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1. Introduction  

 

 According to Alan Greenspan (2003), “Uncertainty is not just an important 

feature of the monetary policy landscape; it is the defining characteristic of that 

landscape”. In fact, the recognition that all monetary policymakers must bow to the 

presence of uncertainty appears to underlie Greenspan’s (2003) view that central banks 

are driven to a “risk management” approach to policy, whereby policymakers “need to 

reach a judgement about the probabilities, costs, and the benefits of the various possible 

outcomes under alternative choices for policy”. 

 Uncertainty comes in many forms. One obvious form is simply ignorance about 

the shocks that will disturb the economy in the future (oil prices, for example). Other 

forms of uncertainty, perhaps more insidious can also have resounding implications on 

how policy should be conducted, three of which are data uncertainty, parameter 

uncertainty, and model uncertainty.  

 Data uncertainty 

 One form of uncertainty that is ever present is data uncertainty. Consider the US 

economy’s real GDP. For each and every quarter of the year, three estimates of real GDP 

are released: an advance estimate, a preliminary estimate, and a final estimate. As 

successive estimates are released, a greater fraction of the estimate is actually measured 

and less is imputed. But some imputation is involved even for the final GDP released. In 

fact, the final GDP estimate is not final. Every year a benchmark revision occurs in which 

previous estimates of real GDP are revised, going back several years. Try as we might, 

due to measurement difficulties of one sort or another, we can never know what the 

economy’s real GDP actually is, or was. This is data uncertainty.  
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 Parameter uncertainty 

 Distinct from data uncertainty is parameter uncertainty. Economists use models to 

understand how the economy might respond when stimulated in certain ways, and to 

create forecasts. These economic models contain parameters that govern the interactions 

that occur within the model, such as how sensitive consumption or investment is to a 1 

percentage point change in the real interest rate. While economists can use statistical 

techniques to try to estimate these parameters, ultimately their value remains very much 

uncertain quantities  

 Model uncertainty and model averaging  

 While there is uncertainty about the data that enter into economic models and 

about the parameters that govern economic models, the fact that economists often 

approach macroeconomic data armed with different models of the economy suggests that 

uncertainty, or ambiguity, about the model could also be potentially important. From a 

policymaking perspective, it is quite possible, indeed reasonable, to think that 

policymakers may have several models at their disposal, perhaps reflecting competing 

economic theories, each of which could justifiably be viewed as a reasonable 

approximation of the interrelationships at work in the actual economy.  

 A policy can be made “robust” to model uncertainty by designing it to perform 

well on average across all of the available fully specified models rather than to reign 

supreme in any particular model (McCallum 1988). This model-averaging approach is 

taken in Levin, Wieland, and Williams (2003), who use five disparate macroeconometric 

models of the U. S. economy to study how best to conduct monetary policy when facing 

model uncertainty. Focusing on simple rules in which the Federal Reserve is assumed to 

set the federal funds rate in response to inflation, the output gap (that is, the difference 

between actual output and an estimate of potential output), and the lagged federal funds 

rate, they identify a particular policy rule that is able to perform well across all five 

models. The policy rule that they identify is one that contains a short-term forecast of 

future inflation, incorporates a large response to the output gap, and that involves 

considerable “gradualism,” or interest rate smoothing.  
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 Although the model averaging approach allows us to get a handle on how to think 

about model uncertainty at the level of the policymaker, it is less clear what the approach 

has to say about the views of the households and firms that make up the economy.  

Model uncertainty and robust control  

 The model-averaging approach to model uncertainty is not possible when 

policymakers cannot articulate and specify the various models that they wish to be robust 

against and therefore cannot assign probabilities to each of the models. This situation is 

known as Knightian uncertainty (Knight 1921). In such environments, the robust control 

approach comes into play. Robust control suggests that policymakers should formulate 

policy to guard against the worst form of model misspecification that is possible. Thus, 

rather than focusing on the “most likely” outcome or on the average outcome, robust 

control argues that policymakers should focus on and defends against the worst-case 

outcome. 

 While the robust control approach may suggest some paranoia on the part of the 

policymaker, the intuition for robust control can be found in such common expressions as 

“expect the unexpected” and “hope for the best, but prepare for the worst.”A valuable 

feature of the robust control approach is that it allows us to think about and combine 

model misspecification from the perspective of the policymaker with model 

misspecification from the perspective of households and firms. After all, there is no 

reason to think that policymakers are the only people who have to worry about model 

misspecification. 

� The theory establishing that robust control methods can be applied to economic 

problems has been developed largely in a series of contributions by Hansen and Sargent, 

contributions that are well summarized in Hansen and Sargent (2006). Among other 

things, Hansen and Sargent show how to set up and solve discounted robust control 

problems, and they develop methods to solve for robust policies in backward-looking 

models and in forward-looking models with commitment. Giordani and Soderlind (2004) 

extend these methods to forward-looking models with discretion and to simple rules. 
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 A critical component in the application of robust control is the reference model. A 

reference model is a structural model, possibly arrived at through some (nonmodeled) 

learning process that is thought to be a good approximation to the underlying 

datagenerating process. The methods described in Hansen and Sargent (2006) and 

Giordani and Soderlind (2004) require that this reference model be written in a state-

space form, following the literature on traditional (nonrobust) optimal control. As 

discussed in Dennis (2006), while state-space methods allow models to be expressed in a 

form that contains only first-order dynamics, they also have drawbacks. In particular, 

many models cannot be expressed easily in a state-space form, especially medium- to 

largescale models for which the necessary manipulations are often prohibitive. For robust 

control problems, the state-space formulation has an additional important implication in 

that the policymaker and the fictitious “evil agent” are not treated symmetrically. 

