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Abstract In this note we consider the choice of optimum fishing capacity for
fish stocks that vary af random. In models with stochastic variations offish
slocks, optimum ftshlng capacity is normally a decision variable separate from
fishing effort. It is shown how the optimum fishing capacity depends on the
price of fish, the cost of capacity, and the "harvest rttle" linking the permitted
catch to the size of the fish stock. Operating costs may also influence the
optimum capacity through the effect of stock "thinning" on the cost per unit
offish caught and the level at which further depletion becomes unprofitable.
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Introduction

In deterministic fishery models there is only one. basic decision variable; the rate
of exploitation. Once this has been decided, optimum fishing effort follows. As a
stationary pattern of fishing is obtained, there will be no reason to vary fishing
effort and thus no difference between effort capacity and actual effort. Alterna-
tively, one may take effort as a decision variable. The optimum effort implies an
optimum rate of exploitation, and vice versa.

In stochastic fishery models the catch capacity of the fleet becomes a decision
variable in its own right. Random variations in the abundance offish will cause
random variations in the permitted harvest, provided there is some "rule" linking
the size of the fish stock at the beginning of a fishing season and the harvest it is
permitted to take during the season. Therefore, the utilization of the fishing fleet
will most likely have to be varied according to the status of the fish stock at a
given time. Since the average degree of utilization of the fleet will probably be
lower the larger it is, the optimum fishing capacity for any given probability
distribution of the permitted catch is likely to depend on the cost of fishing ca-
pacity.

Questions related to the choice of optimum capacity for harvesting fluctuating
stocks have surprisingly seldom been addressed in the literature, given the im-
portance of the issue. Most stocks fluctuate considerably over time, and some so
severely that the fishery is entirely closed down from time to time, while alter-
native stocks are often not available, or available only to a limited extent. Ex-
ceptions are Huppert (1981) and Charles and Munro (1985). Both of these papers
discuss the trade-off between the cost of idle capacity and the ability to take large

This research has been supported by the Norwegian Fisheries Research Council. Parts of
this note were written while the author was visiting professor at the University of Iceland.

133



Hannesson

but infrequent catches. Wilson (1982) refers lo the "peak load problem" for
patchily distributed stocks.

In this note we explore the relation between optimum fishing capacity and two
simple harvest rules linking the permitted harvest and the status (size) of the fish
stock. Ideally such harvest rules ought to be based on an economic optimization,
taking into account the biology of the stock. What often seems to happen in
practice, however, is that the permitted harvest is based on some simple biological
"rule of thumb", such as a target escapement or fixed fishing mortality. But even
in this case we are left with a decidedly nontrivial economic optimization problem,
namely to find the optimum fishing capacity, given the prospects with regard to
permitted catches in future periods.

Two Harvest Rules

We ignore deterministic population dynamics and regard the stock of fish, X, as
a stochastic variable with a time-independent probability distribution.' Let the
probability density function be denoted by

f(X). (1)

and the cumulative distribution function by

F(X) = j\s)ds. (2)

Suppose there is a harvest rule, specifying how much can be caught in each
period, depending on how large the stock is at the beginning of the period." Let the
harvest rule be denoted by

Q = G(X), (3)

where Q is the permitted catch. It will be assumed that the harvest rule is linear:

G(X) = max[O, k(X - X*)], k « 1, X* ^ 0,

where X* is a target minimum stock to be left behind after harvesting.
The linearity assumption is made for simplicity, but it is not unreasonable.

Certainly one would expect the harvest rule to be monotone; that is, dG/dX 5= for
all X. d-G/dX- > 0 for all X is unlikely or impossible, since eventually G(X) > X
if d^G/dX^ is large enough. d^G/dX^ < 0 for all X makes little sense, since the
harvest rule would then prescribe that a progressively smaller portion be caught
of the stock as it becomes larger.

' This ignores the relationship between harvest in the current period and the available stock
in later periods {i.e., the fish live longer than one period, recruitment depends on the
spawning stock, etc.). This is considered in Hannesson (1987).
^ It is implicitly assumed that the size of the stock can be estimated with some confidence
prior to each fishing season. The implications of uncertainty of these estimates will not be
discussed here.
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Two examples of the rule, to be discussed below, are

G(X) = kX, k < 1 (X* = 0);
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(3a)

G(X) = X - X*, X ^ X* (k = 1). (3b)

The first of these is the well known constant fishing mortality rule. The second
is the equally well known target escapement rule. These rules are illustrated in
Figure 1.

The Production Function, Harvest Rules, and Fishing Capacity

Imagine a sole owner who plans to invest in a fishing fieet as appropriate for
utilizing a fiuctuating stock described by the equations above. His catch rate (Y)
at any point in time may be written in general terms as

Y = <t)(^,,42;X),

where C, is a vector of ex-post fixed factors (boats and equipment) and I2 's a
vector of variable factors. These factors interact with the fish stock (X), resulting
in a catch offish (Y).

