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What Explains High Commodity Price Volatility?

Estimating a Unified Model of Common and Commodity-Specific,

High- and Low-Frequency Factors

Abstract

We estimate a model of common and commodity-specific, high- and low-frequency fac-

tors, built on the spline-GARCH model of Engle and Rangel (2008) to explain the

period of exceptionally high price volatility in commodity markets during 2006-2008.

We find that decomposing realized volatility into high- and low-frequency components

reveals the impact of slowly-evolving macroeconomic variables on the price volatil-

ity. Further, we find that while macroeconomic variables have similar effects within

the same commodity category (e.g., storable agricultural), they have different effects

across commodity groups (e.g., live stock versus energy).

Keywords: volatility, spline-GARCH, futures markets
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1. Introduction

The price volatility of agricultural commodities has been exceptionally high during the “com-

modity boom” of 2006-2008. Consider, for example, that since 1980 the volatility of futures

prices for corn has averaged 19.7%, but it reached record high levels of 28.8% in 2006, 31.4%

in 2007, and 41% in the first quarter of 2008 (Schnepf 2008). For wheat, volatility increased

from a historical average of 22.2% to record values of 30.4% in 2006, 32.7% in 2007, and 73%

in early 2008. This exceptionally high level of price volatility has complicated established

agribusiness practices, particularly the management of price risk (Mark et al. 2008). For in-

stance, the availability of forward contracting has sharply decreased in some regions, futures

margin calls have become large enough to cause bankruptcy, and options (whose premium

increases with volatility) have become prohibitively expensive. Although prices and volatility

have decreased in late 2008, understanding the underlying factors behind this period of high

volatility should be helpful to producers, commodity traders, and policy makers to better

prepare for the next period of high price volatility.

Even though there is a vast number of studies on volatility, most use extremely reduced-

form time series models that are not based on economic theory and are driven only by the

statistical properties of the historical data. Indeed, models that are more structural have

been found to perform poorly, i.e. they can explain only a small fraction of the observed

volatility.

The main contribution of this paper is to estimate a model of common and commodity-

specific, high- and low-frequency factors to explain the period of exceptionally high volatility

during 2006-2008. To this end, we build upon the recently proposed volatility model and es-
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timation framework of Engle and Rangel (2008), which may be described as semi-structural.

This model combines time series dynamics (high-frequency volatility) with slowly-evolving

macroeconomic effects (low-frequency volatility). Thus, it can capture the effect and mag-

nitude of both the very short-term factors, which are typically best modeled using purely

statistical models, e.g., GARCH, as well as the longer-run, macroeconomic variables that are

found in more structural models. The low-frequency component is specified as a function of

log real GDP, risk-free interest rate, and inflation rate (general variables) as well as a func-

tion of inventories and seasonal factors (commodity-specific variables). It has great potential

to track and forecast commodity price volatility, since commodity prices have been found to

fluctuate with demand and supply shocks, seasonality in the production cycle, weather, and

inventories (see e.g., Anderson 1985; Pindyck 1994; Black and Tonks 2000).

We estimate, using all available futures price data, a model of volatility determinants

in which commodities can be categorized by sub-groups: agricultural, live stock, energy,

precious metals, and industrial metals. Using futures instead of cash price data is motivated

by several key advantages. First, futures price settlement prices are available for every

business day and therefore provide a high frequency of sampling which is ideal to study both

high- and low-frequency components of volatility. Also, the contract is standardized, e.g., it

is defined for a specific commodity grade. Second, the literature has concluded that price

discovery generally occurs in futures markets, assuming futures trading volume is reasonably

high. Third, futures markets serve as hedging tools and as instruments for capitalizing

commodity price fluctuations.

We study the variation across commodities in the same group, e.g. storable agricultural,

as well as across commodity groups (precious metals versus industrial metals). For example,
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gold is considered by many traders to be hedges against inflation and a weak U.S. dollar, but

industrial metals are not. Moreover, inventories are essential in the case of storable commodi-

ties but do not play a role for non-storable commodities. Estimating this model will allow us

to break down volatility into high-frequency (both “noise” and “news”) and low-frequency

(macroeconomic) components and further to determine what volatility determinants are

common across commodities or commodity sub-groups as opposed to commodity-specific.

Further, we ask whether a model that captures both high- and low-frequency components

of volatility could better explain past volatility and predict future volatility than traditional

volatility models, e.g. standard GARCH(1,1). We produce one-step ahead (one month

ahead) forecasts of realized volatility and compare the results with those obtained from a

simple GARCH(1,1).

