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1 INTRODUCTION 2

1 Introduction

Over the past two decades, technological progress has been biased towards
making skilled labor more productive. The evidence for this finding is based
on the marked increase in the skill premium in the US and many other
industrialized countries starting in the early 1980s, which coincided with
a substantial rise in the average education level of the workforce. This
parallel increase in the price and quantity of skill points towards an increase
in the demand for skilled workers that exceeded the increase in their supply,
suggesting that newly developed production technologies require relatively
more educated and fewer uneducated workers (Katz and Murphy (1992);
Autor et al. (1998); Acemoglu (2002); Autor et al. (2005) and Autor et al.
(2008)).

What are the implications of skill-biased technological change for busi-
ness cycle fluctuations? To our knowledge, this paper is the first to study
this question. The lack of interest in skill-biased technology in the business
cycle literature is surprising given the large number of studies dedicated
to the effect of this type of technological progress on growth and inequality.
Our results show that allowing for skill bias in technological change is impor-
tant to understand business cycles and in particular speak to two important
debates in the macroeconomics literature. First, traditional identifying re-
strictions, which are justified in models with homogeneous labor, may give
a misleading picture of the effect of technology shocks on the economy. In
particular, we show that skill-biased improvements in technology lead to a
fall in total hours worked, but hours increase in response to skill-neutral
technology shocks. Second, we show that the response of the economy to
skill biased technology shocks implies restrictions on the production function
that are of interest to macroeconomists studying growth as well as business
cycles. In particular, we find that skill-biased technological change, unlike
skill-neutral technological progress, increases the relative price of investment
goods, indicating that capital and skill are substitutes in aggregate produc-
tion.

Following previous studies on skill-biased technological progress, we iden-
tify skill-biased technology shocks from their effect on the skill premium. To
this end, we construct a time series for the skill premium, which was so far
not available at a quarterly frequency. Using the Current Population Sur-
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vey (CPS) outgoing rotation groups, we calculate the skill premium as the
log ratio of wages of college graduate equivalent workers over high school
graduate equivalents, controlling for experience and other observable worker
characteristics. In combination with comparable measures for the relative
supply and employment of skilled workers, these series give a good picture
of the high frequency movements in the price and quantity of skill in the US
over the 1979:I-2006:II period.

We use a structural vector autoregression (VAR) to estimate the re-
sponse of the economy to technology shocks, identifying technology shocks
using long-run restrictions as in Blanchard and Quah (1989) and Gaĺı (1999).
We find that improvements in technology significantly increase the skill pre-
mium, providing strong evidence for skill bias in technological change at
business cycle frequencies. This finding is novel and somewhat surprising,
given that the skill premium is roughly acyclical over our sample period,
which seems to suggest that skill-biased technological change is not rele-
vant for business cycle fluctuations.1 However, in the presence of multiple
shocks, unconditional correlations are the result of a mixture of responses,
which obscures the effects of changes in technology.2 The structural VAR
allows us to estimate the response of the economy conditional on technology
shocks. This exercise delivers two sets of results.

For our first set of results, described in more detail in section 3, we
propose a long-run restriction to separately identify skill-biased technology
shocks. We argue that skill-biased technology shocks are the only shocks that
affect the skill premium in the long run.3 Following Gaĺı (1999), we identify
skill-neutral technology shocks as all remaining shocks that permanently

1This interpretation seems to be supported by the fact that the skill premium is nega-
tively correlated with the relative supply of skilled labor at business cycle frequencies. For
example, Acemoglu (2002) and Autor et al. (2005) argue this observation indicates that
fluctuations in the skill premium are driven by fluctuations in the supply of skill rather
than its demand.

2Lindquist (2004) reaches a similar conclusion, although from a completely different
exercise. Lindquist argues that skill bias in technology shocks, generated by investment-
specific technology shocks and capital-skill complementarity in the aggregate production
function, explains the cyclical behavior of the skill premium. We discuss his argument in
more detail in section 4.3.

3If there are exogenous, permanent changes in the supply of skilled labor, then this
restriction is not valid, because increases in the supply of skill would also affect the skill
premium in the long run. However, we separately identify skill supply shocks using a
short run restriction, assuming that the supply of skilled workers is predetermined, and
find that there are no exogenous changes in the supply of skill: skill supply shocks explain
a negligible and insignificant fraction of fluctuations in all variables considered.
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change labor productivity. We find that skill-biased technology shocks, like
skill-neutral technology shocks, increase labor productivity. Skill-biased im-
provements in technology shocks also cause a large decline in total hours
worked. Skill-neutral technology shocks lead to an increase, rather than a
decrease in hours. This finding suggests that the fall in hours in response to
technology shocks, which has been interpreted as evidence for price rigidi-
ties, may instead be driven by compositional changes in the labor force.
This result is robust to the precise way to estimate the VAR. We also find
very similar results if we construct skill-biased technological changes directly
from data on the skill premium and the relative employment of skill using
assumptions on the production function rather than a structural VAR.

Our second set of results, described in section 4, concerns the following
question: What kind of changes in the aggregate production function best
describe the skill-biased improvements in technology we observe over the
past two decades? In a production function that takes capital, skilled and
unskilled labor as inputs, a change in productivity must be either a change in
total factor productivity (TFP) or capital or skilled labor augmenting tech-
nological change.4 Whereas changes in TFP are always skill-neutral, both
capital and skilled labor augmenting technological change may increase the
relative demand for skilled labor, depending on the elasticities of substitu-
tion between the different inputs. Krusell et al. (2000) argue that capital
and skill are complements in the aggregate production function, and that
skill-biased technological change is the result of an increase in the relative
productivity of the investment-goods producing sector.5 We find strong evi-
dence against this hypothesis and argue that over our sample period capital
and skill are substitutes rather than complements.

In order to explore the issue of capital-skill substitutability, we include
both the skill premium and the relative price of investment goods in the

4A change in the productivity of the third input, unskilled labor, cannot be separately
identified. For example, a change in technology that makes unskilled labor more productive
relative to capital and skilled labor would be the combination of an increase in total TFP
and a decrease in capital and skilled labor augmenting productivity.

5It is a well-documented fact that, over the same period that the skill premium has
risen, the relative price of investment goods (software, equipment structures) has fallen
substantially, providing evidence for investment-specific technological change (Gordon
(1990); Greenwood et al. (1997); Cummins and Violante (2002)). Krusell et al. (2000)
show that if capital and skilled labor are sufficiently complementary, investment-specific
technological progress can explain the increasing trend in the skill premium, because the
increase in the capital-labor ratio makes skilled labor relatively more productive.
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VAR. We use the latter to identify investment-specific technology shocks,
following Fisher (2006), as the only shocks that affect the relative price of
investment in the long run. An investment-specific improvement in tech-
nology lowers the relative price of investment goods. The remaining shocks
that affect labor productivity in the long run, are then investment-neutral
technology shocks. We find that investment-specific technology shocks have
a significant, but negative effect on the skill premium, while investment-
neutral technology shocks have a positive effect on this variable. Conversely,
skill-biased technology shocks, identified as described above, raise the rel-
ative price of investment goods. Using a simple two-sector real business
cycle model that is consistent with our identifying restrictions, we explore
what value of the elasticity of substitution between capital and high skilled
labor corresponds to these estimates. For different values of the elasticity
of substitution, we simulate data from the model and use those to estimate
our structural VAR. In order to match the response of the skill premium
to investment-specific shocks in the model-simulated data to the response
estimated from actual data, we need to assume a very large degree of sub-
stitutability between capital and skill.

The remainder of this paper is organized as follows. Section 2 describes
our empirical approach. We define the different shocks to the production
technology that we consider and discuss how to identify the effects of these
shocks using long-run restrictions. We also describe the data that are nec-
essary to estimate these effects and present some descriptive statistics on
the cyclicality of our quarterly series for the skill premium and the relative
supply and employment of skill. In section 3 we describe the properties
of skill biased technology shocks using the structural VAR analysis as well
as a decomposition using the production function. Section 4 discusses our
evidence for capital-skill substitutability in aggregate production. Section 5
concludes.

