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1. INTRODUCTION 
 

The fractional Brownian motion (fBm) with Hurst parameter H 
( 10 << H ) is a self-similar continuous Gaussian process with long memory. The 
self-similarity and long-range dependence properties make the fractional Brownian 
motion a suitable tool in mathematical finance. It was proved in Hu and Oksendal 
(2003) that the fractional Black-Schools market, based on the stochastic integral 
developed by Duncan, Hu and Pasik-Duncan (2000), has no arbitrage. Hu and 
Oksendal (2003) introduced the concept of quasi-conditional expectation and 
quasi-martingales. Necula (2002) and Necula (2007) developed a framework for 
the valuation of contingent claims in the fractional Black-Scholes market using the 
risk-neutral methodology based on the quasi-conditional expectation. 

The aim of this paper is to obtain the valuation formulas for European and 
barrier options if the underlying of the option contract is supposed to be driven by a 
fractional Brownian motion with Hurst parameter greater than 0.5. 

Hu and Oksendal (2003) obtained a formula for the price of a European 
call option at 0=t . The purpose of this article is to extend the formula for every 

[ ]Tt ,0∈ . After an earlier version of this article (Necula, 2002) we become aware 
of a similar result of Bender (2004) who used fractional BSDE. 

This paper is organized as follows: in the second section we prove the 
valuation formula for the European call option in the fractional Black-Scholes 
market. In the third section we obtain the price of barrier options when the interest 
rate is zero as well as a reflection principle for the fractional Brownian motion. 

 
 
2. EUROPEAN OPTIONS VALUATION IN THE FRACTIONAL 

BLACK-SCHOLES MODEL 
 
 
THEOREM 2.1. (fractional Black-Scholes formula) 
The price at every [ ]Tt ,0∈  of an European call option with strike price 

K  and maturity T  is given by 
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and ( )⋅N  is the cumulative probability of the standard normal distribution. 
 
Proof: 
 
Using the fractional risk-neutral evaluation (theorem 3.1 in Necula, 2007) we have 
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Consider the process 
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Theorem 3.18 in Hu and Oksendal, (2003) assures us that there is a 

measure *P  such that ( )tBH
*  is a fractional Brownian motion under *P . 
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Using Theorem 2.4 in Necula (2007) we have that 
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The result follows immediately. 

q.e.d. 
 
THEOREM 2.2 (The Greeks) 
The Greeks of the European call are given by: 
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Proof: 
 
We will first derive a general formula. Let y  be one of the influence 

factors. 
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Substituting in 3.3 we get the Greeks. 

q.e.d. 
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3. BARRIER OPTIONS VALUATION IN THE FRACTIONAL BLACK-
SCHOLES MODEL 

 
 

First let consider the contingent claims: 
 
 Binary call and put with strike K :  

})( KTSBC >= { ,  })( KTSBP <= {  

 Gap call and put with strike K : 
( ) })( KTSTSGC >= {  , ( ) })( KTSTSGP <= {   

 
Using Theorem 2.4 and Theorem 3.1 in Necula (2007) we have, with the 

notations in Theorem 2.1, the following lemma: 
 
LEMMA 3.1 We have that: 

                        ( )( ) ( ) ( )2, dNetStBC tTr −−=  , ( )( ) ( ) ( )2, dNetStBP tTr −= −−               
 

            ( )( ) ( )1)(, dNtStStGC = , ( )( ) ( )1)(, dNtStStGP −=  
 
 
We will make the following notations: 
 

( ){ }LtStL == |inf:τ  
( ) ( )tSTm

Tt

S

<<
=

0
inf:                                                  

( ) ( )tSTM
Tt

S

<<
=

0
sup:  

 
THEOREM 3.2.  Consider that 0=r . 
 

1. If  LK > , LS >  and Lt τ<  then 

( ) ( ) ( ) ( )21},)(
~ aN

L
tSaN

LTmKTS
E St −=⎥

⎦

⎤
⎢
⎣

⎡
>>{

                    

where  
( )

HH

HH

tT

tT
K
tS

a
22

22
2

1
2

)(ln

−

−−⎟
⎠
⎞

⎜
⎝
⎛

=
σ

σ

    



 

8

and   
( )

HH

HH

tT

tT
tLS

H

a
22

22
22

2
2)(

ln

−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
σ

σ

 

2. If  LS >  and Lt τ<  then        

                               ( ) ( ) ( ) ( )21}
~

}
~ bN

L
tSbN

LTm
ETE St

L
t −=⎥

⎦

⎤
⎢
⎣

⎡
>

=⎥⎦
⎤

⎢⎣
⎡

> {{  τ                       

where    
( )

HH

HH

tT

tT
L
tS

b
22

22
2

1
2

)(ln

−

−−⎟
⎠
⎞

⎜
⎝
⎛

=
σ

σ

    

and   
( )

HH

HH

tT

tT
tS

L

b
22

22
2

2
2)(

ln

−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
σ

σ

 

3. If  LK < , LS <  and Lt τ<  then 

( ) ( ) ( ) ( )21},)(
~ aN

L
tSaN

LTMKTS
E St −−−=⎥

⎦

⎤
⎢
⎣

⎡
<<{

  

4. If  LS <  and Lt τ<  then        

( ) ( ) ( ) ( )21}
~

}
~ bN

L
tSbN

LTM
ETE St

H
t −−−=⎥

⎦

⎤
⎢
⎣

⎡
<

=⎥⎦
⎤

⎢⎣
⎡

> {{  τ  

 
Proof: 

 
1. Consider a down-and-out binary call (DOBC) with strike price K , barrier 

L  and maturity T .  The payoff of this option is ( ) },)( LTmKTS S >>{
 . The 

price of this contingent claim ( )tDOBC  is nonzero if Lt τ<  and zero if Lt τ> . 
 