Tbe ex-ante optimal proportions of the fixed factors ^| are given by cost-
minimization, as is the optimal size of the production units. For a maximization of

Q

Constant
escapement

Constant
fishing
mortality

X
Figure 1. Two "harvest rules" linking the total allowable catch (Q) to the size of the
exploited stock (X).
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expected profits, the ex-ante optimal size of the production units will be given by
the condition that the expected average cost be equal to the expected marginal
cost.

Ex post the rate of utilization of the fixed factors ^, can be varied by varying
the input of the variable factors 2̂- We shall make the simplifying assumption that
production increases proportionately with 2̂ for any given value of X. We further
assume that the unit cost of each variable factor is constant up to a certain
threshold value for some component in 2̂ (for example, so or so many hours per
week for labor). This means that operating costs increase proportionately with ̂ 2
up to that threshold value. We finally assume that values of 2̂ beyond the said
threshold are uneconomical.^ This rules out the possibility of intensifying the use
of the fixed factors beyond ''normal" capacity when the permitted catch offish is
greater than the normal capacity. The purpose of this is to identify a unique value
of full capacity utilization, which in this case is the combination ĵ and the max-
imum economical 2̂- According to the ordinary primal definition of capacity, the
resulting value of Y would be the capacity limit. Here we shall use a different
notion of capacity, namely the value of ,̂ combined with the maximum econom-
ical value of 2̂- This would in ordinary language correspond to an intuitive notion
such as so or so many fully utilized vessels. Due to the interaction with the fish
stock (X) this does not necessarily correspond to a unique value of Y, which is
why we prefer this definition of capacity."*

Due to the minimum cost combination of the various elements in 1̂ there exists
an aggregate expression of the vector ^,. This is a measure of capacity as defined
above, and will be denoted by K. Similariy there exists, at given input prices, an
aggregate expression for 2̂- Reducing 2̂ below its maximum economical limit for
one or more units of K reduces the use of capacity and variable costs proportion-
ately. We refer to the capacity used as fishing effort and denote it by Z. The
production function of the fishery can now be written as

Y = H(X,Z); Z ^ K. (4)

Given the harvest rule (3) and the production function (4), the catch will be:

Y = min[G(X), H(X,K)]. (5)

If G(X) is linear in X, H(X,K) is linear in X for agiven K, and X* = 0, we have
one of the following;

G(X) > H(X,K) for all X

G(X) = H(X,K) for all X,

G(X) < H(X,K) for all X.

' This implies limits to substitutability between the variable factors, such that it is not
economical to increase the use of variable factors the prices of which remain constant to
increase the degree of utilization of the fixed factors.
" In real life capacity is likely to be elastic, with the marginal cost curT/e rising as usually
depicted in textbooks. The normal capacity of each production unit could then be defined
as the minimum of the long run average cost curve. Smith and Hanna (1990) study capacity
utilization in a fishing fleet.
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In the first case, the fishing capacity is always insufficient to take the permitted
catch, while in the third case it is always too great. In the second case it is just
sufficient, always. Hence, in this special case, there is no choice to be niade with
respect to optimal capacity, even if the fish stock and the permitted harvest
fluctuate. Once the harvest rule (the value of k) has been specified, the optimum
capacity has been decided implicitly. This is illustrated in Figure 2. Operating
costs affect this conclusion, however, as will be shown in Section 5 below, and
imply a minimum exploitable stock level, which has a similar effect as a target
escapement level X* > 0.

If X* > 0, there will sometimes be redundant capacity, even if (4) is linear in
X. Depending on the level of K, the capacity will become binding at some level of
X(X**), as is illustrated in Figure 3b.

One special case of (4) is where it depends only on Z, such as

H(Z) = mZ, m constant.

This is shown in Figure 3a. Here the capacity of the fleet is well defined in
terms of output (mK). Otherwise the capacity in terms of output will depend
on the size of the exploited stock. With H(X,Z), the catch of a fully utilized fleet
of a given size K will increase with X as X increases beyond the critical level
X**. This is shown in Figure 3b for the case where H(.) is linear in X for a given
Z = K.

Too large
capacity

H(X,Z2)
kX

ZKZ2

Too small
capacity

H(X,z1)

X
Figure 2. A case of optimum fishing capacity that is always fully used despite fluctuating
allowable catch. The catch per unit of capacity used (H(X,Z)/Z) is linear and the constant
fishing mortality harvest rule (Q = kX) applies.
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Figure 3. Actual catch under the target escapement rule when (a) the catch per unit of
capacity used is constant versus (b) proportional to the exploited stock. X* = the target
escapement stock level, X** = the stock level at which the capacity constraint becomes
binding.