2 Empirical Approach

In this section, we outline our approach to estimate the implications of skill-
biased technological progress for the business cycle. We start by defining
different types of of technological change, discussing various specifications for
the aggregate production function. Next, we explain how to identify these
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different technology shocks from the data using either the functional form
of the production function or a VAR with long-run restrictions. Finally, we
describe the data needed for the identification, including quarterly series for
the skill premium and the relative supply and employment of skilled labor,
which we construct from micro data.

2.1 Shocks to the production technology

Consider an aggregate production function for output Yt that takes capital
Kt, high skilled labor Ht and low skilled labor Lt as inputs. The production
function satisfies the standard conditions: it is increasing and concave in
all its arguments and homogenous of degree one so that there are constant
returns to scale. Shocks to total factor productivity are neutral technology
shocks, in the sense that they affect the productivity of all inputs in the same
proportion. To allow for skill-biased technological change, the literature has
typically assumed an aggregate production function of the following form
(see e.g. Katz and Murphy (1992), Katz and Autor (1999), Autor et al.
(2008)).

Yt = AtK
α
t

[
β (BtHt)

σ−1
σ + (1− β) L

σ−1
σ

t

] (1−α)σ
σ−1

(1)

Here, At is total factor productivity and Bt is skilled labor augmenting
technology. An increase in Bt can be skill or unskill biased, depending on the
elasticity of substitution between skilled and unskilled labor σ > 0. If high
and low skilled labor are substitutes rather than complements (σ > 1), the
substitution effect of improvements in skilled labor augmenting technology
dominates the income effect so that an increase in Bt increases the demand
for skill and therefore the skill premium (assuming the supply curve for
skill is downward sloping). The consensus estimate for σ is around 1.5 (see
Katz and Murphy (1992), Ciccone and Peri (2006), Teulings and van Rens
(2008)), so that we can think of skill-biased technology shocks as increases
in Bt.

There are two ways to interpret skill-biased technology shocks to an
aggregate production function as in (1). If the production function for all
goods in the economy is the same, then we can think of an increase in Bt

as a technological development that makes skilled labor more productive
in all sectors. Alternatively, we may think that the production in different
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sectors i requires skilled labor in different proportions βi of total labor input.
In this case, even if skilled and unskilled labor are neither substitutes nor
complements within each sector,6 a sector-specific technology shock to a
skill-intensive sector would still increase the skill premium.

A particularly interesting case is an economy that consists of a consump-
tion goods producing sector and an investment goods producing sector. In
this economy there are two mechanisms, by which sector-specific shocks may
affect the skill premium. First, the input shares for skill might be different
across the two sectors as explained above. Because investment goods are
used to build up capital, which is an input in the production process, sector-
specific shocks may also affect the capital-labor ratio used in production. If
capital and skill are complements, as argued by Krusell et al. (2000), then
a higher capital labor ratio increases the relative demand for skilled labor
and therefore the skill premium.

Suppose the two sectors have identical production functions except for a
difference in total factor productivity. In this case, as shown among others
by Fisher (2006) and Krusell et al. (2000), the economy can be aggregated
to a one-sector economy, where total output is divided between consumption
and investment,

Yt = Ct + ptIt (2)

where the relative price of investment goods pt reflects technological im-
provements in the investment goods producing sector. An aggregate pro-
duction function that allows for capital-skill complementarity is a slightly
generalized version of (1).

Yt = At

[
β

(
γK

ρ−1
ρ

t + (1− γ) (BtHt)
ρ−1

ρ

) ρ
ρ−1

σ−1
σ

+ (1− β) L
σ−1

σ
t

] σ
σ−1

(3)

where σ is the elasticity of substitution between skilled and unskilled labor
as before, which now also measures the elasticity of substitution between
capital and unskilled labor, ρ is the elasticity of substitution between capital
and skilled labor and β and γ are share parameters. As shown by Krusell
et al. (2000), improvements in investment-specific technology increase the
skill premium if and only if the elasticity of substitution between capital and

6This is the case where σi = 1 for all i. In the limit for σ → 1, production function (1)
becomes Cobb-Douglas, so that changes in Bt are indistinguishable from changes in At.
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skilled labor ρ is lower than the elasticity of substitution between capital and
unskilled labor σ, i.e. if there is capital-skill complementarity in production.

2.2 Identification and estimation

Under the assumption that workers’ wages are proportional to their marginal
product, we can calculate the skill premium directly from the production
function. Using aggregate production function (1), we get the following
expression,

log
(

wH,t

wL,t

)
= log

(
β

1− β

)
− 1

σ
log

(
Ht

Lt

)
+

σ − 1
σ

log Bt (4)

where wH,t and wL,t are the wages of high and low skilled workers respec-
tively. This equation can be interpreted as a demand curve for skill. The
skill premium is decreasing in the relative demand for high skilled work-
ers, log (Ht/Lt), where the elasticity of demand depends on the elasticity of
substitution between high and low skilled workers.

Changes in skill-biased technology Bt represent shifts of the skill demand
curve or skill demand shocks. Since the skill premium and the relative
quantity of skill are observable, these shocks can be directly retrieved from
equation (4), using an estimate for the elasticity of substitution between low
and high skilled workers σ.7 The estimates for the skill-biased technology
shocks obtained this way are identified from the assumption that wages are
proportional to marginal products. A sufficient condition for this assumption
is that labor markets are perfectly competitive, in which case the wage of
all workers equals their marginal product. If there are frictions in the labor
market, the weaker assumption that wages are proportional to marginal
products still holds approximately. However, if there are frictions in the wage
determination process, then wages may deviate from marginal products in
the short run. Therefore, we alternatively identify technology shocks using
a structural VAR with long-run restrictions, as suggested by Blanchard and
Quah (1989) and first used to estimate technology shocks by Gaĺı (1999).

Consistent with equation (4), we identify skill-biased technology shocks
as the only shocks that affect the skill premium in the long run, conditional

7An estimate for the share parameter β is unnecessary since this parameter affects only
the level of Bt and we normalize the mean and variance of the shocks to zero and one
respectively.
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on the supply of skill. Since the identifying restriction is an assumption on
the long-run effects of the structural shocks on the variables in the VAR,
it is a weaker assumption than assuming that (4) holds in each period and
makes the estimates robust to, for example, wage rigidities. In addition, the
long run identification does not depend on the exact functional form of the
production function and we no longer need to use an estimate for σ.8 Thus,
we use long run restrictions in all our estimates, although we compare the
results to a direct decomposition using equation (4), see section 3.3, and
find that for the simplest estimates the differences are not large.

The estimation of structural shocks using long run restrictions is im-
plemented in two steps. First, we estimate a reduced form VAR in the
variables labor productivity, hours worked, the skill premium and in some
specifications also the relative price of investment goods. Second, we map
the reduced form coefficients and residuals into structural coefficients and
shocks normalizing the variance of all structural shocks to one and assum-
ing orthogonality between these shocks, as well as an identifying restriction.
The long-run identifying restrictions are incorporated using a Cholesky de-
composition of the infinite horizon forecast error variance.9

The specific restriction depends on the type of shock we are interested in
estimating. Skill-biased technology shocks are shocks to the production tech-
nology that affect the skill premium, investment-specific technology shocks
change the relative price of investment goods and in the presence of capital-
skill complementarity technology shocks may be both investment-specific
and skill-biased. Neutral technology shocks increase productivity but do not
affect either the relative price or the skill premium. We discuss the specific
identifying restrictions used to identify neutral, skill-biased and investment-
specific technology shocks as we describe our results in section 3. The iden-
tification of different types of shocks using the Cholesky decomposition is
then implemented by simply reordering the variables in the VAR.

Our baseline VAR is estimated on quarterly data from 1979:I to 2000:IV.
This period is relatively short because of data limitations, see section 2.3.

8Of course the assumption is not valid for all production functions. For example, with
capital-skill complementarity, as in (3), any shocks that affect the capital stock also affect
the skill premium in the long run. However, the restriction can easily be modified to
incorporate this case, see section 4.