Specifically, the planner’s decisions can affect current period outcomes both directly and 

through private sector expectations, while the evil agent’s decisions can only affect 

current period outcomes through private sector expectations. As we show in this paper, 

this feature of the traditional robust control setup means that the evil agent will introduce 

specification errors by changing the conditional means of the shock processes, but not 

their conditional volatility. 

  An alternative set of tools to solve robust control problems is based on the 

solution methods developed by Dennis (2006) that have the advantage that they do not 

require the reference model to be written in a state-space form. Instead they allow the 

reference model to be written in structural form, which is more flexible and generally 

much easier to attain than is a state-space form. The structural form also allows us to treat 

the policymaker and the evil agent symmetrically, giving rise to the result that the evil 

agent will optimally choose to change the conditional volatility of the shocks in addition 

to their conditional means.  
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2. The model 

 
 When solving robust control problems there are generally two distinct equilibria 

that are of interest. The first is the “worst-case” equilibrium, which is the equilibrium that 

pertains when the policymaker and private agents design policy and form expectations 

based on the worst-case misspecification and the worst-case misspecification is realized. 

The second is the “approximating” equilibrium, which is the equilibrium that pertains 

when the policymaker and private agents design policy and form expectations based on 

the worst-case misspecification, but the reference model transpires to be specified 

correctly. In this section we outline how state-space methods can be used to obtain these 

two equilibria, setting the scene for the structural-form analysis that follows.  

 According to the state – space formulation, the economic environment is one in 

which the behavior of an 1×n  vector of endogenous variables, tz , consisting of  1n  

predetermined variables, tz1 , and )( 122 nnnn −=  non predetermined variables, tz2 , are 

governed by the reference model 

 ,111121211111 ++ +++= ttttt CuBzAzAz ε      (1) 

  ,222212112 ttttt uBzAzAzE ++=+       (2) 

where tu  is a 1×p  vector of control variables, ],0[1 st Iiid≈ε  is an 1×s  vector, 1ns ≤  

vector of white – noise innovations, and tE  is the mathematical expectations operator 

conditional upon information available up to and including period t . The reference model 

is the model that private agents and the policy maker believe most accurately describes 

the data generating process. The matrices 2122211211 ,,,,, BBAAAA  contain structural 

parameteres and are conformable with tt zz 21 ,  and tu  as necessary. The matrix 1C  is 

determined to insure that t1ε  has the identity matrix as its variance – covariance matrix. 

 The policymaker’s problem is to choose a sequence for its control variables, 
∞
0}{ tu , to minimize the objective function  

[ ],2
0

0∑
∞

=

′+′+′
t

tttttt
t QuuUuzRzzE β       (3) 
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where )1,0(∈β  is the discount factor. The weighting matrices, ,,UR  and Q  reflect the 

policymaker’s preferences; R  and Q  are assumed to be positive semidefinite and 

positive definite, respectively.  

 Acknowledging that their reference model may be misspecified, private agents 

and the policymaker surround their reference model with a class of models of the form 

,)( 1111121211111 +++ ++++= tttttt vCuBzAzAz ε     (4) 

  ,222212112 ttttt uBzAzAzE ++=+       (5) 

where 1+tv  is a vector of specification errors, to arrive at a “distorted” model. The 

specification errors are intertemporally constrained to satisfy 

∑
∞

=
++ ≤′

0
110 ,

t
tt

t vvE ηβ                                                                                      (6) 

where ],0[ ηη ∈  represents the “budget” for missspecification.  

 Because private agents form expectations that are “rational” according to the 

distorted model, the non predetermined variables and their expected values are linked 

according to 121212 +++ += tttt zEz ε . The distorted model can be written as 

,)( 1111121211111 +++ ++++= tttttt vCuBzAzAz ε     (7) 

  ,12222212112 ++ +++= ttttt uBzAzAz ε       (8) 

or, more compactly and in obvious notation, as 

111
~

+++ +++= ttttt CCvBuAzz ε .      (9) 

 To guard against the worst case misspecification, the policymaker formulates 

policy subject to the distorted model with the view that the misspecification will be as 

damaging as possible. Private sector agents form expectations with the same view. The 

fear that the misspecification will be as damaging as possible is operationalized to the 

metaphor that 1+tv  is chosen by an evil agent whose objectives are diametrically opposed 

to those of the policymaker. Hansen and Sargent (2001) prove that the constraint problem 

in which equation (3) is minimized with respect to ∞
0}{ tu  and maximized with respect to 

∞
1}{ tv , subject to equations (9) and (6), can be recast in terms of an equivalent multiplier 

problem, whereby 
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[ ] ,2
0

110∑
∞

=
++′−′+′+′

t
tttttttt

t vvQuuUuzRzzE θβ      (10) 

is minimized with respect to ∞
0}{ tu  and maximized with respect to ∞

1}{ tv , subject to 

equation (9). The parameter ),[ ∞∈ θθ  is a shadow price that is inversely related to the 

budget for misspecificationη . Specifically, asη  approaches 0, θ  approaches infinity. 

  

 Robust policymaking with commitment using state – space methods 

 

In the commitment solution, both the policymaker and the evil agent are assumed 

to commit to a policy strategy and not succumb to incentives to renege on that strategy. 