In a future version of this paper, we will estimate a single, unified model of high- and low-

frequency volatility using data for all commodities described. The main challenge involves

the large number of parameters associated with multivariate GARCH models.

In sum, our paper aims to answer the following questions:

1. How much of the high price volatility can be explained by the common economic factors

and how much by the commodity-specific factors?

2. How similar are commodities, in terms of volatility determinants, within sub-groups?

3. Does the addition of low-frequency components into the high-frequency time series

model improve forecasting accuracy?
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2. Model

Modeling and forecasting volatility has attracted a large amount of attention in the finan-

cial time series literature, particularly since the development of the GARCH framework for

modeling volatility conditional on the available information at a given time period (see e.g.,

Bollerslev 1986; Poon and Granger 2003). The GARCH model has largely replaced more

traditional volatility estimators such as a moving window of standard deviations of price

log-returns (or innovations from an ARMA filter).

Volatility models are high-frequency; they use daily or intra-day price observations to

estimate a model and produce forecasts. In this literature it is often assumed that low-

frequency variables such as macroeconomic indicators are unlikely to improve the model fit

because the information is quickly incorporated by the market.

Engle and Rangel (2008) propose instead a model where high-frequency, e.g. daily,

volatility is the product of high-frequency news or noise as well as market reactions to lower-

frequency events, such as changes in measured inflation, real GDP, etc. In their model,

low-frequency volatility, captured using low-order quadratic splines, plays an important role

in determining a smooth, nonlinear trend in the volatility of asset prices over long periods

of time. Their results suggest that there are nontrivial gains from the inclusion of such

low-frequency components into a volatility model. We present in this section a description

of the spline-GARCH model developed by them.

Consider a time series of zero-mean, white noise residuals or innovations rt from a regres-

sion of asset prices. (We describe in the following section how we obtain these residuals from

a dataset of overlapping commodity futures prices.) We would like to forecast the variance
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of these innovations to improve our price forecasts and to narrow our confidence intervals.

The innovations are found to display volatility clustering, i.e. autoregressive conditional

heteroskedasticity (ARCH).

Assume that innovations to returns depend on the state of the macroeconomy, therefore

we can write:

rt =
√

τ1(zt)ut, (1)

where it is assumed Et−1rt = 0, ut captures “news,” and τ1(zt) is a function of a vector

of macroeconomic state variables zt, affecting the impact of news on the asset price. Fur-

thermore, the news itself depends on a different function τ2 of macroeconomic variables as

follows:

ut =
√

τ2(zt)gtεt, (2)

where gt is a unit mean GARCH process capturing volatility clustering and ε is an i.i.d. (0,1)

process. Substituting equation (2) into equation (1), we obtain:

rt =
√

τ1(zt)τ2(zt)gtεt. (3)

Recall the traditional GARCH model specification. Residuals from a regression of asset

prices are fitted to a conditional mean equation, resulting in the following:

rt =
√

htεt, (4)

ht = ω + αε2
t−1 + βht−1, (5)
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where ht is the conditional variance, ω is the volatility constant, α is the ARCH term, and

β is the GARCH term. The unconditional variance is σ2 = ω
(1−α−β)

.

Engle and Rangel propose a method to estimate the low-frequency variance component,

τ = τ1τ2, using a number of macroeconomic variables as well as a quadratic spline approach

to make the component high-frequency. Therefore we rewrite the GARCH model to include

the low-frequency component:

rt =
√

τtgtεt (6)

gt = (1− α− β) + α

(
r2
t−1

τt−1

)
+ βgt−1 (7)

τt = c exp

(
w0t +

k∑
i=1

wi ((t− ti−1)+)2 + ztγ

)
(8)

where ε, conditional on the filtration Ft−1, is distributed as i.i.d. Normal (0,1), c is a

constant, w0t is a time trend in the low-frequency volatility,
∑k

i=1 wi ((t− ti−1)+)2 is a low-

order quadratic spline, (t − ti−1)+ = max{0, t − ti−1}, and ztγ represents the impact of

macroeconomic variables. The number of knots in the spline, k, is determined by comparing

the AIC of each specification. A larger k implies more cycles, while the sharpness of the

cycles is determined by the coefficients wi. As Engle and Rangel note, in this model the

low-frequency volatility equals the unconditional volatility:

E
[
r2
t

]
= τtE(gt) = τt. (9)

One of the present paper’s objectives is to compare how macroeconomic variables explain

low-frequency volatility and realized volatility. In particular, we claim that breaking down
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realized volatility into its high- and low-frequency components allows us to better understand

the relationship between macroeconomic fundamentals and high-frequency volatility.

