1) = 2 − (k11 + k22) . 

If T1 > 1, then f(1) < 0 and f(λ) = 0 has a positive root larger than unity, we 
conclude that R0 > 1. If T1 = 1, then f(1) = 0 and f’(1) > 0 because k22 < 1 and k11 
< T1 = 1. Then the largest positive root of f(λ) = 0 is unity, i.e. R0 = 1.  

Finally if T1 < 1, then f(1) > 0 and f’(1) > 0, which implies that R0 < 1. The 
reader may refer to Roberts and Heesterbeek (2003) and Inaba and Nishiura 
(2008) for a general computation method of the type-reproduction (or state-
reproduction) number in the N-dimensional case. 