Employing the definitions 

[ ] ,~,~
1

1

CBB
v
u

u
t

t
t ≡⎥

⎦

⎤
⎢
⎣

⎡
≡

+

       (11) 

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

≡≡
I

Q
QUU

θ0
0~,0~                   (12) 

the optimization problem can be written as  

[ ] ,~~~~~2
0

0∑
∞

=

′+′+′
t

tttttt
t uQuuUzRzzE β        (13) 

subject to  

11
~~

++ ++= tttt CuBAzz ε ,       (14) 

which, because the first – order conditions for a maximum are the same as those for a 

minimum, has a form that can be solved using the methods developed by Backus and 

Drifill (1986). Those methods involve formulating the problem as linear – quadratic, the 

value function has the form dVzzzV ttt +′=)(  and the dynamic program can be written as 

)](~~~~~2[maxmin 11
1

dVzzEuQuuUzRzzdVzz tttttttttvutt
tt

+′+′+′′+′=+′ ++
+

β .  (15) 

It is well known that the solution to this optimization problem takes the form 

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ −

+ t

t

t

t

p
z

FT
v
u

2

11

1

,        (16) 
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,][
2

11
2221

1
222 ⎥

⎦

⎤
⎢
⎣

⎡
= −−

t

t
t p

z
VVVz        (17) 

11
2

11

12

11 )~( +
−

+

+ +⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
t

t

t

t

t C
p
z

TFBAT
p
z

ε      (18) 

where tp2  is an 12 ×n  vector of shadow prices associated with the non predetermined 

variables, tz2 . The matrix T  provides a mapping between the state variables, tz1  and 

tp2 , and tz  and is given by 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

0
VV

I
T ,        (19) 

where 21V  and 22V  are submatrices of V . Finally, V  and F  are obtained by solving for 

the fix – point of  

,)~()~(~~2 FBAVFBAFQFFURV −′−+′+−= β     (20) 

).~~()~~~( 1 VABUBVBQF ′+′′+= − ββ       (21) 

 When the worst case misspecification is realized, the economy behaves according 

to equations (16) – (18). While the worst case equilibrium is certainly interesting, it is 

also important to consider how the economy behaves when the reference model transpires 

to be specified correctly. Partitioning F  into ][ ′′′ vu FF  where uF  and vF  are 

conformable with tu  and 1+tv , respectively. Dennis (2005) shows that the approximating 

equilibrium has the form  

111221221211121121111 )()( ++ +++++= tt
u
pt

u
zt CpFBHAzFBHAAz ε ,  (22) 

ttt pMzMp 22212112 +=+ ,       (23) 

ttt pHzHz 2221212 += ,       (24) 

t
u
pt

u
zt pFzFu 2211 += ,        (25) 

where 1
21

1
222221

1
2221 ][,, −−− −≡≡≡ TFFFVHVVH u

u
p

u
z , and  

1

2221

1211 )~( −−≡⎥
⎦

⎤
⎢
⎣

⎡
TFBAT

MM
MM

.      (26) 
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 Interestingly, the worst-case equilibrium and the approximating equilibrium share 

certain features. For instance, the worst-case equilibrium and the approximating 

equilibrium differ only with respect to the law of motion for the predetermined variables 

and, as a consequence, following innovations to the system the initial-period responses of 

the predetermined variables are the same for the approximating equilibrium as for the 

worst-case equilibrium. But since the decision rules for tz2 and tu  are also the same for 

the two equilibria, it follows that the initial-period responses by the nonpredetermined 

variables and by the policy variables are also the same. With respect to impulse response 

functions, differences between the approximating equilibrium and the worst-case 

equilibrium then only occur one period after innovations occur. 

 Furthermore, because the coefficient matrix on the innovations is 1C , which 

scales the standard deviations of the innovations, it follows that adding noise to the 

innovations or changing their correlation structure is not part of the evil agent’s strategy. 

Instead, the optimally designed misspecification has the effect of changing the law of 

motion for the predetermined variables. More precisely, since the specification errors 

enter only the stochastic component of tz1 , the evil agent’s strategy is to change the 

conditional means of the shock processes but not their conditional volatility. As shown in 

Appendix A, these relationships between the worst-case and the approximating 

equilibria also hold under discretion. 

 

2.2  Robust policymaking with discretion using state – space methods 

 

In the discretionary case, the optimization problem remains 

∑
∞

=

′+′+′
+ 0

0}{}{
]~~~~~2[maxmin

1 t
tttttt

t

vu
uQuuUzRzzE

tt

β ,     (27) 

subject to  

111121211111
~~

++ +++= ttttt CuBzAzAz ε ,     (28) 

ttttt uBzAzAzE ~~
222212112 ++=+ ,      (29) 

but now neither the policymaker nor the evil agent can commit. A convenient way to 

solve this dynamic optimisation problem is to apply the method presented by Backus and 
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Drifill (1986). Conjecturing that the solution for the non – predetermined variables in 

period 1+t  has the form 

1112 ++ = tt Hzz ,         (30) 

equations (28) – (30) imply that the non – predetermined variables, tz2 , depend on the 

predetermined variables, tz1 , and the control variables, tu~ , according to 

 ttt uKJzz ~
12 += ,        (31) 

where 

)()( 1121
1

2212 HAAAHAJ −−≡ −       (32) 

 Using (31) to substitute the non – predetermined variables out of the objective 

function, the dynamic program for the optimisation problem with discretion is  

 )](~2[maxmin 111111111
1

kPzzEuUzzRzkPzz tttttttvutt
tt

+′+′+′≡+′ ++
+

β ,  (33) 

where  

JRJRJJRRR 22211211 ′+′++≡ ,      (34) 

212212
~~ UJUKRJKRU ′′++′+≡ ,      (35) 

QUKKUKRKQ ~~
2222 +′+′+′≡ ,      (36) 

and its solution given by  

t
t

t Fz
v
u

1
1

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

,        (37) 

tt zKFJz 12 )( −= ,        (38) 

11111121111 )~( ++ +−+= ttt CzFBHAAz ε      (39) 

where P and F are obtained by solving for the fix – point of  

)()( 1121
1

2212 HAAAHAJ −−≡ − ,      (40) 

)~~()( 12
1

2212 BHBAHAK −−≡ − ,      (41) 

JAAA 121111
~ +≡ ,        (42) 

11212
~~ BKAA += ,        (43) 

 )~~()~~(2 12111211 FAAPFAAFQFFURP −′−+′+−= β    (44) 

)~~()~~( 1112
1

1212 APAUAPAQF ′+′′+= − ββ ,     (45) 
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KFJH −=          (46) 

With the worst case equilibrium given by equations (37) – (39), partitioning 

F into [ ]vu FF ′′  where uF  and  vF  are conformable with tu  and 1+tv , respectively, the 

approximating equilibrium is derived from equations (37) – (39) by setting 0=vF . 