Both low-frequency volatility (LVt) and realized volatility (RVt) must be computed using

the same sampling frequency as the macroeconomic variables, i.e. monthly. To this end,

we first define realized variance over a time period t = 1, ..., T as the sum of squared daily

returns (again, assuming a zero long-run mean return):

σ̂2
T =

T∑
t=1

r2
t .

Realized volatility, RVt, is defined as the square root of the realized variance and can

therefore be interpreted as a measure of realized standard deviation, over a given period, e.g.

one month or one year. Here for a specific month t, we use observations d = 1, ..., N , where

N is the number of daily observations in one month. Thus, realized volatility is computed

as:

RVt =

√√√√
N∑

d=1

r2
t,d.

In contrast, low-frequency volatility, LVt, is defined as the sample average over a given

period, e.g. one month or one year, of the low-frequency component τt estimated within the

spline-GARCH model. The variable τt is sampled daily because this is the frequency used

for the GARCH model. Then, low-frequency volatility is defined as:

LVt =

√√√√ 1

N

N∑

d=1

τt,d.

The new time series RVt and LVt are then used separately in regressions over a set of

macroeconomic variables, as described in section 5.
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3. Data

We analyze eleven different futures markets that can be categorized into five commodity

groups: agricultural (corn, soybeans, wheat), live stock (live cattle, lean hogs), energy (crude

oil, natural gas, heating oil), precious metals (gold, silver), and industrial metals (copper).

For each commodity, we construct time series of daily settlement prices of the first three

nearby contracts from April 1990 through December 2007 by rolling over contracts 15 days

prior to their maturity. We combine three price series and run the following regression for

each commodity separately:

Fit = ai + bit +
3∑

j=1

cijFi,t−j + eit, (10)

where Fit is the commodity i’s futures price on day t. Because first three nearby contracts’

price series are combined for each commodity, there are three price observations on day t.

To account for the contemporaneous correlation among the same-day observations we apply

the Generalized Least Squares (GLS) method of Karali and Thurman (2009). Briefly, the

steps are: (1) run the above regression via Ordinary Least Squares (OLS); (2) compute the

variance-covariance matrix of OLS residuals; (3) transform the data through the Cholesky

factor of the variance-covariance matrix; (4) run the regression again with the transformed

variables; (5) eliminate insignificant regressors and repeat the same procedure with the new

set of regressors. This way, we obtain a contemporaneously-uncorrelated GLS residuals for

each commodity to use in the spline-GARCH estimation.

To explain the economic determinants of low-frequency volatility, we regress monthly low-

9



frequency volatility obtained from the spline-GARCH estimation on both the fundamental

macroeconomic variables that are common across commodities and the commodity-specific

variables. Common macroeconomic variables include Consumer Price Index (CPI), real

GDP (RGDP), and 3-month Treasury Bill rate (T-Bill). CPI and T-Bill data are available

monthly from the Bureau of Labor Statistics and the Board of Governors of the Federal

Reserve System, respectively, while RGDP data are available only quarterly from the U.S.

Department of Commerce. To match the frequency of observations we interpolate quarterly

RGDP series with a cubic spline method and obtain monthly series.

For commodity-specific variables, we consider the level of inventories for the storable

commodities. Even though gold and silver are storable, we could not obtain inventory data

on these commodities. For corn, soybeans, and wheat we interpolated quarterly inventory

series published in Grain Stocks reports by the National Agricultural Statistics Service.

For inventories in energy markets, we use monthly series of “U.S. Crude Oil Ending Stocks

Excluding SPR,” “U.S. Natural Gas Underground Storage Volume,” and “Stocks of Distillate

and Residual Fuel in the United States” series from the Energy Information Administration.

Finally, for copper we use monthly series of “Stocks of Refined Copper in the United States”

from the American Bureau of Metal Statistics.

4. Spline-GARCH Estimation

This section presents details on the spline-GARCH approach and the results of the model

estimation. For each commodity, we use a pseudo-continuous time series of daily observa-

tions, residuals from the GLS decorrelation approach outlined in the previous section. With
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the contemporaneous correlation removed, the residuals can be assembled into a single time

series and used for estimation without concern of a “splicing” bias resulting from combining

data from different futures contracts.