9The procedure employed here is very similar to the one in Uhlig (2004). We approxi-
mate the infinite horizon with 20 years.
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All variables are used in first differences in order to allow for unit roots.10

The reduced form is estimated as a Bayesian VAR with a Minnesota prior,
similar to Canova et al. (forthcoming). This prior reflects the belief that the
true data generating process is a univariate unit root in each variable. It is
implemented as a joint prior that the coefficient matrix of the first lag in the
VAR is close to the identity matrix and the coefficients on further lags are
close to zero, where the strength of the prior increases with the lag order. We
use this prior for two reasons. First, in theory one should employ a VAR with
an infinite number of lags in order to correctly identify technology shocks
using long run restrictions, see e.g. Chari et al. (2008). The Minnesota
prior allows us to generate sensible results for a large number of lags, here
we use 8 lags.11 Second, the prior makes our estimation results more stable
in the presence of high frequency variation in the skill premium that is due
to measurement error. The prior does not affect the long-run restrictions in
any way and we show that our results are robust to the strength of the prior
and to estimating the reduced form VAR using ordinary least squares (see
Table 4).

2.3 Data

We construct quarterly series for the skill premium and the relative employ-
ment and supply of skill using individual-level wage and education data from
the CPS outgoing rotation groups. This survey has been administered every
month since 1979 so that our series runs from 1979:1 to 2006:2.12 Wages are
usual hourly earnings (weekly earnings divided by usual weekly hours for
weekly workers) and are corrected for top-coding and outliers. We limit our

10In the context of the identification of neutral technology shocks, there has been a
debate in the literature whether hours worked should be included in levels (Christiano et
al. (2003)) or in first differences (Gaĺı and Rabanal (2004)). Canova et al. (forthcoming)
show that once the very low frequencies are purged out from the data, the results of Gaĺı
(1999) are robust to using hours worked in levels. In all specifications, we verified that
our results are also robust to this choice.

11The strength of the Minnesota prior increases with lag length to reflect the belief that
the higher order lags are less likely to matter. This is reflected in a harmonic decay of the
prior variance on the lag coefficients. We choose a decay parameter of 3. The remaining
hyper-parameters are chosen as in the RATS manual such that the Minnesota prior is
quite loose.

12The BLS started asking questions about earnings in the outgoing rotation group
(ORG) surveys in 1979. The March supplement goes back much further (till 1963), but
does not allow to construct wage series at higher frequencies than annual. The same is
true for the May supplement, the predecessor of the earnings questions in the ORG survey.
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sample to wage and salary workers between 16 and 64 years old in the pri-
vate, non-farm business sector and weight average wages by the CPS-ORG
sampling weights as well hours worked in order to replicate aggregate wages
as close as possible. Education is measured in five categories (less than high
school, high school degree, some college, college degree, more than college)
and made consistent over the full sample period following Jaeger (1997).
In an average quarter, we have wage and education data for about 35,000
workers.

Our measure for the skill premium is the log wage differential between
college graduates and high school graduates. The relative employment and
supply of skill are defined as the log ratio of the number of college grad-
uates over the number of high school graduates in the population and the
workforce respectively. Following Autor et al. (2005), we map the five ed-
ucation levels in the data to college and high school graduate equivalents
and control for changes in experience, gender, race, ethnicity and marital
status. To do this, we first estimate a standard Mincerian earnings func-
tion for log wages. The predicted values from this regression for males and
females at 5 education levels in 5 ten-year experience groups yield average
wages for 50 education-gender-experience cohorts keeping constant the other
control variables. We then calculate the number of workers in each cell as
a fraction of the workforce or population. Dividing by a reference category,
this procedure gives us relative the prices and quantities of skill for 50 skill
categories. Finally, we aggregate to two skill types by averaging relative
prices using average quantity weights and averaging quantities using aver-
age price weights.13 The resulting series are adjusted for seasonality using
the X-12-ARIMA algorithm of the Census Bureau.

The way we measure the skill premium and the relative employment and
supply of skill allows easy comparison to models with workers of only two
skill levels. Yet, the measures do justice to the greater degree of heterogene-
ity in the data. This is necessary to ensure that changes in the price of skill
are correctly attributed to changes in the skill premium and changes in the
quantity of skill to the relative employment or supply of skill. Suppose, for
example, that there is an increase in the number of workers with a masters

13For the skill premium and relative employment series, we calculate average prices and
quantities weighting individual workers in each cell by hours worked. For the relative
supply series this is not possible since we do not observe hours worked for non-employed
workers. For this series, we weight averages only by the CPS-ORG sample weights.
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degree. This represents an increase in the supply of skill. However, a naive
measure of the relative supply, which just counts the number of workers with
at least a college degree, would not reflect this increase. Moreover, if work-
ers with a masters degree earn on average higher wages than workers with
a bachelors degree only, then a naive measure of the skill premium would
increase. In our measures, this increase in the supply of skill would leave
the skill premium unchanged and increase the relative supply measure.

Figure 1 plots our quarterly series for the log wage premium of college
over high school graduates. As documented in previous studies, the data
show a pronounced increase in the skill premium since 1980, which seems to
slow down mildly towards the end of the 1990s. For comparison, the figure
also shows a naive measure of the skill premium (the log wage difference
between workers with at least a college degree and those with at most a
high school degree) and the Mincerian return to schooling. The trend and
fluctuations in our measure of the skill premium are similar to those in the
Mincer return, indicating we have adequately controlled for heterogeneity
beyond two skill types. Figure 2 shows similar plots for the relative employ-
ment and the relative supply of skilled labor. Again, there is a substantial
difference between our preferred measure and the naive measure of the rela-
tive employment of skill. The increase in the employment and the supply of
skill was roughly similar over the last two decades, but the higher frequency
fluctuations differ markedly as we document below.

The other data series we use in our analysis are the following. Output is
non-farm business output of all persons from the national income and prod-
uct accounts (NIPA). Hours are total hours of non-supervisory workers from
the Current Employment Statistics establishment survey. Labor productiv-
ity is output per hour. All three series are available from the Bureau of
Labor Statistics (BLS) productivity and cost program. As the relative price
of investment goods, we use a quarterly intrapolation as in Fisher (2006) of
the quality adjusted NIPA deflator for producer durable equipment over the
consumption deflator (Gordon (1990); Cummins and Violante (2002)).14

Table 1 shows the business cycle correlations of the skill premium and
the relative employment and supply of skill with output, hours, productivity
and the relative price of investment goods.15 The skill premium is basically

14We thank Jonas Fisher for making his data available to us. The quarterly relative
price data runs until 2000, which limits our estimation sample.

15The sample used to generate these correlations coincides with the estimation sample



3 SKILL-BIASED TECHNOLOGY SHOCKS 13

acyclical: it is only very mildly positively correlated with output and even
less with hours worked. This finding is consistent with previous studies
(Keane and Prasad (1993); Lindquist (2004)). The relative supply of skill is
acyclical as well, but the relative employment of skill is higher in recessions
than in booms, indicating the presence of a composition bias in employment
as argued by Solon et al. (1994). The correlation of the skill premium with
the relative investment-price is weak and negative. This is a first indication
that capital-skill complementarity does not seem an important feature of
the data at business cycle frequencies. Note that the correlations of the
naive measure of the skill premium are quite different than the ones of the
baseline measure. Accounting for heterogeneity is important for the cyclical
behavior of the skill premium.

3 Skill-biased technology shocks

In this section, we present our results for the effects of technology shocks on
aggregate variables. We start by assessing the degree of skill bias in ‘tradi-
tional’ shocks to total factor productivity. We then assess to what extent
these estimates are biased due to the presence of shocks to the supply of
skill and find that this bias is negligible. Next, in section 3.3, we propose an
identification strategy to separate skill-biased from skill-neutral technology
shocks and estimate the response of the economy to each type of shock.