 

2.3 Robust policymaking with commitment using structural methods 

 

� While state-space solution methods have many advantages, being generally 

compact and containing only first-order dynamics, they are not always convenient. In 

particular, problems can arise from the fact that it is often difficult, sometimes 

prohibitively so, to manipulate a model into a state-space form, making state-space 

methods better suited to small models. But policymakers often employ medium- to large-

scale models, and for this reason alone it is desirable to be able to solve robust control 

problems without relying on state-space methods. In this regard, Dennis (2006) has 

developed numerical methods that solve for optimal commitment policies and optimal 

discretionary policies in rational expectations models that allow the optimization 

constraints to be written in a structural form. These structural-form solution methods are 

easy to apply and offer considerable flexibility with regard to how the model is 

expressed. 

 One contribution of this section is to show that these structural-form methods can 

be readily applied to solve robust control problems. In fact, the advantages to using 

structural-form methods may extend somewhat further than convenience and flexibility. 

Leitemo and S¨oderstr¨om (2004, 2005) use a Lagrangian method—with the constraints 

in a structural form—to solve analytically for robustly optimal discretionary policies in 

closed- and open-economy models, respectively. They find that the evil agent’s optimal 

strategy is to change the variances of the shocks, not their persistence, a strategy that 

differs from what the state-space methods outlined above would suggest. 

 In addition to illustrating how structural-form methods can be used to solve robust 

control problems numerically, we demonstrate that they need not generate the same worst 

case equilibrium as the state-space methods and explain why. We note that whereas with 

state-space methods the evil agent’s strategy is to change the conditional means of the 
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shocks, with structural-form methods the evil agent will generally choose to change both 

the conditional means and the variance/covariance structure of the shocks. As we show, 

these differences arise because the structural-form solution methods change slightly the 

nature of the game played between the agents in the model, accommodating a more 

general class of specification errors in the process. Finally, we outline how detection-

error probabilities, essentially, the probability that an econometrician would make a 

model selection error, can be calculated given this more general class of specification 

errors. 

 The basic representation that Dennis (2006) works with is the second – order 

structural form. Therefore, let the reference model be represented as  

tttttt AuAyEAyAyA ε4312110 +++= +− ,     (47) 

where ty  is an 1×n  vector of endogenous variables, tu  is a 1×p  vector of policy 

instruments, tε  is an 1×s , ns ≤≤0 , vector of innovations, and 3210 ,,, AAAA  and 4A  

are matrices with dimensions conformable with tt uy ,  and tε  that contain the structural 

parameters. The matrix 0A  is assumed to be nonsingular and the elements of 4A  are 

determined to ensure that shocks are distributed according to ],0[1 st Iiid≈ε . The dating 

on the variables is such that any variable that enters 1−ty  is known by the beginning of 

period t ; by construction the variables in 1−ty  are predetermined. Binder and Pesaran 

(1995) show that this second – order structural form encompasses an enormous class of 

(log-) linear macroeconomic models.  

 With the reference model written in second – order structural form, private agents 

and the policymaker acknowledge their concern for misspecification by surrounding their 

reference model with a class of models of the form  

,)(4312110 ttttttt vAuAyEAyAyA ε++++= +−      (48) 

where tv  is a vector containing specification errors and equation (48) represents the 

“distorted” model. Just as earlier, the specification errors are intertemporally constrained 

to satisfy: 

∑
∞

=
++ ≤′

0
110 ,

t
tt

t vvE ωβ                                                                                      (49) 
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where ),0[ ww ∈  represents the evil agent’s total budget of misspecification. 

 The policy objective function is taken to be  

∑
∞

=

′+′
0

0 ][
t

tttt
t QuuWyyE β ,       (50) 

where )( nnW ×  and )( ppQ ×  are matrices containing policy weights and are symmetric 

positive semidefinite, and symmetric positive definite, respectively. Penalty terms on the 

interaction between ty  and tu  could be included, but are unnecessary because such terms 

can be accomodated through a suitable construction of ty , reflecting the greater flexibility 

offered by the structural form.  

 Analogous to the state – space approach, the problem of minimizing equation (50) 

with respect to ∞
0}{ tu  and maximizing with respect to ∞

0}{ tv  subject to equations (48) and 

(49) can be replaced with an equivalent multiplier problem in which  

∑
∞

=

′−′+′
0

0 ][
t

tttttt
t vvQuuWyyE φβ ,      (51) 

is minimized with respect to ∞
0}{ tu  and maximized with respect to ∞

0}{ tv  subject to 

equation (48). The multiplier ),[ ∞∈ φφ  is inversely related to the budget for 

misspecification, ω . This method of formulating the robust control problem with the 

reference model and the distorted model in structural form parallels Hansen and Sargent 

(2006) closely. Nevertheless, we distinguish between ω  and η  and between φ  and θ  to 

acknowledge that φ  and θ , while they are both shadow prices, need not share the same 

interpretation and that ω  and η  need not take the same value.  

 To solve the robust control problem with commitment when the constraints are in 

second – order structural form, the optimization problem is formulated using the 

Lagrangian. 