The Criterion for Optimum Capacity

Consider the choice of optimal fishing capacity, with a given investment cost, c,
per unit of capacity. Assume that the price of fish. p. is constant and ignore
operating costs for the time being. Since the probability distribution of the stock
(and, by the harvest rule, the permitted catch) is the same in all time periods, the
optimum capacity will remain constant in all future periods. Given risk neutrality,
the conditions for optimum fishing capacity may therefore be derived by maxi-
mizing the expected present value of future profits (ETT) obtained by a fleet that is
built from scratch and maintained at a given level ever after. We assume the fleet
can be built in one period at a constant cost, c, per unit of fishing capacity, K.
Hence we have the following problem:

max EiT = -cK f̂ "" f(s)pY(X,K)ds - 5CK1(I +
Jo

J

(6)

where Xn̂ ^̂ is the maximum size of the stock, Y is given by (5), 5 is the rate of
depreciation of the fleet, and r is the discount rate.

Since all the terms in the sum, except the discount factor, are independent of
time, the sum in (6) is easily calculated. After multiplying by r we get

max ETT. = f̂ '"' f(s)pY(X,K)ds - (r + S)cK,
Jo

(7)

which represents the annual expected profit (expected annual revenue less the
annualized capital cost). Using (5), we can write this as
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max EiTa = pj^'^" f(s)G(s)ds + p f^J f(s)H(s.K)ds - (r + 8)cK, (8)

where X** is the level of stock at which all the avaiiabie fishing capacity is needed
(i.e., G(X**) = H(X**.K)). The necessary condition for maximum is

dEWdK = p f'^' f(s)[dH(s,K)/aK]ds - (r + 8)c = 0. (9)
J A

This has a straightforward interpretation; the expected annual revenue result-
ing from a marginal increase in fishing capacity should be equal to the annualized
cost of that capacity.

In the special case of H(Z) = mZ, (9) is particularly simple:

pm[I - F(K)) = (r -I- 5)c,

while in the special case of H(.) = nZX we get

'f(s)nsds = (r + S)c.

The Importance of Operating Costs

So far we have ignored operating costs. How would these affect the optimum
capacity? If the operating costs are proportional to the quantity caught they can
simply be incorporated in the price in expression (6). If the catch depends on X as
well as Z (or K) the operating costs per unit offish caught will be inversely related
to the abundance offish. The operating costs will then affect the optimum level of
fishing capacity through a "thinning effect"; i.e., as a stock that replenishes itself
periodically is fished down, the operating cost per unit of fish increases and the
fishery will be abandoned when the operating cost per unit offish becomes equal
to the price. The higher the operating cost the sooner the stock will be abandoned
(if at all), and the less profitable an expansion of fishing capacity will be. We shall
use a simple numerical example and the production function H(X,Z) = nZX to
demonstrate this.

Suppose the probability density of the stock is constant and equal to one. For
a zero minimum stock, this implies X^^ = I. Suppose further that the harvest
rule is a "target escapement policy", i.e., G(X) = maxlO, X - X*]. where X* =
0.1. Above it was assumed that the operating cost per unit of capacity used is
constant. Let this cost be denoted by q. The operating cost per unit offish caught
therefore is qZ/nZX = q/nX. The stock will be abandoned when the operating
cost per unit offish caught has become equal to the price. The abandonment level
(Xt) thus is

Xt = q/pn. (10)

If Xt > X* the target escapement rule is redundant, as the stock will be
abandoned before that rule becomes binding. Hence we may define Xt, the min-
imum stock to be left behind (provided the unfished stock exceeds this level):
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Xt = max(Xt, X*). (U)

Note that with Rule (3a) the smallest stock to be left behind after harvesting would
be Xt > 0, with the same implications for optimum capacity choice as X* > 0.

As the total catch is

X - Xt when X ^ X**,

nKX when X ^ X**,

we get the following expression for the total operating cost (O):

O(X) = P(q/nx)dx = (q/n)[lnX - lnXt] when X ^ X**, (I2a)

O(K) = ff (q/nx)dx - -(q/n)ln{I - nK) when X ^ X**. (12b)
J X — nKX

It may be noted that the total operating cost is in fact independent of the size
of the stock in the latter case, but since the total catch increases with the stock,
the cost per unit caught will decrease as the stock increases.