3.1 Skill bias in technology

Gaĺı (1999) identifies permanent technology shocks as the only source of
long-run movements in labor productivity. In a wide range of models, closed-
economy, stationary, one-sector RBC models as well as models of the new
Keynesian variety, shocks to total factor productivity are the only shocks
that satisfy this identifying restriction. The remaining disturbances in the
structural VAR are non-technology or ‘demand’ shocks, an amalgum of other
possible shocks in the model: government expenditure shocks, preference
shocks, or shocks to price or wage markups. As a first pass at our data, we
evaluate the skill bias in technology shocks identified in this manner.

The first row of Figure 3 presents impulse response functions of a VAR
as in Gaĺı (1999), extended with the skill premium as a measure of skill bias

used in the next section, i.e. 1979:1-2000:4.
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in addition to labor productivity and hours worked, and estimated on our
smaller sample. Here, as in all graphs that will follow, the point estimate
is the median, and the dotted confidence intervals are 68% Bayesian confi-
dence bands of the posterior distribution of the structural impulse-response
coefficients. Introducing the price of skill as an additional regressor and us-
ing a different estimation sample leaves the responses of labor productivity
and total hours worked almost unchanged compared to Gaĺı (1999).

As in his estimates, a positive innovation in technology leads to an al-
most immediate increase in labor productivity equal to the long run effect,
and an initial reduction and a subsequent increase in hours worked. The
first finding is supportive of the interpretation of the identified shock as a
permanent improvement in technology. The second finding has typically
been interpreted as evidence in favor of price rigidities, which dampen the
substitution effect on impact and thus make the income effect of higher
productivity that increases the demand for leisure dominant in the short
run. The skill premium increases in response to a permanent improvement
in technology. The effect is permanent and is almost fully realized after
two quarters. This finding is consistent with the hypothesis of skill-biased
technological change, suggesting that the improved technology increased the
demand for high-skilled labor.

The estimated technology shocks and their dynamics from the Gaĺı
(1999) VAR used here are similar to direct estimates of total-factor pro-
ductivity from a production function composition in the spirit of a Solow
residual by Basu et al. (2006). As a robustness check, we use the quarterly
series of the Basu et al. (2006) residuals, constructed by Fernald (2007), in-
stead of labor productivity in the VAR.16 If the technology shocks identified
by the two approaches were identical, then these impulse responses should
be the same as those shown in the first row of Figure 3. The results are
shown in row two of Figure 3. Indeed, the responses of the ‘purified’ tech-
nology measure, hours and the premium are very similar, providing support
for the identifying restriction used here.

16We are grateful to Marty Eichenbaum and Luigi Paciello for drawing our attention to
these data and making them available to us.
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3.2 Shocks to the supply of skill

In the identification of technology shocks used above, we assumed that tech-
nology shocks are the only shocks that drive productivity in the long run.
We showed that these shocks have asymmetric effects on the demand for
high and low skilled labor. Thus, production does not use a standard Cobb-
Douglas technology, but either requires high and low skilled labor as sepa-
rate and imperfectly substitutable inputs, as in equation (1), or output to
be produced in multiple sectors with different input shares of skilled labor.
In these cases, the identifying assumption of Gaĺı is no longer valid in the
presence of exogenous changes in the supply of skill, because such changes
may affect labor productivity in the long run.

Suppose a preference shock causes college enrollment to increase perma-
nently. When the new, larger cohort of college graduates enters the labor
market, the supply of skill exogenously increases. The resulting lower skill
premium leads firms to employ relatively more skilled workers. Since skilled
workers are more productive, this raises average labor productivity. Thus,
this shock to the supply of skill satisfies the identifying restriction for a
technology shock, even though technology has not changed at all.

To assess the importance of this bias, we separately identify shocks to
the supply of skill and compare the results from the estimation with and
without skill supply shocks. For this purpose, we include a measure of the
relative supply of skilled workers in the VAR. We use a short-run restric-
tion to identify shocks to the supply of skill: only skill supply shocks affect
the supply of skill in the short run. This restriction is equivalent to as-
suming that the supply of skill is predetermined. Of course there are many
other shocks that may increase the supply of skill endogenously, through an
increase in the skill premium. Skill-biased technology shocks are just one
example. However, the intuition for the identifying restriction is that in
order to increase the supply of skill in response to an increase in its price,
workers need to obtain more education, which lasts at least a year. It seems
unlikely therefore, that other shocks would affect the supply of skill after a
quarter.

There is substantial measurement error in our time series for the relative
supply of skill because each observation is based on a relatively small cross-
section of individual workers. By construction, this measurement error is
independently distributed over time, because the same individual is never in
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the outgoing rotation group in two subsequent quarters. In order to prevent
that measurement error is identified as a skill supply shock, we implement
the short-run restriction after one quarter rather than on the impact effect.

It is crucial for our identification that we use a measure of the relative
supply of skill, not the relative employment. It is reasonable to assume that
the supply of skill is predetermined, but the same is not true for the em-
ployment of skill. If low and high skilled workers are imperfect substitutes,
then firms may hire relatively more skilled workers in recessions, when the
unemployment pool is larger and these workers are more abundantly avail-
able. This composition bias has been documented by Solon et al. (1994).
We measure the relative supply of skill as the ratio of skilled workers to low
skilled workers in the workforce, whereas the relative employment is the the
equivalent ratio among employed workers, see section 2.3.

The strategy to identify technology shocks conditional on skill supply
shocks is recursive. We first identify skill supply shocks with the short-
run restriction and next use the same long run restriction discussed in the
previous subsection to identify technology shocks. Thus, skill supply shocks
are allowed to have a long run effect on productivity. Having identified
fluctuations in productivity (as well as other variables in our VAR) that
are due to skill supply shocks, technology shocks are the only remaining
shocks that affect labor productivity in the long run. The details on the
implementation of this combination of short and long run restrictions can
be found in Appendix A.

The third row of Figure 3 documents that controlling for skill supply
changes the impulse responses to identified technology shocks very little.
The responses of productivity, hours and the skill premium are all very sim-
ilar to those in the baseline specification in the first row of the Figure. In
addition, Table 2 compares the variance decomposition for the identifica-
tion with and without supply shocks. Supply shocks matter very little for
business cycle fluctuations in output, hours and even the skill premium.
Moreover, controlling for skill supply shocks does not significantly alter the
importance of technology shocks for fluctuations in these three variables.
We conclude that the size of the bias induced by supply shocks is small.
Since this is true for all of our specifications, we do not report the results
controlling for supply shocks in the remainder of the paper.
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3.3 Identified skill-biased technology shocks

Our evidence for skill bias in technological change at business cycle frequen-
cies casts doubt on the traditional interpretation of identified technology
shocks. If these were truly shocks to total factor productivity, as in equa-
tion (1), the demand for skilled and unskilled labor should increase in equal
proportions and the relative demand should be unaffected. Here, we pro-
pose an alternative identification strategy to directly identify skill-biased
technology shocks in addition to skill-neutral shocks to productivity.

In sections 3.1 and 3.2 above, we interpreted the increase in the skill
premium in response to a technology shock as a measure of skill bias in
technology. Here, we formalize that interpretation as an identifying restric-
tion, identifying skill-biased technology shocks as those shocks that affect the
relative price of skill in the long run, see equation (4). This restriction is sim-
ilar in spirit to the identification of investment-specific technology shocks as
shocks that affect the relative price of investment goods proposed by Fisher
(2006). Precisely, the identifying assumptions are now as follows. We iden-
tify skill-biased technology shocks as the only shocks that affect the relative
price of skill in the long run. These shocks may or may not affect labor
productivity. Skill-neutral technology shocks are all remaining shocks that
affect labor productivity in the long run. We implement these assumptions
by ordering the respective variables subsequently in the VAR.

This identification scheme strictly speaking is not a decomposition of
technology shocks as in Gaĺı (1999) into skill-biased and skill-neutral shocks.
In principle, there might be shocks that affect the skill premium but not
labor productivity in the long run. However, as explained in section 2.1, it
is hard to imagine non-technology shocks other than skill supply shocks to
affect the skill premium in the long run. Moreover, our estimates indicate
that the shocks we identify as skill-biased technology shocks increase labor
productivity, supporting our interpretation of these shocks as a specific type
of technology shock.