∑
∞

=
+− −−−−′+′+′=

0
3121100 )]~~(2~~~[

t
tttttttttt

t uAyAyAyAuQuWyyEL ρλβ , (52) 

where  

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
≡≡⎥

⎦

⎤
⎢
⎣

⎡
−

≡
t

t
t v

u
uAAA

I
Q

Q ~,~,
0

0~
433φ

,     (53)  
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and y
ttt AA εερ 24 −≡ , with 11 ++ −≡ ttt

y
t yEyε . The first – order conditions with respect 

to ttu λ,~ , and ty , respectively, can be written as 

03 ,0~~~
~ ttAuQ
u
L

tt
t

≥=′−=
∂
∂ λ        (54) 

04312110 ,0~~ ttAuAyEAyAyAL
tttttt

t

≥=−−−−=
∂
∂

+− ε
λ

,   (55) 

01112
1

0 ,0 ttEAAAWy
y
L

ttttt
t

≥=′−′−′+=
∂
∂

+−
− λβλβλ     (56) 

with the initial condition that 01 =−tλ . Equations (54) – (56) describe a standard system 

of expectational equations, in which the expectations are formed rationally from the 

perspective of the distorted model and can be solved in a variety of ways. However this 

system is solved, the solution can be written as 

t
yt

t

yyy

y

t

t

G
G

yHH
HH

y
ε

λλ
ε

λε

λ

λλλ
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−

−

1

1 ,      (57) 

[ ] t
t

t
yt F

y
FFu ε

λ
ελ +⎥

⎦

⎤
⎢
⎣

⎡
=

−

−

1

1~ .       (58) 

Equations (57) and (58) describe how the economy behaves in the worst – case 

equilibrium.  

 Given the worst case equilibrium, the approximating equilibrium, which is the 

equilibrium that pertains when the reference model is actually correctly specified, is  

ttytt GyHH ελλ λελλλ ++= −− 11 ,      (59) 

t
u

t
u
yt

u
t FyFFu ελ ελ ++= −− 11 ,       (60) 

t
u

yyyy

t
u

yyyy

t
u
yyyyyyyt

FAGHGHAAA

FAHHHHAAA

yFAHHHHAAAy

ε

λ

εελελ

λλλλλ

λλ

])([

])([

])([

324
1

0

1321
1

0

1321
1

0

++++

+++++

++++=

−

−
−

−
−

             (61) 

 Recall that for the state-space solution methods there were certain relationships 

between the worst-case equilibrium and the approximating equilibrium, relationships that 

held for both commitment and discretion. Specifically, the evil agent’s strategy involved 

changing the persistence properties of the shocks, but not the volatility of the innovations, 
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which meant that the initial period responses of the predetermined variables, the non-

predetermined variables, and the policy controls to innovations would be the same for the 

worst-case equilibrium and the approximating equilibrium. Using the structural-form 

solution methods described above, however, these relationships do not necessarily hold. 

 To see this, note that the contemporaneous response of ty  to tε  is εyG  in the 

worst – case equilibrium and ])([ 324
1

0
u

yyyy FAGHGHAAA εελελ +++−  in the 

approximating equilibrium (see equation (61)). When these structural-form methods are 

employed, the evil agent’s strategy may well involve a change to the variance-covariance 

matrix of the innovations as well as a change to the conditional means of the shock 

processes. It follows that the initial period responses by the endogenous variables, and 

hence also by the policy controls, to innovations may also differ between the worst-case 

and the approximating equilibria. 

 

 

 

2.4 Robust policymaking with discretion using structural methods 

 

In the discretionary environment, the optimization problem remains to  

∑
∞

=

′+′
∞∞

0
0

}{}{
]~~~[maxmin

00 t
tttt

t

vu
uQuWyyE

tt

β       (62) 

,~~
4312110 tttttt AuAyEAyAyA ε+++= +−       (63) 

but, of course, neither the policymaker nor the evil agent can commit. The policymaker 

and the evil agent are Stackelberg leaders with respect to their future selves, but play a 

Cournot game between themselves. The problem described by equations (62) and (63) 

conforms to the class of problems studied and solved by Dennis (2006), where it is shown 

that the solution takes the form 

,1 ttt GHyy ε+= −         (64) 

 .~
211 ttt FyFu ε+= −         (65) 
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 The matrices 1,, FGH  and 2F  that govern the solution are arrived at through an 

iterative procedure. The first step involves conjecturing values for H  and 1F  and using 

these to solve for the matrix D and the fix-point P  according to 

HAAD 20 −≡ ,        (66) 

PHHFQFWP ′+′+≡ ββ 11
~ .       (67) 

 Next, the values for D  and P  that solve equations (66) and (67) are used together 

with the conjectured values for H  and 1F  to update HFF ,, 21  and G  according to  

1
11

3
1

3
11

31
~)~~~( APDDAAPDDAQF −−−−− ′′′′+−= ,     (68) 

4
11

3
1

3
11

31
~)~~~( APDDAAPDDAQF −−−−− ′′′′+−= ,    (69) 

)~( 131
1 FAADH += − ,        (70) 

)~( 234
1 FAADG += − .        (71) 

 From equations (68) – (71), updates of D  and the fix – point P  are generated, 

which in turn give rise to updated values for HFF ,, 21  andG . This iterative procedure 

continues until a fix – point in which GHFF ,,, 21  and P  no longer change with 

successive iterations is obtained. 

 Equations (64) and (65) govern the economy’s behavior in the worst-case 

equilibrium. From this worst-case equilibrium, the approximating equilibrium can be 

easily constructed; it is given by 

])()[( 232411321
1

0 t
u

t
u

t FAHGAAyFAHHAAAy ε+++++= −
− ,  (72) 

t
u

t
u

t FyFu ε211 += − ,        (73) 

where equation (72) exploits the fact that 0A  has full rank. 