The first step is to fit the GLS-detrended residuals to a conditional mean equation.

For each commodity, the residuals are fitted to a univariate ARMA filter to remove serial

correlation. The number of AR and MA terms is selected using Likelihood Ratio rests,

beginning with a (10,10) specification and removing terms until the restriction (fewer terms)

cannot be rejected by the LR test. Goodness-of-fit and autocorrelation tests (Ljung-Box)

are used to determine that the filtered residuals are close to zero-mean white noise. We then

apply Engle’s LM test to the filtered residual series separately for all commodities and we

conclude that we must reject the null hypothesis of no ARCH at the 99th percentile for all

commodities, for three or more lags, and at the 95th percentile for two lags. At one lag, the

test results are mixed with no evidence of ARCH for some series. These results are omitted

in the interest of conserving space, but are available upon request.

For each commodity, the filtered residuals denoted rt are fitted to the spline-GARCH

model. For most commodities, the optimal number of knots is between nine and twelve,

with the exception is high grade copper, for which the optimal number of knots is only

four. The interpretation is that copper is less cyclical, and that its cycles are longer. The

best specification for the error distribution is Student-t except for gold and heating oil, for

which it is Gaussian Normal (see table 1). A (1,1) specification appears to fit the data very

well. Likelihood ratio tests are used to obtain the most suitable specification. A model using

Gaussian errors is estimated as a restricted case against a model with Student-t errors, as the

Gaussian Normal distribution obtains from the Student-t as a limiting case with degrees of
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freedom ν going to infinity. In most cases, the restriction is rejected by the LR test. Likewise,

higher-order GARCH(p,q) specifications are considered but for all commodities we fail to

reject the (1,1) model as a restricted case. In many cases, the sum (α + β) is almost one,

indicating that shocks are very persistent, but not permanent. This is a frequently-observed

finding in the asset price volatility literature.

The results presented in table 1 describe the GARCH model parameter estimates, robust

standard errors and tests of significance, the preferred distribution of errors (with degrees of

freedom ν for the Student-t), as well as the optimal number of spline knots k, and the half-

life of shocks (in weeks) as predicted by the model. Standard errors are computed using the

Bollerslev-Wooldridge method to provide robustness against misspecification of the errors.

Volatility is highly persistent for many, but not all, commodities. The half-life of a shock

is greater than one year for corn, soybeans, natural gas, and copper, and almost one year for

crude oil and for gold. For these commodities, the GARCH process is nearly integrated. On

the other hand, a shock’s half-life is less than a month for wheat, lean hogs, and heating oil.

For most commodities, the unconditional variance σ2 = ω
1−α−β

is very large, as suggested by

the finding of near-integration.
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5. Macroeconomic Effects on Low-Frequency Volatility

To study the effects of common- and commodity-specific variables on low-frequency volatility,

we run the following regression in Seemingly Unrelated Regressions (SUR) framework:

LVim = ai + biCPIm + cilnRGDPm + diTBillm+siDSm + fiDFm + wiDWm + hiSim + eim,

i = 1, 2, · · · , I, m = 1, 2, · · · ,M, (11)

where LVim is the low-frequency volatility of commodity i in month m, CPIm is the consumer

price index in month m, lnRGDPm is the natural logarithm of the real GDP in month m,

TBillm is the 3-month Treasury Bill rate in month m, and Sim is the inventory level of

commodity i in month m. DSm is a dummy variable which takes the value of one if m is

in summer quarter (July, August, September), zero otherwise; DFm is a dummy variable

which takes the value of one if m is in fall quarter (October, November, December), zero

otherwise; DWm is a dummy variable which takes the value of one if m is in winter quarter

(January, February, March), zero otherwise. We use this simple specification to account

for seasonality because the commonly used alternatives, sinusoidal or polynomial functions,

require higher-frequency observations. Naturally, for nonstorables and the commodities for

which we do not have inventory data, we exclude the inventory term from the regression.

The total number of commodities I is 11, and total number of months M is 213, amounting

to a total of 2,343 observations in the SUR system.

The results from the SUR estimation are presented in table 2. Except for corn and live

cattle, CPI coefficient is statistically significant. However, its estimated sign varies across
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commodities. For soybeans, wheat, crude oil, natural gas, heating oil, and copper, inflation

rate is found to have a positive impact on low-frequency volatility. At times when inflation

rate is higher, these commodities experience an increase in their volatility. This finding is

consistent with Engle and Rangel (2008), who showed that countries experiencing higher

inflation have larger expected volatilities. On the other hand, when the U.S. experiences

higher inflation, the low-frequency volatility of lean hogs, gold, and silver are lower. Precious

metals are seen as a protection to inflation, therefore it makes sense to observe a negative

relationship between CPI and volatility in these markets.