Figure 4 shows the responses of the skill premium, labor productivity
and total hours worked to a one-standard deviation skill-biased technology
(SBT) shock and skill-neutral technology shock. By assumption, a positive
SBT shock drives the skill premium up in the long run. The estimates
indicate that this effect is realized immediately on impact. A skill-neutral
technology shock has no significant effect on the wage premium on impact
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and by assumption there is no long run effect either.
In response to a positive SBT shock, hours worked significantly and

persistently fall. Skill-neutral technology shocks barely decrease hours on
impact and significantly and substantially increase hours worked less than
a year after impact. This finding suggests that at least part of the fall in
hours worked in response to technology shocks, as in Gaĺı (1999) and in
the estimates in section 3.1, is related to the skill bias in these shocks. If
high skilled workers are much more productive than low skilled workers,
then it is possible that by substituting low skilled for high skilled workers in
response to an SBT shock, firms may increase effective labor input in their
production process, while reducing total hours or employment. Figure 5
confirms this interpretation: in response to an SBT shock, the wage of high
skilled workers increases substantially, but the wage of low skilled workers
actually falls. In contrast, the wages of both types of workers are affected
identically by a skill-neutral technology shock. These findings indicate that
for low skilled workers the relative productivity effect dominates the average
productivity effect of an SBT shock.

Table 3 shows a decomposition of the forecast error variance of the VAR
at business cycle frequencies with periodicities from 8 to 32 quarters. Sepa-
rating out skill-biased and skill-neutral technology shocks, substantially in-
creases the contribution of technology shocks to fluctuations. Skill-neutral
technology shocks alone, explain about 40% of the business cycle variance of
output, 5%-points more than the estimated overall contribution of technol-
ogy shocks in the specification of Table 2. Skill-neutral shocks explain about
8% of the volatility in hours worked, compared to about 6% in Table 2. Skill-
biased technology shocks explain an additional 4% of fluctuations in output
and over 12% of fluctuations in total hours worked. Finally, fluctuations in
the skill premium are almost exclusively due to SBT shocks.

3.4 Robustness

We now explore the robustness of our estimates to changes in the estimation
specification and the construction of the data. The results of this exercise
are summarized in Table 4. First, we check whether the finding that skill
supply shocks are not important carries over to our specification with identi-
fied SBT shocks. In this specification, these shocks potentially matter more
because of the standard simultaneity problem in estimating demand and
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supply equations. An exogenous, permanent increase in the supply of skill
would permanently reduce the price of skill and thus satisfies our identi-
fying restriction for skill-biased technology shocks. We find however, that
controlling for shocks to skill supply as described in section 3.2, does not
significantly affect our estimates.

In our baseline estimates, we impose a Minnesota (Litterman) prior on
the decay of the lag coefficients in order to be able to allow for a large number
of lags. However, our results are not driven by this prior. The responses
of productivity and the skill premium to all shocks are virtually unaltered
when we change the number of lags, the strength of the prior, or when we
estimate the VAR using ordinary least squares (OLS). The fall in hours
worked in response to skill-biased technology shocks is also robust across
specifications and is significant if we include at least 4 lags in the VAR.
The increase in hours in response to neutral technology shocks is actually
stronger in all alternative specifications: whereas in the baseline the positive
effect becomes significant only after 3 quarters, in all other specifications it
is significant at all horizons.

Next we explore to what extent the way we constructed our measure for
the skill premium matters for the results. Using a ‘naive’ measure of the skill
premium that does not take into account the heterogeneity over and above
two skill types, we would not have observed the fall in hours in response to
an SBT shock. As we found in the unconditional moments in section 2.3,
accounting for heterogeneity is important for the cyclical behavior of the
skill premium.

3.5 Production function decomposition

As a final robustness check, we compare the properties of our identified SBT
shocks to a simple decomposition using the production function, see section
2.2. This decomposition is similar in spirit to a Solow residual and requires a
value for the elasticity of substitution between high and low skilled workers
σ. We use σ = 1.5, which is the consensus estimate from the literature based
on several different data sources (Katz and Murphy (1992), Ciccone and Peri
(2006), Teulings and van Rens (2008)). With this value, we can use equation
(4) to retrieve changes in skill-biased technology Bt from our data on the
skill premium and the relative employment of skill. After demeaning these
changes and normalizing their variance to unity, they are comparable to
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the identified SBT shocks from the structural VAR. The difference is in the
identification. Whereas the identified shocks require assumptions only on the
long run behavior of the skill premium, the decomposition requires equation
(4) to hold in each period. Figure 6 plots both estimates for the shocks
over the sample period. It is encouraging that despite the differences in
identification, the resulting estimates for the skill-biased technology shocks
look similar. The correlation between the two estimates is 0.53.

To complete the comparison, we compare the response of productivity,
hours worked and the skill premium to the identified SBT shocks and the
estimated shocks using the decomposition. We regress these variables on
lags of the shocks, estimated either from the decomposition using equation
(4) or as the residuals from our structural VAR, as suggested by Basu et al.
(2006). This is a direct estimate of the moving average representation of the
impulse response functions and the results are comparable to the impulse
responses in Figure 4. Since the impulse responses in Figure 4 seem to
flatten out after about 6 quarters, we use 6 lags of the shocks. The results are
presented in the first row of Figure 7. The responses to identified SBT shocks
estimated in this way are very similar to those directly calculated from the
VAR estimates. We now discuss how the responses to SBT shocks obtained
from the decomposition compare to these. The second row of Figure 7 shows
the responses to SBT shocks estimated using the decomposition. Generally,
the responses are very similar to the responses to the VAR residuals and
never significantly different.

4 Capital-skill substitutability

Over our sample period the relative price of investment goods fell substan-
tially. This finding has been interpreted to mean that technological progress
has been faster in investment goods producing sectors than in consumption
goods producing sectors (Greenwood et al. (1997), Cummins and Violante
(2002)). Fisher (2006) has argued that such investment-specific technologi-
cal change is important not only for long run trends, but also for business cy-
cle fluctuations. Because the increase in the skill premium roughly coincided
with the decrease in the relative price of investment goods, Krusell et al.
(2000) argue that investment-specific and skill-biased technological change
might be one and the same. If capital and skill are complements in the



4 CAPITAL-SKILL SUBSTITUTABILITY 21

aggregate production function, technological innovation in the investment-
sector will necessarily lead to an increase in the demand for skill. If this
is the case, then investment-specific technology shocks should lead to busi-
ness cycle fluctuations in the skill premium. In this section, we explore this
hypothesis and find evidence against it.

4.1 Skill bias in investment-specific shocks

Consider the alternative aggregate production function (3), as in Krusell
et al. (2000), which allows for complementarity or substitutability between
capital and skill. Assuming as before that wages are proportional to mar-
ginal products in the long run, expression (4) for the skill premium changes
to the following.
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Since investment-specific technological progress raises the long run capital-
labor ratio, it is clear that such technological change will also raise the skill
premium if ρ < σ, i.e. if capital and skill are complements rather than
substitutes in production. As a result, our identifying restriction that skill-
biased technology shocks are the only shocks that affect the skill premium
in the long run is no longer valid, and we need to separately control for
investment-specific shocks. In addition, it is interesting in itself to assess
the skill bias in investment-specific shocks, because it will allow us to assess
the degree of capital-skill complementarity in aggregate production.

We follow Fisher (2006) in identifying investment-specific and investment-
neutral technology shocks using the relative price of investment goods. We
estimate the effect of these shocks on the skill premium in order to evaluate
the hypothesis of capital-skill complementarity. We identify investment-
specific technology shocks as the only shocks that affect the relative price
of investment goods in the long run. Finally, investment-neutral technology
shocks are all remaining shocks that drive labor productivity in the long run.
For implementation, the relative price of investment and labor productivity
are ordered first in the VAR.