 As one might expect, in the discretionary solution, just as in the commitment 

solution discussed above, the evil agent’s strategy will generally involve changing both 

the persistence properties of the shocks and the variance-covariance matrix of the 

innovations. To see this, observe from equations (64) and (72) that the coefficient 

matrices on the innovations,G , and uFAHGAA 2324 ++ , respectively, are not necessarily 

equal. 
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2.5 Detection – error probabilities 

 

� Anderson, Hansen, and Sargent (2003) describe the concept of a detection-error 

probability and introduce it as a tool for calibratingφ , the multiplier on the 

misspecification constraint, which would otherwise be a free parameter. A detection-error 

probability is the probability that an econometrician observing equilibrium outcomes 

would make an incorrect inference about whether the approximating equilibrium or the 

worst-case equilibrium generated the data. The intuitive connection between φ  and the 

probability of making a detection error is that when φ  is small, greater differences 

between the distorted model and the reference model (more severe misspecifications) can 

arise, which are more easily detected. Let A  and B  denote two models; with a prior that 

assigns equal weight to each model, Hansen, Sargent, and Wang (2002) show that 

detection – error probabilities are calculated according to 

2
)|()|()( ABprobBAprobp +=φ ,      (74) 

where )|( BAprob  ( )|( ABprob ) represents the probability that the econometrician 

errouneously chooses model A  (model B ) when in fact model B  (model A ) generated 

the data. Let model A  denote the approximating model and model B denote the 

worstcase model, then any sequence of specification errors that satisfies equation (29) 

will be at least as difficult to distinguish from the approximating model as is a sequence 

that satisfies equation (29) with equality. As such, )(φp  represents a lower bound on the 

probability of making a detection error. 

 To calculate a detection-error probability we require a description of how the 

econometrician goes about choosing one model over another. Hansen, Sargent, and Wang 

(2002) assume that this model selection is based on the likelihood ratio principle. Let 
TB

tz 1}{  denote a finite sequence of economic outcomes generated according to the worst – 

case equilibrium, model B , and let ABL  and BBL  denote the likelihood associated with 

models A  and B , respectively, then the econometrician chooses model A  over model B  

if 0)/log( <n
AB

n
BB LL . Generating M  independent sequences TB

tz 1}{ , )|( BAprob  can be 

calculated according to  



 18

[ ]∑
=

<≈
M

m

n
AB

n
BB LLI

M
BAprob

1
0)/log(1)|( ,      (75) 

where ]0)/[log( <n
AB

n
BB LLI  is the indicator function that equals one when its argument is 

satisfied and equals zero otherwise;  )|( ABprob  is calculated analogously using draws 

generated from the approximating model. The likelihood function that is generally used 

to calculate )|( BAprob  and )|( ABprob  assumes that the innovations are normally 

distributed.  

 While the theory of detection does not require that the evil agent not distort the 

volatility of the innovations, existing methods to calculate detection-error probabilities do 

(see Hansen, Sargent, and Wang, 2002, for example). Dennis, Leitemo and Soderstrom 

(2006) propose a more general method to calculate detection-error probabilities while 

accounting for the distortions to both the conditional means and the conditional 

volatilities of the shocks. Let 

tAtAt GzHz ε+= −1 ,        (76) 

tBtBt GzHz ε+= −1 ,        (77) 

govern equilibrium outcomes under the approximating equilibrium and the worst – case 

equilibrium, respectively. With discretion, tt yz ≡ , while with commitment 

[ ]′′′≡ ttt yz λ . When BA GG ≠ , to calculate )(φp  we must first allow for the stochastic 

singularity that generally characterizes equilibrium and second account appropriately for 

the Jacobian of transformation that enters the likelihood function. Using the QR 

decomposition we decompose AG  according to AAA RQG =  and BG  according to 

BBB RQG = . By construction, AQ  and BQ  are orthogonal matrices ( sbBAA IQQQQ =′=′ ) 

and AR  and BR  are upper triangular. Let 

},{},{,)(ˆ 1
1| BAjizHzQR j

ti
j

tii
ji

t ∈−′= −
−ε      (78) 

represent the inferred innovations in period t  when model i  is fitted to the data Tj
tz 1}{  

that are generated according to model j  and let ji|Σ̂  be the associated estimates of the 

innovation variance – covariance matrices. Then  
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⎛ −− ,    (79) 

)ˆˆ(
2
1logloglog ||11 BBBA
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BB trRR
L
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Σ−Σ+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −− ,    (80) 

where tr  is the trace operator.  

 When BA GG =  it follows that BA RR = and the Jacobian of transformations 

associated with the various likelihoods cancel and play no role in the calculations, in 

which case equations (79) and (80) simplify to 

 )ˆˆ(
2
1log || AAAB

BA

AA tr
L
L

Σ−Σ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,    (81) 

)ˆˆ(
2
1log || BBBA

AB

BB tr
L
L

Σ−Σ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,    (82) 

which are equivalent to the expressions Hansen, Sargent, and Wang (2002) and Hansen 

and Sargent (2006, Chapter 8) employ. Given equations (79) and (80), equation (75) is 

used to estimate )|( BAprob  and (similarly) )|( ABprob , which are needed to construct 

the detection – error probability, as per equation (74). The multiplier,φ , is then 

determined by selecting a detection – error probability (or at least its lower bound) and 

inverting equation (74). Generally, this inversion is performed numerically by 

constructing the mapping between φ  and the detection – error probability, for a given 

sample size.  

 

 2.6  Comparing the solution methods 

 

 We demonstrated that the solutions obtained for the worst-case equilibrium and 

the approximating equilibrium may depend on whether state-space methods or structural-

form methods are used. Moreover, it should be clear that the differences between the two 

solution methods involve specification errors that are qualitatively different in important 

ways. For the structural-form solution methods, it is apparent that pessimistic agents are 

guarding against specification errors both to the conditional means of the shocks, which 
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is the behavior Hansen and Sargent emphasize, and to the conditional 

variances/covariances of the shocks.  