The expected catch value net of operating costs (EV) will then be as follows
(note that the probability density is I):

EV - P " p(X - Xt)dX - (q/n) P"(lnX - lnXt)dX + f pnKXdX
Jxt Jxt J x "

+ (q/n) f ln(l - nK)dX
Jx*'

= jpiX** - Xtf - (q/n)[X**lnX** - X** - X**lnXt + Xt)

^ X**)ln(l - nK). (13)

The necessary condition for maximum is most easily derived from the integral
terms, noting that X** depends on K, since (note that Xt replaces X* in Figure 3)

(X** - Xt) = nKX**. (14)

Due to (14), the derivative of the upper limit of the first and third integral in
(13) is equal to the derivative of the lower limit of the second and fourth integral,
with sign changed. Hence we get

dEV/dK = pn f XdX - (q/n) f [n/(l - nK)]dX
Jx** Jx*'

1
= r pn[l - (X**)='] - [q/(l - nK)](l - X**). (15)



Fishing Capacity and Harvest Rules 141

After substituting for X** from (14) and setting (15) equal to (r + 6)c (cf. 9) we
get

where

K = - (16)

a = T pn^ - nHr + 8)c,

p - -pn^ + qn + 2n(r + 5)c,

^ = (r + 8)c - i pn[l - - Xt).

Figure 4 shows how the optimum fishing capacity depends on the price offish
(p), the operating cost of fishing per unit of effort (q), and the capacity cost (r +
5)c. The optimum fishing capacity increases with the price offish, for a given cost
of capacity and operating cost per unit of effort. The reason is straightforward; if
the capacity is high, it will often not be fully needed. Investing in a large fishing
capacity will therefore be worth while only if the price of the fish is high. Note that
the price has to exceed a certain level to make it worth while to invest in fishing
capacity. The optimum capacity increases with the price of fish towards the
asymptotic value K - 0.9. This value implies that the largest permitted catch can
be taken, as (X^^x - X*) - 0.9 forn - 1 and X̂ ^̂ ^ = 1, the values used in the
example. Comparison between the curves for q = 0 and q = 0.1 in Figure 4, both
of which are drawn for r + 5 = O.I and c = 1, shows that the minimum price
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Figure 4. Optimum capacity (K) as a function of the price offish (p), the operating cost per
unit of capacity used (q), and the annualized cost per unit of capacity ((r + 6)c), when a fish
stock is "thinned" over a fishing season.
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necessary to make fishing worth while increases with the operating cost per unit
of effort and that the optimum capacity rises less steeply with the price offish the
higher is the operating cost per unit of effort.

The third curve in Figure 4 shows how the optimum fishing capacity varies
with the price offish when the capital cost is zero but the operating cost per unit
of effort is 0.1. The optimum capacity is seen to increase with the price offish over
some interval instead of being constant at the level that permits the maximum
allowable catch (X^^^ - X*) to be taken. This may appear surprising, because it
might be expected that a zero cost of capacity would imply a constant optimum
capacity high enough to take the maximum allowable catch. The reason why the
optimum capacity increases with the price of fish over some interval is simple,
however. It is not profitable to deplete the stock below Xt (see Equation 10). For
a sufficiently low price, Xt > X\ and the capacity (X^^^ - Xt)/n will be suffi-
cient for taking the maximum worthwhile catch (X^^^ - Xt). As the price rises,
Xt decreases. The target escapement rule is in fact redundant in this case, as it is
not profitable to deplete the stock below the level X:i: > X*.

If on the other hand the operating cost and the capacity cost are both zero, the
optimum fishing capacity is K = (X^^^ - X*)/n irrespective of price. This may be
seen by setting (5 + r)c and q equal to zero in Equation (16).

Conclusion

In this note the distinction between fishing effort, in the sense of fishing capacity
used, and fishing capacity has been emphasized. When the total permitted catch
from a stock varies in part due to the influence of random factors that are unre-
lated to the pattern of exploitation, the management of fisheries will, at the most
general level, consist of two parts: (i) applying rules for optimum use of existing
fishing capacity, and (ii) deciding the optimum fleet capacity. Here it has been
shown how the optimum capacity depends qualitatively on the cost of capacity,
operating cost, and the price offish.

It can be argued that optimum fleet capacity to take uncertain harvests is a
more topical subject for the economics of fisheries management than setting the
right harvest rate. As mentioned in the introduction, the permitted harvest from
fish stocks often appears to be determined by simple biological rules of thumb,
such as a target escapement or a constant fishing mortality, sometimes modified
by administrators under political pressure. There nevertheless remains the impor-
tant economic issue to determine optimum fishing capacity for stocks with ran-
domly fluctuating allowable catch. This will not happen automatically. To the
extent the optimum solutions derived above imply a positive rent, this would
under free access attract additional effort until all rent is dissipated. Overcapacity
and rent dissipation in free access fisheries does not depend, therefore, on dy-
namic growth and stock effects; this can also happen in cases like here where the
future catch possibilities are entirely random (but with a known probability dis-
tribution). Overcapacity would in that case be the result of a competition for the
largest possible share of a given total catch, much like in fisheries managed by
closed seasons or a total catch quota for which all can compete.
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