Figure 8 shows the responses of the the skill premium, labor productiv-
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ity, hours worked and the relative price of investment goods to investment-
specific and investment-neutral technology shocks.17 After an improvement
in investment-specific technology, the relative price of investment falls, pro-
ductivity increases and hours worked increase as well. An investment-neutral
technology shock, has no effect on the relative price of investment, increases
productivity and leads to a fall in hours worked.18

The skill premium significantly falls after an improvement in investment-
specific technology. While there is certainly evidence for a relation be-
tween skill bias and investment-specific technical change, these estimates
point towards capital-skill substitutability rather than complementarity:
investment-specific shocks increase relative demand for unskilled labor. Be-
cause we have already documented that technology shocks are skill biased, it
should not be surprising that investment-neutral technology shocks increase
the skill premium, suggesting these shocks increase the demand for skilled
labor.

The same finding can be documented in an alternative way. In Figure
9, we present impulse responses of the relative price of investment goods to
skill-biased and skill-neutral technology shocks, identified as in section 3.3.
The graphs provide the mirror image to those in Figure 8: skill-biased tech-
nology shocks increase the relative price of investment goods significantly,
suggesting these shocks are ‘consumption-specific’ or capital and skill are
substitutes in production.

Our findings are in striking contradiction with the argument in Krusell
et al. (2000). What explains the difference is that Krusell et al. (2000) base
their argument on a correlation in the long run trends in the skill premium
and the relative price of investment goods. In our approach, the identifying
variation are comovement between those two series at all frequencies except
the trends, which are captured by the constant term in the VAR. It is pos-
sible that the comovement in the trends in both relative prices is a spurious
correlation between two integrated series. It is also possible that the model
needed to explain long run growth trends is different from the model that
describes higher frequency fluctuations.19 In any case, our findings reject

17Note that again controlling for skill supply shocks changes the results very little.
18Since productivity increases after an investment-specific technology shock in our spec-

ification, we do not need to use an additional assumption on this effect as in Fisher (2006).
19Lindquist (2004) presents a business cycle with capital-skill complementarity and

investment-specific technology shocks and argues that the model can explain fluctuations
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the hypothesis that there is a stable aggregate production function with
capital-skill complementarity.

4.2 Contribution to business cycle fluctuations

When we allow for investment-specific technology shocks, our estimates
replicate the finding in Fisher (2006) that investment-specific shocks are an
important source of business cycle fluctuations, whereas investment-neutral
technology shocks contribute only a small fraction of fluctuations in output
and hours, see Table 5. However, our results suggest that there are at least
four different types of technology shocks with distinct implications for the
comovement of aggregate variables: skill-neutral, investment-neutral; skill-
neutral, investment-specific; skill-biased, investment-neutral; and unskill-
biased, investment-specific (or skill-biased, consumption-specific) technology
shocks. With the identifying restrictions discussed above, it is not possible to
separately identify all four different shocks simultaneously. Recall that both
investment-specific and investment-neutral technology shocks affect the skill
premium. Conversely, both skill-biased and skill-neutral technology shocks
affect the relative price of investment goods. Hence, if we use a recursive
identification scheme, identifying first investment-specific technology shocks,
then these shocks will include the unskill-biased, investment-specific shocks.
In this case, skill-biased technology shocks will be identified as all remaining
shocks that affect the skill premium in the long run and will exclude shocks
that affect both the relative price of investment and the skill premium. Simi-
larly, if we identify first the skill-biased shocks, then these shocks will include
the skill-biased, consumption-specific shocks.

Our solution to this problem is to estimate both orderings and use the
estimates as a lower and upper bound for the contribution of the various
shocks. To be more precise, in ordering I, we identify investment-specific
technology shocks as all shocks that affect the relative price of investment
goods. These shocks are allowed to affect the skill premium. Skill-biased
technology shocks are identified as all remaining shocks that affect the skill
premium in the long run. The estimates of this VAR provide an upper bound
for the contribution of investment-specific shocks and a lower bound for the

in the skill premium and the capital-skill ratio. However, he evaluates the model based
on the unconditional correlations of the skill premium with output and does not consider
the correlation of the skill premium with the investment price.
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contribution of skill-biased technology shocks. In ordering II, we identify
skill-biased technology shocks as all shocks that affect the skill premium in
the long run and investment-specific shocks as the remaining shocks that
affect the relative price in the long run. This ordering provides an upper
bound for the contribution of skill-biased shocks and a lower bound for the
contribution of investment-specific shocks. In both cases, the remaining
shocks affecting labor productivity are neutral technology shocks.

Table 6 shows the variance decomposition of the forecast error variance
in output, hours and the skill premium. The contribution of skill- and
investment-neutral technology shocks is very similar in both orderings of
the identifying restrictions. Neutral technology shocks explain between 5%
and 6% of business cycle fluctuations in output and play virtually no role
for fluctuations in hours and the skill premium. Investment-specific technol-
ogy shocks explain up to two thirds of the volatility in output at business
cycle frequencies, up to 40% of the variation in hours. This finding is con-
sistent with earlier findings in the literature (Fisher (2006), Canova et al.
(forthcoming)).

Skill-biased technology shocks explain almost all of the entire business
cycle variation in the skill premium. These shocks are important for fluc-
tuations in output and (especially) hours as well, but only insofar as they
also affect the relative price of investment goods. Comparing the variance
decomposition in Table 6 to that in Table 5, the contribution of investment-
neutral technology shocks to fluctuations in output and hours increases,
mirroring our results in section 3.3. Investment-specific, skill-neutral tech-
nological progress is important for fluctuations in output, but does not have
much of an effect on the skill premium. These results suggest that shocks
that drive fluctuations in the skill premium are largely unrelated to other
variables in the economy. This finding is consistent with the unconditional
moments in Table 1, which show the skill premium to be largely uncorrelated
with output.

4.3 Replicating the data with a model

Our finding that the skill premium decreases in response to investment-
specific shocks, and the relative price of investment goods increases in re-
sponse to skill-biased technology shocks suggest that capital and skill are
substitutes rather than complements in the aggregate production function.
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Yet the estimates by themselves do not give any indication as to how large
this effect is. What parameters of production function (3) are consistent
with our estimates? To answer this question, we simulate a simple business
cycle model with a production function as in (3) and compare the estimated
impulse response functions from the actual data to those from simulated
data for different values of the substitution parameters. This procedure also
allows us to see whether the structural VAR performs well in capturing the
conditional moments of the variables in a model that is consistent with our
interpretation of the results.

The model is a simple real business cycle model with high and low skilled
workers. The model is taken from Lindquist (2004) and combines the two
sector model of Greenwood et al. (1997), in which output can be used for con-
sumption or accumulation of capital equipment, with the model of Krusell
et al. (2000) with two skill types and capital-skill complementarity. Busi-
ness cycle fluctuations in the model are driven by shocks to total factor
productivity and the relative price of investment goods.

For the calibration of the structural parameters of the model we also fol-
low Lindquist (2004), but we assume that the two productivity shocks are
highly persistent and uncorrelated with each other in order to be consistent
with the identifying restrictions of our VAR. The substitution parameters in
the aggregate production function (3) are σ = 1.67 and ρ = 0.67. These val-
ues were estimated by Krusell et al. (2000) to be consistent with the trends
in the relative price of investment goods and the skill premium. Since ρ < σ

in this calibration the aggregate production function exhibits capital-skill
complementarity. In alternative calibrations, we keep σ constant, because
the value of the elasticity of substitution between high and low skilled work-
ers is well documented, and change ρ to vary the degree of capital skill
complementarity. We consider the cases of capital-skill complementarity
(ρ = 0.67), weak complementarity (ρ = 1.17), neither complementarity nor
substitutability (ρ = σ = 1.67), weak substitutability (ρ = 2.17), substi-
tutability (ρ = 2.67), strong substitutability (ρ = 3.17) and very strong
substitutability (ρ = 5). In each case, we recalibrate the other model para-
meters to keep the calibration targets constant.