 In an important sense, it is surprising that the solutions differ, as such differences 

do not arise when expectations are rational. But since the methods may produce different 

equilibrium behavior, two important questions immediately present themselves: why do 

the differences arise, and are the differences quantitatively important? With regard to the 

first question, when the solutions differ they do so because the state-space formulation 

restricts the various decisionmakers in ways that the structural-form formulation does not. 

In effect, the two methods are solving closely related, but not identical problems. To see 

this point, consider the following simple example. Let the reference model that the 

policymaker and private agents share be 

ttttt guyEy ++= + γα 1 ,       (83) 

ttt gg εσρ ε+= −1 ,        (84) 

where the parameters satisfy )1,1(),,(),1,0( −∈+∞−∞∈∈ ργα , and ),0(, ∞∈εσσ g , and 

where tε  is a mean – zero white – noise process with standard deviation equal to εσ . 

Notice that tε  is an exogenous variable, tu  is a decision variable, 1, +ttt yEy , and tg  are 

non – predetermined variables, and 1−tg  is a predetermined variable.  

 To write equations (83) and (84) in state-space form the standard method would 

be to advance the timing on equation (84) one period and to make Etyt+1 the subject of 

equation (83), giving 
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 Adding the specification errors, the distorted model would then be  
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 Notice that in equation (86) the shock tg  is a state variable, a variable that all 

agents take as given when forming decisions, even though it is not actually a 

predetermined variable.  
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 In contrast, with the structural form method, once the model misspecifications are 

added to equation (64), becomes 
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 In equation (87) the state variables that agents take as given when forming 

decisions are 1−tg  and tε . Thus, the key difference between the two representations is that 

in the structural-form representation the state variables are 1−tg , which is predetermined, 

and tε , which is exogenous, while in the state-space representation the state variable 

is tg ,which is non-predetermined. Because the structural-form representation allows the 

evil agent to react separately to 1−tg  and tε , if it so desires the evil agent can purposefully 

alter the realization of tg , changing both the conditional mean of the shock and the 

variance of the innovation. Moreover, by allowing the specification errors to affect the 

contemporaneous realizations of the shocks, the nature of the strategic interaction 

between the policymaker and the evil agent is changed slightly by the structural form. 

 Before leaving this section, two final points are worth making. First, although the 

structural-form representation does not restrict the state vector, and permits a wider class 

of specification errors as a consequence, because all agents in the model—not just the 

evil agent—have their behavior restricted it is not the case that relaxing this restriction 

necessarily allows the evil agent to do more damage for a given budget. By relaxing the 

restriction, other agents in the economy can better guard against the specification errors. 

Second, state-space forms (and structural forms) are not unique. As a consequence, for 

any given model, a state-space representation that allows the evil agent to distort both the 

conditional mean and the conditional volatility of the shocks will generally be available. 

  

2.7  Robust policy in an empirical model 

 

 To illustrate the robust control approach, we study the model estimated by 

Rudebusch (2002a), which is based on a standard New Keynesian model and contains 
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two equations that, conditional upon the short – term interest rate, ti , summarize the 

dynamics of inflation, tπ , and the dynamics of inflation, ty : 

tttttt yE ,11 )1( πππ εαπμπμπ ++−+= −+ ,     (88) 

tyttttyttyt EiyEy ,111 )()1( επβμπμ +−−−+= +−+      (89) 

 Equation (88) is a “New Keynesian Phillips curve” derived from the optimal 

pricesetting behavior of firms acting under monopolistic competition, but facing price 

rigidities, typically modeled following Calvo (1983). The presence of lagged inflation 

and the “supply shock” t,πε  can be motivated by indexing those prices that are not 

reoptimized in a given period and by a time-varying elasticity of substitution across 

goods, leading to time-varying markups. Equation (89) can be derived from the 

household consumption Euler equation, where habits in consumption imply that current 

decisions depend to some extent on past decisions. The “demand shock” ty ,ε  can be 

attributed to government spending shocks or to movements in the natural level of output.8 

An empirical version of this model, suitable for quarterly data and similar to that 

estimated by Rudebusch (2002a), is given by 

tty
j

jtjttt yE ,1

4

1
31 )1( ππππ εαπαμπμπ ++−+= −

=
−+− ∑ ,    (90) 

 

tytttr
j

jtyjyttyt EiyyEy ,311

2

1
11 )()1( επββμμ +−−−+= +−−

=
−+− ∑   (91) 

where ∑
=

−=
3

0
4/1

j
jtt ππ  is four – quarter inflation and ti  is the nominal federal funds rate 

(the policy instrument). We generalize the model slightly to include forward – looking 

behavior in the output gap equation, as in Rudebusch (2002b). The model’s parameters 

estimates, shown in Table 1, are taken from Rudebusch (2002a) and are obtained using 

OLS (and survey expectations) on quarterly U.S. data from 1968:Q3 to 1996:Q4, except 

for the parameter yμ , which is set to the average estimate in Fuhrer and Rudebusch 

(2004).  
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Table 1 – Parameter Values 

Inflation Output Monetary Policy 

πμ  0.29 yμ  0.20 β  0.99 

1πα  0.07 1yβ  1.15 λ  0.50 

2πα  -0.14 2yβ  -0.27 υ  0.10 

3πα  0.40 rβ  0.09   

4πα  0.07 yσ  0.833   

yα  0.13     

πσ  1.012     

 

 The model’s key features are that inflation and the output gap are highly 

persistent, that monetary policy affects the economy only with a lag, and that 

expectations are formed using period 1−t  information. Notice, also, that the weights on 

expected future inflation and output. While consistent with much of the empirical 

literature, are small relative to many theory – based specifications.  