Real GDP is negatively related to volatility of soybeans, wheat, crude oil, natural gas,

and heating oil futures. As the economy grows, the low-frequency volatility in these markets

fall. However, the volatility in lean hogs and silver futures markets increase as the real GDP

increases.

The effect of 3-month Treasury Bill rate on the low-frequency volatility is found statisti-

cally significant for all commodities except soybeans and gold. The relationship is positive

for wheat, natural gas, and copper, implying higher volatilities in high-interest-rate periods.

There is, however, a negative relationship between the risk-free interest rate and the low-

frequency volatility for corn, live cattle, lean hogs, crude oil, heating oil in the period. In

these markets, low-frequency volatility decreases as interest rates rise.

Seasonal dummy variables are found not to affect low-frequency volatilities. Only summer

and fall dummy variables have negative significant coefficient estimates for the wheat futures.

This finding is interesting because it is well established in the literature that volatility in

grain markets exhibits seasonal pattern due to seasonality in the production cycle. Our

results show that seasonality might be inducing high-frequency volatility rather than low-
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frequency volatility. Other treatments for seasonality, for instance, using periodic functions,

might help to clearly identify the low-frequency volatility component contained in seasonal

effects.

Interestingly, inventories is an important factor in explaining low-frequency volatility

only for wheat, crude oil, and copper. Further, wheat and copper have an opposite sign

what the theory of storage predicts. The reason for not finding significant inventory effect

in agricultural markets might be again because of the seasonal pattern in inventories. Crop

inventories vary much during a year due to the production cycle. However, the inter-year

change in crop inventories might not be much pronounced as the intra-year change, and

therefore inventories might not be associated with the low-frequency volatility. Inventories

might also have a larger effect on high-frequency volatility, which is modeled separately. 1

We also estimate equation (11) with the realized volatility as the dependent variable. As

seen in table 3, fewer coefficient estimates are statistically significant in this case. Decompos-

ing volatility into high- and low-frequency shows that even though the CPI does not affect

overall volatility of soybeans, lean hogs, and copper it does affect low-frequency volatility

in these markets. Similarly, while log of real GDP does not explain overall volatility in

soybeans, wheat, lean hogs, and natural gas futures, it does explain low-frequency volatility.

While 3-month Treasury Bill rate is a determinant of overall volatility in only live cattle,

crude oil, heating oil, and silver markets, it is an important factor of low-frequency volatil-

ity in all but soybeans and gold markets. Inventories inversely affect the realized volatility

in natural gas market, confirming the theory of storage. However, they do not affect the

1Note that we have considered alternate specifications such as using inverse of inventories, to represent
“scarcity”, and also log-inventories, to have a more symmetrical distribution in the inventory variable.
However, the results do not improve.
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low-frequency volatility of natural gas futures. Thus, changes in the natural gas invento-

ries cause changes in the volatility but they are not associated not with the changes in the

low-frequency volatility.

In order to determine whether the effects of macroeconomic variables vary within and

across commodity groups we perform hypothesis tests. First, we restrict the coefficient esti-

mate of a macroeconomic variable within a commodity group to be the same. For example,

we restrict the CPI coefficient to be the same for corn, soybeans, and wheat to represent agri-

cultural commodities group. All within-group restrictions hold for all but seasonal dummy

variables. Then, imposing within-group restrictions for all commodity groups at the same

time, we test if the parameter estimates across commodity groups are the same. The results

from the low-frequency volatility estimation are presented in table 4. The hypothesis that

the macroeconomic variables have the same effect on the volatilities of different commodity

groups is strongly rejected. The evidence for inventories is a little weaker but still it has a

p-value of 0.03.

6. Comparison of Out-of-Sample Forecasting Ability

In the present analysis, observations for 2008 were omitted because it was expected that

the commodity bull cycle would bias the underlying fundamental economic relationships,

and also because we wanted to reserve some observations for an out-of-sample forecasting

comparison between a typical GARCH volatility model and the spline-GARCH model used

in the paper. For both models, the objective is to minimize a loss function associated with

a k-step ahead out-of-sample forecast of realized volatility.
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At the present time, the results are inconclusive. A thorough discussion of out-of-sample

forecasting performance will be provided in a future version of this paper.

