
Electronic copy available at: http://ssrn.com/abstract=1150178

A dynamic IS-LM model with adaptive expectations 
 

 
Moisă Altăr 

 
Academy of Economic Studies- Bucharest 

 
 
Abstract 

 
We analyze the stability of a discrete-time dynamic model with an IS-ML structure. 

We assume that the Aggregate Supply function is of Lucas type and the monetary policy rule 
is of Friedman type. The mechanism of expectations formation is assumed to be of adaptive 
type (Friedman-Cagan). 

In its final form, the model contains two state-variables, namely money supply and 
expected inflation. From the mathematical point of view, it is an affine discrete-time system, 
whose stability properties are analyzed in the paper. 

We deduce sufficient conditions concerning the „learning coefficient” involved in the 
Friedman-Cagan type of forecast equation, so that the model be stable.  

 
 
 

 
1The model  
 
We assume that the functions IS and LM are of Cobb-Douglas type :  

 

IS: rgc eYAY ⋅−⋅⋅=                (1)  

LM: ( )erll eY
P
M π+−⋅= 21         (2)  

The variables are the following : 
• Y – GDP size; 
• M – nominal money supply; 
• P –  price index ; 
• r –   real interest rate; 
• πe – expected inflation rate; 
• A, c, g, l1, l2 – parameters  

In logarithmic form, equations(1) şi (2) become:  
rgycay ⋅−⋅+=                                (3)  

                               ( )erlylm π+−⋅= 21                             (4)                           
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We used the following notations:  
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The coordinates of the equilibrium point are:  
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We denote by k the multiplyer :  
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The first relationship in (6) becomes :  
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Relation (8) expresses the fact that GDP (in logarithmic form) depends on 
the money supply (m), on the expected inflationi(πe), as well as on the 
coefficient „a”, which reflects fiscal policy and the level of net export.  
We assume that the quantity of  money supplied by the Central Bank is 
governed by a Friedman type monetary policy rule:  
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We assume that the  aggregative supply (AS) is modeled by the following  
Phillips – Lucas type function :  
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where y  represents the „natural” size of GDP (in logarithmic form), and tπ - the 
size of inflation. The coefficient θ  is given. From (11) it follows :  
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As concerns inflation tπ , it is defined by :  
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As concerns the mechanism by which economic agents form expectations 
of future inflation, we assume that it is of adaptive type (Friedman - Cagan):  
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The learning parameter δ is given.  
Using relation (12), relation (15) becomes:  
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Using relation (8):  
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the dynamic equation (16) for expected inflation becomes:  
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We denote: 
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The dynamic equation (18) becomes:  
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As concerns money supply, we have :  
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Using monetary policy rule (10), as well as the definition of inflation (14), 
we obtain:  

tttttt mmmm πμπμ −+=−=− ++ 11 or                                           (21)  

Using relations (12) and (17), it follows:  
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Using notations (19), we obtain:  
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ttt −+⋅+−−=+ μπαα 21 11                                (22) 

The dynamics of the system (the dynamicIS-LM model), in the variant 
proposed on the basis of the adopted assumptions, is given by relations (20) and 
(22).  
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2. Analysis of the dynamics 

 
In order to analyze the dynamics of system (23), we shall calculate the 

stationary trajectories :  
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The equilibrium (steady-state) point, i.e. the solution of the system formed 
of equations (23) and (24), is :  
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Taking into account notations (19), it follows  : 
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Using relations (28), we obtain from (8) the equilibrium value for the GDP :  

YY =*ˆ                                                                                                                         (29) 



Relation (29) shows that, in equilibrium, the size of GDP will coincide 
with its „natural” value.  

 At the same time, the first relation in (28) shows that , at equilibrium, 
expected inflation coincides with the growth rate of money supply.  

To check the stability of the dynamic IS-LM system, we shall solve the 
system (23). This is an affine system of difference equations. Taking into 
account (27), it is easy to prove that system (23) can be rewritten as: 
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We denote:  
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The variables tu and tz  represent the deviations from the respective    
equilibrium values.  

With notations (31), system (30) can be written as :  
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The difference equations system (32) has the advantage of being linear. 
In order to write system (32) in matrix form, we denote: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅+⋅
⋅+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

2

l1
l1--1

 M ;
αδαδ
αα

t

t
t z

u
X                                                              (33)  

System (32) becomes:  
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From (34), we obtain, successively:  
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Hence, the general solution of  equation (34) is:  
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It is more convenient to represent matrix M in Jordan form: 
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where Λ  is the diagonal matrix:  
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1λ  and 2λ  being the eigenvalues of matrix M, and K is the matrix 
whose columns are the eigenvectors of matrix M1.  

The characteristic equation of  matrix M is:  
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We obtain:  
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Substituting the solutions 1λ  and 2λ  of ecuation (39) and taking into 
account (36), the solution (35) of system (34) becomes:  
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It is easy to see that:  
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In fact, the above relationship represents one of the advantages of the 
Jordan decomposition of a matrix.Taking into account that:  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=Λ

⋅

t

tt
t

2

1

2

1

0
0

0
0

λ
λ

λ
λ

 

solution (40) becomes:  
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Taking into account (31) and the first relation in (33), it follows: 
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Obviously, the equilibrium solution is:  
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Taking into account (41), solution (43) can be written as:  
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The dynamic IS-LM system will be stable if şi and only if 
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In this case 
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It is to be checked if the solutions of equation (39) satisfy condition (46) 
The discriminant of equation (39) is:  
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In conclusion, it follows that the stability of the dynamic IS-LM model 
depinds in a decisive way on the learning parameterδ , which characterizes the 
manner in which economic agents form expectations of future inflation (relation 
15).  

If the learning parameter satisfies 
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then the dynamic IS-LM system is stable. Relation (48) can be written as:  
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We stress that relations (47), (48) and (49) represent  sufficient conditions 
for stability, but  not  necessary conditions .  

 
3. Phase portrait of the trajectories  
 
In order to represent graphically the dynamics of the system, we represent 

in the phase plane ( me  ,π ) stationary trajectories (25) and (26).  
The stationary trajectory for the real money supply is:  
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The graph of the line (50) is represented in Figure 1. 
 

Figure 1 

 
The line tt mm =+1  in Figure 1 divides the plane in two half-planes. For 

the points with coordnates ( me  ,π ) in one of the half-planes  tm>+1tm , and for 
the points in the other half-plane tm<+1tm .  

In order to identify the sense of motion in each of the half-panes, we 
rewrite the first equation in (23) as :  
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From the above relation it can be seen that , if 
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It follows that the sense of motion in the two half-planes is given by the 

arrows in Figure 1.  
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 The graph of the stationary trajectory (51), as well as the sense of motion 
in the two half-planes defined by it are represented in Figure 2. 

 

Figure 2 

 
The sense of motion presented in Figure 2 results clearly from the second 

equation (23), which can be written as: 
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Representing both stationary trajectories in the same reference system, the 
phase space will be divided into four quadrants. The sense of motion in each of 
these quadrants is presented in Figure 3.  
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Figure 3 
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