We simulate the model 1000 times for 88 quarters, the same sample
length as in our data. In each simulation, the model is first simulated for
200 periods, which are then discarded, in order to remove dependence on
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the initial conditions. We then estimate the VAR for each sample of 88
quarters and average the impulse responses across the 1000 simulations.
Figure 10 illustrates this for the calibration in which capital and skill are
neither complements nor substitutes. For better comparison, the responses
are normalized such that they match the responses in the actual data of
the investment price and labor productivity to the two technology shocks
respectively 10 quarters after the shock has hit. The estimated responses
from the simulated data closely match the theoretical ones from the model.
This is also the case for other degrees of substitutability of complementarity
between capital and high-skilled labor. Most importantly for our purposes,
the estimated response of the skill premium to investment-specific shocks is
positive if capital and skill are complements, negative if they are substitutes
and zero when they are neither substitutes nor complements.

Figure 11 shows the impulse responses of the skill premium to an invest-
ment-specific shock from the model simulated for different degrees of capital-
skill complementarity/substitutability as well as from the actual data. Com-
paring the response of the skill premium to investment-specific shocks in the
actual data to that in the model, it is clear that our estimates suggest a very
large degree of capital-skill substitutability. In fact, the estimates suggest
an elasticity of substitution between capital and high skilled labor of around
ρ = 5, compared to the elasticity of substitution between capital and low
skilled labor of σ = 1.67. These parameters imply that if the capital stock
increases by 1%, firms can still produce the same amount of output as before
if they fire 1.67% of their low skilled workers or as much as up to 5% of their
high skilled workers.

5 Conclusion

In this paper, we explored the implications of skill bias in technological
changes for business cycle fluctuations. We constructed a quarterly time
series for the skill premium using micro-data from the Current Population
Survey (CPS) outgoing rotation groups, and used it to identify skill-biased
technology shocks in a structural VAR with long run restrictions. We showed
that technology shocks are biased towards skilled labor at all frequencies
and documented two main differences between skill-biased and skill-neutral
technology shocks. First, the fall in hours in response to improvements
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in productivity is driven by skill-biased technology shocks. In response to
skill-neutral improvements in technology, hours worked increase. Second,
the relative price of investment rises in response to skill-biased improve-
ments in technology, indicating that capital and skill are substitutes in the
aggregate production process. Both findings have important implications
for the interpretation of well-known results in the literature.

The fall in hours worked in response to technology shocks, as documented
by Gaĺı (1999), has typically been interpreted as evidence for price rigidities.
Having access to an improved production technology, which reduces mar-
ginal costs, a firm would like to reduce prices in order to increase sales. If
prices are rigid however, the firm adjusts labor input in order to produce the
amount it can sell. Our results cast doubt on this interpretation. We doc-
ument a sharp drop in hours worked in response to skill-biased, but not in
response to skill-neutral technological improvements. This finding suggests
that at least part of the fall in hours is driven by a compositional change
in labor demand. In response to a skill-biased improvement in technology,
firms increase their relative demand for skilled labor. Since high skilled
workers are on average more productive than low skilled workers, effective
labor input may increase even if total hours worked fall.

Our conclusion that capital and skill are substitutes rather than com-
plements in the aggregate production function, is based on our finding that
the relative price of investment goods increases in response to skill-biased
technological improvements, or, vice versa, that the skill premium falls in
response to investment-specific technology shocks. If capital and skill are
complements, as Krusell et al. (2000) argue, we would expect these effects
to be reversed. Is it reasonable to think that capital and skill are substi-
tutes rather than complements? Clearly, the answer depends on the type
of capital and therefore the time period under consideration. In the indus-
trial revolution, new production technologies often involved machines that
could be operated by unskilled workers and replaced skilled laborers.20 Re-
garding more recent technological developments, Autor et al. (2003) make
the point that computer capital complements workers performing nonrou-
tine problem-solving tasks, but substitutes labor in “cognitive and manual

20For example, hand weavers, a skilled profession, opposed the adoption of weav-
ing machinery, “because it threw many of them out of work. Those who got jobs in
the factories were obliged to take the same pay as unskilled workers.”(http://history-
world.org/Industrial%20Intro.htm)
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tasks that can be accomplished by following explicit rules.” Since both non-
routine and routine tasks may be performed by either skilled or unskilled
workers, the aggregate elasticity of substitution between capital and skill
may vary with the task composition of the workforce. Our results indicate
that over the last 20 years, technological improvements in capital mostly
substituted skilled workers. The reason that the skill premium neverthe-
less increased over this period, is due to investment-neutral technological
progress, in which there was strong skill bias.
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A Identification with both short- and long-run re-

strictions

To implement the short-run restriction, which identifies skill supply shocks,
together with the long-run restrictions for the various technology shocks,
we seek to find a unique transformation matrix A that maps the reduced
form residuals vt into structural shocks et. Assuming orthogonality between
the structural residuals and normalizing their variance to unity, A there-
fore satisfies AA′ = Ω where Ω is the variance matrix of the reduced from
residuals. In a VAR with n variables, another n(n − 1)/2 restrictions are
then necessary for exact identification and will come out of the short- and
long-run assumptions.

Similar to before, we can formulate the problem in a triangular structure
when the variables are conveniently ordered. This means ordering the supply
of skill first in the VAR and then ordering the other variables according to
the respective specification. The identification then works as follows. First,
one identifies the supply shock through its short-run effect. More precisely,
in order to identify supply shocks we assume that neither i-shocks, nor SBT-
shocks nor neutral or non-technology shocks affect the supply of skill in the
short run (on impact). This is equivalent to restricting a12 = a13 = ... =
a1n = 0 (with aij being elements of A). These zero restrictions in the first
row of A, combined with

A1. ∗A′.1 = Ω1. (6)

pin down the first column of A. The first column uniquely determines the
effects of the supply shocks on the system of variables.

Second, we need to determine all other elements of the matrix A except
for the first row and column. As in the standard long-run assumptions, the
subsequent remaining columns should incorporate the effects of the various
technology shocks. As before, we therefore use a Cholesky decomposition of
the infinite horizon forecast error variance in order to measure the technology
shocks. However, we only need to use the lower right block of this matrix, i.e.
the part of the forecast variance which remains after the first row and column
of A have already been taken into account. The Cholesky decomposition
then delivers the remaining elements of A.
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Table 1: Unconditional business cycle correlations

Std Correlation with
Output Hours Productivity Price

Baseline measure
Skill premium 0.0042 0.1597 -0.1266 0.5042 -0.2263
Relative employment 0.0166 -0.4824 -0.3206 -0.3893 0.7344
Naive measure
Skill premium 0.0042 0.0445 0.2001 -0.2392 0.1015
Relative employment 0.0144 -0.4853 -0.3990 -0.2684 0.7208
Relative supply 0.0093 0.0460 0.1466 -0.1502 0.4963

Notes: Data series are constructed as explained in section 2.3 and seasonally adjusted using

X-12-ARIMA. The series are HP-filtered with λ=1600.



Table 2: Variance decomposition with identified technology shocks

without supply shocks with supply shocks
Horizon 8 16 32 8 16 32
output
techn. shock 36.26 35.78 35.72 36.11 36.42 36.24

(14.6,55.9) (14.2,56.0) (13.5,56.3) (19.6,53.9) (20.0,53.9) (20.2,53.9)

supply shock 4.38 3.68 3.53
(0.8,13.2) (0.6,12.0) (0.5 ,11.8)

hours
techn. shock 5.30 6.05 6.35 5.79 6.62 6.96

(1.0,18.2) (0.9,20.2) (0.7,21.1) (1.1,19.1) (1.0,22.0) (0.9,23.0)

supply shock 1.76 1.74 1.69
(0.3,6.6) (0.3,6.5) (0.2,6.6)

premium
techn. shock 7.86 7.75 7.70 7.87 7.28 7.08

(2.3,17.5) (1.9,18.7) (1.5,19.2) (2.4,16.6) (1.9,17.0) (1.7,17.3)

supply shock 5.09 4.25 3.79
(2.1,13.0) (1.4,12.2) (0.9,12.2)

Notes: Numbers are in percents; the contribution of all shocks, including the (omitted) residual

shock, adds up to 100% at each horizon. We report posterior medians and 68% Bayesian confidence

bands from the posterior distribution.