7. Conclusions

Models of price volatility, being high-frequency, traditionally neglect the impact of lower-

frequency influences such as macroeconomic indicators. In this paper, we build on the spline-

GARCH model of Engle and Rangel (2008) to obtain a model of high- and low-frequency

volatility that includes both common and commodity-specific determinants. We find that

using low-frequency volatility is useful firstly because several macroeconomic state variables

are found to have a significant effect, which is not the case if one uses a measure of realized

volatility. This suggests realized volatility, being a combination of high- and low-frequency

components, obscures some important relationships that would otherwise not be detected.

Therefore, as found in the case of equities by Engle and Rangel (2008), the spline-GARCH

framework appears promising to better understand commodity price volatility.

The tentative answers to the questions we asked in the paper are as follows:

1. How much of the high price volatility can be explained by the common economic factors

and how much by the commodity-specific factors? For most commodities, volatility

is significantly affected by inflation, economic growth (log real GDP), and the risk-

free interest rate (Treasury Bill rate). Volatility for most, but not all, commodities

increases with inflation, decreases with economic growth, and decreases with the risk-

free rate. Surprisingly, volatility is affected by inventories only in the case of wheat

(increasing) and crude oil (decreasing), which suggests that a different specification

might be considered.
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2. How similar are commodities, in terms of volatility determinants, within sub-groups?

To answer this question, we first consider F-tests of the null hypothesis that the effect

of a macroeconomic state variable, e.g. inflation, is the same for all commodities in

the same commodity subgroup. If we find that we cannot reject the hypothesis, then

we consider the hypothesis that the effect is the same across different subgroups. We

find that for all commodity subgroups and for all macro variables except for season-

ality dummies, we cannot reject the restriction within each subgroup. This implies

commodities within the same category, e.g. storable agricultural, are largely affected

similarly by macroeconomic influences. Next, we find that we cannot reject the null (at

the 95% percentile) that the effect of inventories is the same across commodity groups,

but we must reject (p < 0.0001) the null of a common effect across commodity groups

in the case of inflation (CPI), economic growth (log real GDP), and the risk-free rate

(3-month Treasury Bill rate) have different effects across commodity groups.

3. Does the addition of low-frequency components into the high-frequency time series

model improve forecasting accuracy? Our preliminary results are inconclusive, but

future work will address this question to determine whether macroeconomic variables

can be used to improve high-frequency volatility forecasts.
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Table 1: Results of the Spline-GARCH Model Estimation

Corn Soybeans Wheat Live
Cattle

Lean
Hogs

Crude
Oil

Natural
Gas

Heating
Oil

Gold Silver Copper

ω 8.799 2.0123 30.573 66.550 41.017 2.4590 32.774 1.8921 0.0001 1.9139 16.445
[8.069] [7.716] [2.304] [1004.85] [20.833] [1.535] [21.863] [.1798] [.0001] [0.2651] [57.842]

α .1805 .0458 .0027 .4187 .0527 .0382 .4018 .0344 .0570 .0325 .1468
[.00020] [.00708] [.00270] [.08543] [.00943] [.00043] [.00083] [.00180] [.00027] [.00015] [.00073]

β .8193 .9532 .8588 .5564 .7124 .9585 .5962 .9321 .9396 .9572 .8507
[.00130] [.00160] [.00001] [.00194] [.00120] [.00017] [.00113] [.00219] [.00028] [.00013] [.00283]

k 12 13 9 12 12 10 11 10 9 13 4

ν 2.249 2.110 6.460 2.225 2.834 2.100 2.210 ∞ ∞ 2.112 2.100
[.0005] [.0844] [.2487] [.0172] [.0187] [.0045] [.0003] N/A N/A [.0006] [.0004]

F t t t t t t t N N t t

(α + β) .999 .999 .861 .975 .765 .996 .998 .966 .997 .990 .998

λ >1 year >1 year 1 5.5 0.5 42 > 1 year 4 41 13.4 > 1 year

Notes: The model is rt =
√

τtgtεt, gt = (1− α− β)+α

(
r2

t−1
τt−1

)
+βgt−1, and τt = c exp

(
w0t +

∑k
i=1 wi ((t− ti−1)+)2 + ztγ

)
,

estimated individually for all commodity series. Note that gt is the conditional variance of the innovations given a filtration

Ft−1, ω is a constant term, β is the GARCH term, α is the ARCH term, F is the distribution of errors, t stands for Student-t,

N stands for Gaussian Normal, λ is the half-life of shocks, in weeks. Standard errors are given in the brackets and are computed

using Bollerslev and Wooldridge’s approach for robustness. All estimates of α, β and ν are significant at the 99th percentile.