 The central bank’s objective function is assumed to be 

 ∑
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=

++
0

222
0}{

)(min
t

ttt
t

i
viyE

t

λπβ ,      (92) 

where we 1.0,5.0,99.0 === vλβ . Thus, the central bank sets monetary policy to avoid 

volatility in inflation around its target (normalized to zero) and in the output gap around 

zero (precluding any discretionary inflation bias). In addition, the central bank desires to 

limit volatility in the nominal interest rate around target (normalized to zero). The 

concern for misspecification,φ , is chosen so that the detection error probability is 0.1, 

given a sample of 200 observations. This implies that 5.54=θ .  

 The model described by relations (90) – (92) can be written in state – space form 

as follows: 

11 ++ ++= tttt CBuAzz ε ,       (93) 
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β         (94) 
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where  ( )′= −−−− 13211 ttttttt yyz ππππ ,  

 ( )′= ++++ 13212 ttttttttt yEEEEz πππ , 
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 We first solved the linear quadratic optimization problem in the nonrobust case. 

The matrix which gives the optimal feedback is  

( )4.296-16.047-40.24541.088-2.399 6.947-0.913 3.5410.36-20.1=K
(95) 

and the optimal control is: 

tttt KzFziu −=== .        (96) 

 Next, we solved the worst – case robust control problem. In this case, 
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⎟
⎟
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001.0

Q . 

 Matrices A, C and R are the same as in the nonrobust case.  

 Solving the linear quadratic optimisation problem, we obtained the optimal 

feedback matrix 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−−−−−
−−−−−−

−−−−−−
=

206.033.062.099.20008.0422.0152.083.0472.04969.1
216.0055.097.126.30005.0315.0125.061.0783.04045.1

22.038.322.199.03038.2741.9302.065.1992.06733.1
K  

(97)  

 The optimal control is given by tt zKu −= , which means that the optimal policy 

rule and misspecification are given by: 

Coefficient on 

 tπ  1−tπ  2−tπ  3−tπ  ty  1−ty  

Policy rule  

ti  

-1.6733 -0.992 1.65 0.302 9.741 0.99 

Misspeficiation 

1, +tvπ  1.4045 -0.783 0.61 0.125 0.315 0.0005 

1, +tyv  1.4969 -0.472 0.83 0.152 0.422 0.0008 

 

 

In figures 1, 2, we plot impulse responses to unit – sized innovations to inflation ( t,πε ) 

under commitment using the state – space method, for the nonrobust and robust cases, 

respectively.  
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  Figure 1     Figure 2 

 

Figures 3 and 4 illustrate output responses to unit – sized innovations to inflation ( t,πε ) 

for the nonrobust and robust cases, respectively.  

 
      Figure 3            Figure 4 

 

 

 Figures 5 and 6 illustrate interest rate responses to unit – sized innovations to 

inflation ( t,πε ) for the nonrobust and robust cases, respectively.  
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      Figure 5          Figure 6 

 

 Under the nonrobust policy, a shock to inflation is followed by a prolonged period 

of high inflation, causing the central bank to tighten monetary policy and to raise the 

interest rate in order to open up a negative output gap, which will reduce inflation over 

time. 

 Using the state-space solution method in Figure 2, the misspecification has no 

effect in the initial period. In subsequent periods, however, the evil agent’s actions, which 

make inflation more persistent in the worst-case equilibrium, produce a more aggressive 

policy response and a larger negative output gap and the effect on the output gap is 

considerably larger and more persistent. The more aggressive policy implies that the 

output gap is larger than under the nonrobust policy, and inflation therefore returns to 

target faster. Thus, the robust policy is more aggressive than the nonrobust policy, and 

the central bank fears mainly that inflation is more persistent than is reflected in the 

reference model. Giordani and Soderlind (2004) and Dennis, Leitemo and Soderstrom 

(2006) obtain qualitatively similar results. 

 Similar differences are obtained in response to output shocks (see Figures 6–12). 

Although the initial period distortion is small, the total effect is substantially larger and 

leads to quantitatively important differences between the two approaches.  

 Figures 7 and 8 illustrate inflation responses to unit – sized innovations to the 

output gap ( ty ,ε ) for the nonrobust and robust cases, respectively.  
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      Figure 7           Figure 8 

  

 Figures 9 and 10 illustrate output gap responses to unit – sized innovations to the 

output gap ( ty ,ε ) for the nonrobust and robust cases, respectively. 

 
     Figure 9             Figure 10 

 

 

 

 Figures 11 and 12 illustrate interest rate responses to unit – sized innovations to 

the output gap ( ty ,ε ) for the nonrobust and robust cases, respectively. 
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     Figure 11            Figure 12 

 

Conclusions 

 
 In formulating monetary policy, central banks must cope with substantial 

economic uncertainty. 

 Economic uncertainty can arise from different sources: the state of the economy, 

the nature of economic relationships, and the magnitude and persistence of ongoing 

shocks. 

 Robust control theory instructs decision makers to investigate the fragility of 

decision rules by conducting worst-case analyses. 

 In this paper we show how state space methods and structural-form solution 

methods can be applied to robust control problems, thereby making it easier to analyze 

complex models. 

 We illustrate the state space solution methods by applying them to an empirical 

New Keynesian business cycle model of the genre widely used to study monetary policy 

under rational expectations. A key finding from this exercise is that the strategically 

designed specification errors will tend to distort the Phillips curve in an effort to make 

inflation more persistent, and hence harder and more costly to stabilize. The optimal 

response to these distortions is for the central bank to become more activist in its 

response to shocks.  
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