 Consider now a portfolio that consists in a long position of one binary call 

with strike K  and maturity T  and a short position of 
L
1

 gap puts with strike price 

K
L2

 and maturity T . It can be seen from Lemma 4.1 that if Lt τ=  (i.e. ( ) LtS = ) 

the price of this portfolio is zero.  So if the barrier is hit previous to the maturity T  
the value of this portfolio is equal to that of the option. If the barrier is not hit the 
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portfolio and the option will have the same payoff at maturity since the gap put is 

out of the money ( ( ) ( )
K
LTSLKLTS

2

, >⇒>> ). 

Since the fractional Black-Scholes does not have arbitrage and the down-
and-out binary call and the portfolio have the same payoff, their value will be the 
same for Tt L ∧< τ . So 

                                    ( ) ( ) ( )tGP
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2. Consider a contingent claim that pays one unit if the stock price does not 

hit the barrier L  before T  (down-and-out bond). The payoff of this contingent 
claim is ( ) }LTm S >{

 . As in the previous case we look for a portfolio that has the 

same value as the contingent claim at TL ∧τ , and as a consequence of the no-
arbitrage property of the fractional Black-Scholes they will have the same value for 
every Tt L ∧< τ .  

In this case we can chose a portfolio consisting in a long position of one 

binary call with strike L  and maturity T  and a short position of 
L
1

 gap puts with 

strike price L  and maturity T . 
 

3. In this case we consider an up-and-out binary put and a portfolio that 
consists in a long position of one binary put with strike K  and maturity T  and a 

short position of 
L
1

 gap calls with strike price 
K
L2

 and maturity T . 

4. In this case we consider an up-and-out bond and a portfolio that consists in 
a long position of one binary put with strike L  and maturity T  and a short position 

of 
L
1

 gap calls with strike price L  and maturity T . 

q.e.d. 
 
 

THEOREM 3.3.  Consider that 0=r . 
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One can see that this contingent claim has the same payoff as a portfolio 

that consists in a long position of one call with strike K  and maturity T  and a 

short position of 
L
K

 puts with strike price 
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 and maturity T . Using Theorem 4.2 

the value of this portfolio at Tt L ∧< τ  is: 
 

                                   ( ) ( ) ( ) ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−−− 2121  aN

L
tSaNKcNLcNtS  

2. In this case we consider an up-and-out put and a portfolio that consists in a 

long position of one put with strike K  and maturity T  and a short position of 
L
K

 

calls with strike price 
K
L2

 and maturity T . 

                   q.e.d. 
        



 

11

The reflection principle of the Brownian motion gives the common 
distribution of the Brownian motion and its minimum (or maximum). The next 
corollary gives a similar result for the fractional Brownian motion. 

Consider ( ) ( )tBttB H
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H +−= 2*
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. It is known that there is a is a 

probability measures *P  such that ( )tBH
*  is a fBm under *P . 

 
 
COROLLARY 3.4.   
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The shortcoming of the result is that the quasi-conditional expectation it is 

under P , not under the probability measure *P  ( ( )tBH
*  is a fBm under *P , not 

under P ).  
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4. CONCLUSION 
 

In this paper we obtained the valuation formulas for European and barrier 
options if the underlying of the option contract is supposed to be driven by a 
fractional Brownian motion with Hurst parameter greater than 0.5. 

The fractional Black-Scholes price of a European call option no longer 
depends only on tT − as in the classical model (Black and Scholes, 1973). A 
reason may be the fact that the fractional Brownian motion has long memory.  The 
price of an option at a moment [ ]Tt ,0∈  will depend on the stock price ( )tS , but 
despite the classical Black-Scholes model, will take into consideration the 
evolution of the stock price in the period [ ]t,0 . This influence is reflected in the 
fractional Black-Scholes formula by the Hurst parameter H . 

Consider three moments Tttt ≤≤≤ 21  and two options with maturity T  
one of them written on 1t  and the other one on 2t . In the classical Black-Scholes 
model the prices of the two options at the moment t  were equal. In the fractional 
Black-Scholes model the prices of the two options at the moment t  are no longer 
equal. Due to the long memory property, the price of the first option is also 
influenced by the evolution of the stock price in the period [ ]21,tt . 

We obtained the price down-and-out call barrier option in the particular 
case that the risk free interest rate is zero. A more interesting result would be a 
formula for the price of barrier options in the case in which the interest rate is not 
zero. But the extension to the case of non-zero drift seems very quite difficult. 
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