Estimates of ω are significant at the 99th percentile for wheat, lean hogs, heating oil, copper and silver, but are not significant

(p < 0.10) for all other commodities.
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Table 2: Macro Determinants of Low-Frequency Volatility

Corn Soybeans Wheat Live
Cattle

Lean
Hogs

Crude
Oil

Natural
Gas

Heating
Oil

Gold Silver Copper

Constant 1.130 2.078 1.935 0.405 -0.475 9.572 5.179 9.882 -0.572 -3.081 0.916
[0.61] [0.84] [0.29] [0.30] [0.27] [1.51] [0.96] [1.19] [0.56] [0.87] [0.55]
(1.84) (2.47) (6.55) (1.34) (-1.74) (6.34) (5.38) (8.30) (-1.03) (-3.52) (1.66)

CPI 0.060 0.144 0.185 0.040 -0.053 0.595 0.538 0.676 -0.131 -0.264 0.082
[0.06] [0.00] [0.03] [0.03] [0.02] [0.134] [0.09] [0.11] [0.05] [0.08] [0.05]
(1.07) (1.88) (6.87) (1.48) (-2.15) (4.34) (6.15) (6.25) (-2.58) (-3.33) (1.65)

lnRGDP -0.122 -0.244 -0.233 -0.041 0.078 -1.129 -0.647 -1.188 0.094 0.404 -0.105
[0.08] [0.11] [0.04] [0.04] [0.03] [0.19] [0.12] [0.15] [0.07] [0.11] [0.07]
(-1.58) (-2.29) (-6.26) (-1.09) (2.28) (-5.94) (-5.34) (-7.92) (1.33) (3.67) (-1.51)

T-Bill -0.310 0.148 0.164 -0.481 -0.161 -0.863 0.507 -0.687 0.085 -0.458 0.446
[0.13] [0.00] [0.06] [0.06] [0.06] [0.33] [0.21] [0.259] [0.12] [0.19] [0.12]
(-2.32) (0.80) (2.62) (-7.35) (-2.71) (-2.63) (2.42) (-2.65) (0.71) (-2.41) (3.79)

Summer 0.002 0.002 -0.006 0.000 0.000 0.007 0.007 0.009 0.002 0.001 -0.000
[0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.00] [0.01] [0.00]
(0.26) (0.23) (-1.98) (0.11) (0.05) (0.54) (0.77) (0.80) (0.46) (0.14) (-0.09)

Fall 0.000 -0.001 -0.008 0.000 0.000 0.008 0.010 0.010 0.004 0.000 -0.002
[0.06] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.00] [0.01] [0.00]
(0.04) (-0.18) (-2.35) (0.19) (0.07) (0.59) (0.97) (0.97) (0.73) (0.06) (-0.35)

Winter 0.000 -0.002 -0.003 0.000 -0.001 0.005 0.010 0.009 0.002 -0.003
[0.01] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.01] [0.00] [0.00]
(0.08) (-0.20) (-0.95) (0.07) (-0.25) (0.38) (1.11) (0.85) (0.43) (-0.58)

Inventories 0.000 0.000 0.006 -0.028 0.000 0.001 0.003
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
(0.39) (0.87) (3.17) (-5.71) (0.17) (0.13) (9.12)

Notes: The model is LVim = ai + biCPIm + cilnRGDPm + diTBillm + siDSm + fiDFm + wiDWm + hiSim + eim, for

i = 1, 2, · · · , I, m = 1, 2, · · · , M . LVim is the low-frequency volatility of commodity i in month m, CPIm is the consumer price

index in month m, lnRGDPm is the natural logarithm of the real GDP in month m, TBillm is the 3-month Treasury Bill rate

in month m, and Sim is the inventory level of commodity i in month m. DSm is a dummy variable which takes the value of

one if m is July, August, or September, and zero otherwise; DFm is a dummy variable which takes the value of one if m is

October, November, or December, and zero otherwise; DWm is a dummy variable which takes the value of one if m is January,

February, or March, and zero otherwise. The model is estimated via Seemingly Unrelated Regressions method. Standard errors

and t-values of estimates are given in the brackets and parentheses, respectively.
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Table 3: Macro Determinants of Realized Volatility