Table 3: Variance decomposition with
identified skill-biased technology shocks

Horizon 8 16 32
output
SBT shock 4.30 4.39 4.48

(0.6,15.9) (0.5,16.5) (0.5,16.6)

neutral shock 40.25 39.74 39.84
(22.7,56.5) (21.6,56.8) (21.4,56.5)

hours
SBT shock 12.43 12.05 12.12

(1.9,30.6) (1.7,30.6) (1.6,30.3)

neutral shock 6.66 7.78 8.37
(1.2,19.9) (1.2,22.8) (1.2,23.7)

premium
SBT shock 96.77 98.25 99.09

(93.0,98.5) (96.4,99.2) (98.2,99.6)

neutral shock 1.12 0.61 0.31
(0.5,2.5) (0.3,1.4) (0.1,0.7)

Notes: Numbers are in percents; the contribution of all shocks,

including the (omitted) residual shock, adds up to 100% at

each horizon. We report posterior medians and 68% Bayesian

confidence bands from the posterior distribution.



Table 4: Robustness of the response of hours to
skill-biased and skill-neutral technology shocks

SBT shock on hours skill-neutral shock on hours
Baseline specification

-, significant at all horizons +, sign. after 3rd quarter
with supply shocks -, significant at all horizons +, sign. after 3rd quarter
Variation of the baseline specification with baseline wage premium
Minnesota prior with 8 lags changed to
2 lags -, not sign. any horizon +, not sign. any horizon
4 lags -, significant on impact +, sign. in long run
12 lags -, significant all horizons -, significant on impact
weaker prior1 -, significant all horizons +, sign. after 3rd quarter
Flat prior (OLS equivalent)
2 lags -, not sign. any horizon +, not sign. any horizon
4 lags -, significant on impact +, sign. in long run
Baseline specification with different wage premium series
Naive measure +, small effect, not sign. +, sign. in long run
Lindquist measure2 +, small effect, not sign. +, sign. in long run

Notes: 1) Decay parameter d = 1 instead of d = 3 as in the baseline; 2) The Lindquist measure

uses data from Lindquist (2004), which are similar but not identical to our naive measure, see

section 2.3.



Table 5: Variance decomposition with
investment-specific technology shocks

Horizon 8 16 32
output
i-specific shock 56.77 58.18 57.81

(40.6,71.5) (40.8,72.6) (39.4,73.3)

neutral shock 2.82 2.56 2.48
(0.6,8.4) (0.5,8.5) (0.4 ,8.9)

hours
i-specific shock 37.41 36.34 33.96

(19.5,55.7) (17.0,56.6) (14.0,55.4)

neutral shock 6.39 5.31 4.98
(1.5,16.5) (1.1,15.3) (0.8,15.6)

premium
i-specific shock 9.82 13.46 15.26

(4.6,20.2) (4.7,29.8) (4.2,35.0)

neutral shock 22.61 22.64 22.56
(14.6,32.7) (13.9,34.4) (13.2,35.2)

Notes: Numbers are in percents; the contribution of all shocks,

including the (omitted) residual shock, adds up to 100% at

each horizon. We report posterior medians and 68% Bayesian

confidence bands from the posterior distribution.



Table 6: Variance decomposition with identified
skill-biased and investment-specific technology shocks

Horizon 8 16 32
I II I II I II

output
i-shock (ul,lb) 58.95 45.84 62.40 48.73 63.75 50.4

(44.4,71.4) (31.4,60.2) (47.5,75.4) (32.9,63.3) (48.5,77.5) (33.1,64.6)

SBT shock (lb,ub) 0.91 9.99 0.88 10.50 0.84 10.8
(0.1,4.0) (1.8,26.5) (0.1,3.9) (1.8,28.1) (0.1,3.9) (1.7,28.6)

neutral shock 6.64 6.44 5.66 5.45 5.29 5.16
(2.5,12.2) (2.4,12.9) (2.0,11.2) (1.9,11.6) (1.7,10.7) (1.7,11.1)

hours
i-shock (ul,lb) 38.89 21.91 42.37 24.24 43.55 25.1

(22.8,55.6) (10.4,36.9) (24.5,61.1) (11.8,40.3) (24.4,62.7) (12.1,42.2)

SBT shock (lb,ub) 10.34 25.13 9.11 24.71 8.84 24.47
(4.2,20.8) (10.5,43.4) (3.5,19.7) (9.7,43.9) (3.3,19.1) (9.2,43.7)

neutral shock 1.36 1.53 0.91 1.09 0.78 0.91
(0.5,4.3) (0.5,4.7) (0.3,3.5) (0.3,3.8) (0.2,3.2) (0.2,3.6)

premium
i-shock (ul,lb) 8.71 1.65 9.39 0.87 9.65 0.4

(4.0,17.6) (0.7,3.9) (3.0,22.4) (0.4,2.1) (2.3,25.9) (0.2,1.1)

SBT shock (lb,ub) 89.57 96.46 89.76 98.17 89.76 99.08
(80.8,94.4) (93.7,98.2) (76.6,96.0) (96.8,99.0) (73.7,97.2) (98.4,99.5)

neutral shock 0.52 0.48 0.27 0.25 0.14 0.12
(0.2,1.1) (0.2,1.1) (0.1,0.6) (0.1,0.6) (0.1,0.3) (0.1,0.3)

Notes: Numbers are in percents; the contribution of all shocks, including the (omitted) residual

shock, adds up to 100% at each horizon. We report posterior medians and 68% Bayesian confidence

bands from the posterior distribution.



Figure 1: Skill premium and Mincer return to schooling in the US
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Figure 2: Relative employment and relative supply of skill in the US

-1
-.

5
0

R
el

at
iv

e 
em

pl
oy

m
en

t/s
up

pl
y 

of
 s

ki
ll 

(lo
g 

ra
tio

)

1980 1985 1990 1995 2000 2005

Employment, baseline Supply, labor force

Employment, naive Supply, population



Figure 3: Impulse-responses to identified technology shocks
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Notes: Percent responses to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.
First row: Responses to baseline identification of technology shocks.
Second row: Responses to using the Basu et al. (2006) measure of TFP instead of
labor productivity in the baseline specification.
Third row: Responses to identified technology shocks controlling for skill supply shocks.



Figure 4: Impulse-responses with identified skill-biased technology shocks
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Notes: Percent responses to a positive one-standard-deviation shock.
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Figure 5: Impulse-responses of wages with
identified skill-biased technology shocks
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Figure 6: Comparison of SBT shocks from the VAR
and from the production function decomposition

1980 1985 1990 1995 2000 2005
−4

−2

0

2

4

Notes: Black solid line depicts identified SBT shock, red dashed line shows the

residual from the production function decomposition.



Figure 7: Impulse-responses to SBT shocks from the VAR
and from the production function decomposition
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Notes: Percent responses to a positive one-standard-deviation shock.

First row: Impulse-responses from regression of the skill premium, productivity, hours

worked and the relative supply on six lags of the identified SBT shock.

Second row: Impulse-responses from regression of the variables on six lags of the residual

from the production function decomposition. The black dotted line repeats the estimate

from the first row. Confidence intervals are one standard error bands.



Figure 8: Impulse-responses with identified
investment-specific technology shocks
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Confidence intervals are 68% Bayesian bands.



Figure 9: Impulse-responses with identified skill-biased technology
shocks including the relative price of investment goods
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Confidence intervals are 68% Bayesian bands.



Figure 10: Impulse-responses from a model with investment-specific
shocks and shocks to total factor productivity
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Percent responses to a positive one-standard-deviation shock. The dashed lines represent

the theoretical responses from the model with ρ = σ = 1.67. The solid lines are the estimated

responses from 1000 simulations of 88 quarters each of the same model. The responses are

normalized to match the responses of the investment price and labor productivity in the

actual data in the longer run (20 quarters).



Figure 11: Capital-skill substitutability
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Notes: Black line depicts response of the premium from the estimated

structural VAR with actual data together with the Bayesian 68% confidence

bands (red dotted lines). The dashed lines show the responses from the

model with ρ = 0.67, ρ = 1.17, ρ = 2.17, ρ = 2.67 and ρ = 5 respectively.