Corn Soybeans Wheat Live
Cattle

Lean
Hogs

Crude
Oil

Natural
Gas

Heating
Oil

Gold Silver Copper

Constant 1.086 1.676 1.632 0.820 -0.052 7.604 3.593 8.247 -0.607 -3.279 0.280
[1.04] [1.11] [1.03] [0.76] [1.40] [1.86] [2.07] [1.69] [0.79] [1.45] [1.41]
(1.04) (1.51) (1.58) (1.08) (-0.04) (4.10) (1.74) (4.89) (-0.76) (-2.27) (0.20)

CPI 0.065 0.112 0.162 0.086 -0.014 0.440 0.397 0.543 -0.130 -0.282 0.013
[0.09] [0.10] [0.09] [0.07] [0.13] [0.16] [0.19] [0.15] [0.07] [0.13] [0.13]
(0.69) (1.11) (1.71) (1.24) (-0.11) (2.68) (2.12) (3.54) (-1.80) (-2.14) (0.10)

lnRGDP -0.121 -0.194 -0.196 -0.096 0.023 -0.898 -0.423 -0.981 0.097 0.429 -0.021
[0.13] [0.14] [0.13] [0.10] [0.18] [0.23] [0.26] [0.213] [0.10] [0.18] [0.18]
(-0.92) (-1.38) (-1.50) (-1.00) (0.13) (-3.89) (-1.63) (-4.60) (0.97) (2.35) (-0.12)

T-Bill -0.023 0.124 0.161 -0.285 -0.219 -1.072 0.466 -0.671 0.049 -0.572 0.067
[0.23] [0.25] [0.22] [0.166] [0.30] [0.39] [0.45] [0.37] [0.17] [0.31] [0.29]
(-0.10) (0.50) (0.74) (-1.72) (-0.72) (-2.71) (1.04) (-1.83) (0.28) (-1.82) (0.23)

Summer -0.001 0.006 -0.011 -0.009 -0.009 -0.009 0.026 -0.016 0.004 -0.004 0.010
[0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.02] [0.01] [0.01] [0.01]
(-0.13) (0.51) (-0.93) (-1.35) (-0.71) (-0.58) (1.05) (-0.96) (0.52) (-0.33) (1.05)

Fall 0.016 0.007 0.005 -0.002 0.000 -0.005 0.038 -0.016 -0.005 -0.014 -0.010
[0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.03] [0.02] [0.01] [0.01] [0.01]
(1.60) (0.60) (0.35) (-0.27) (0.03) (-0.34) (1.13) (-0.92) (-0.74) (-1.08) (-1.01)

Winter 0.005 0.016 0.010 -0.010 0.015 -0.001 0.020 -0.001 -0.008 -0.013 -0.013
[0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.02] [0.01] [0.01] [0.01]
(0.50) (1.28) (0.99) (-1.39) (1.14) (-0.04) (0.96) (-0.07) (-1.14) (-0.98) (-1.31)

Inventories -0.000 -0.000 -0.005 0.011 -0.038 -0.023 0.002
[0.00] [0.00] [0.01] [0.02] [0.02] [0.03] [0.00]
(-0.07) (-0.23) (-0.55) (0.51) (-2.15) (-0.67) (1.15)

Notes: The model is RVim = ai + biCPIm + cilnRGDPm + diTBillm + siDSm + fiDFm + wiDWm + hiSim + eim, for

i = 1, 2, · · · , I, m = 1, 2, · · · , M . RVim is the realized volatility of commodity i in month m, CPIm is the consumer price

index in month m, lnRGDPm is the natural logarithm of the real GDP in month m, TBillm is the 3-month Treasury Bill rate

in month m, and Sim is the inventory level of commodity i in month m. DSm is a dummy variable which takes the value of

one if m is July, August, or September, and zero otherwise; DFm is a dummy variable which takes the value of one if m is

October, November, or December, and zero otherwise; DWm is a dummy variable which takes the value of one if m is January,

February, or March, and zero otherwise. The model is estimated via Seemingly Unrelated Regressions method. Standard errors

and t-values of estimates are given in the brackets and parentheses, respectively.
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Table 4: F-tests on Restrictions Across Commodity Groups

F-statistic p-value

CPI 93.00 0.0001
lnRGDP 100.49 0.0001
T-Bill 66.23 0.0001
Inventories 3.52 0.0297

Notes: The F-tests are performed on the parameter estimates from the low-frequency volatility estimation.
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