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Ethanol Plant Investment using Net Present Value and Real Options Analyses 

 

Abstract 

A real option analysis of dry-grind corn ethanol plants compared to a standard net present 

value analysis (NPV) shows that the option values increase entry prices and lower exit 

prices of investment and disinvestment considerably. For a large plant, the gross margin of 

ethanol price over the corn price for a gallon of ethanol using NPV shows that entry will 

occur with a $0.45 margin and shutdown will occur at a $0.38. Under a real options 

framework, the margins for entry and exit become $1.33 and $0.13, respectively. Under 

baseline conditions, a large operating plant would become mothballed at $0.18 and 

reactivate if margins rebounded to $0.66.  Growth in the variability of ethanol margins will 

delay new plant investments, as well as exits of currently operating facilities. 
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Production and demand for renewable sources of energy are dramatically impacting U.S. 

commodity markets. Ethanol production (primarily from corn) in the U.S. reached nearly 

6.5 billion gallons in 2007, an increase of over 3 billion gallons since 2004 (RFA 2008). 

Despite this rapid increase, there is evidence that the industry was stepping up the pace of 

expansion, with production expected to top 10 billion gallons by 2009 (Wescott 2007). 

Fueled by increased demands for ethanol, due largely to the establishment of the Federal 

Renewable Fuels Standard (RFS) in 2005 and state bans on the use of methyl tert-butyl 

ether (MTBE) as an oxygenate additive in gasoline, ethanol gross margins (i.e., the price of 

ethanol less the price of corn) that were historically in the range of $1 per gallon or less 

reached record highs in 2006 at nearly $3 (figure 1).   

More recent expansion has been tempered by changing market conditions. Strong 

increases in corn prices relative to the price of ethanol imply tighter operating margins and 

are contributing to the delayed development of some planned corn ethanol facilities 

(Feinman 2007). The 2007 Energy Independence and Security Act increased the RFS to 36 

billion gallons by 2022, but limited the amount that can come from corn-based ethanol. 

Similar incentives were adjusted in the 2008 Farm Bill, including reducing the volumetric 

ethanol excise tax credit (VEETC or blender’s credit) $0.05 to $0.46. Since this credit 

provides the incentive for gasoline blenders to bid up the price of ethanol, the credit 

reduction has implications for firm margins. Gross margins retreated to around $1 in 2007, 

and in the first part of 2008 were around $0.50 or less. 

In addition, commodity and energy prices are exhibiting increased variability. 

Commodity prices are forecasted to have high upswing potential with increased volatility 
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(Schmit, Verteramo, and Tomek 2008). Investors in ethanol processing need to consider 

both the levels of costs and prices as well as price volatility when making investment or 

disinvestment decisions. Whether or not corn-based ethanol will be the preferred renewable 

energy technology in the future, the development and reformation of this sizable industry 

remains important across the U.S. agricultural and energy sectors. 

We analyze investment and operating decisions of corn-based dry-grind ethanol 

facilities using net present value (NPV) and real options approaches. NPV analysis is a 

well established method to investigate investment alternatives. More recently, real option 

analysis has been used to evaluate agricultural investments (Purvis et al. 1995; Cary and 

Zilberman 2002; Engel and Hyde 2003; Isik et al. 2003; Luong and Tauer 2006; Tauer 

2006).  In essence, the approach of real option analysis applies financial option theory to 

physical assets, whereby entry and exits by firms are modeled as call and put options. 

When considering uncertainty, a firm may be reluctant to make an investment because not 

making that investment preserves the opportunity of making a better investment later. Once 

the investment is made, however, a firm may be reluctant to exit the industry because it 

holds the option of keeping the operation going until market conditions improve.  

Standard economic theory tells us that firms will not enter an industry unless 

expected returns will cover both fixed and variable costs, but those already in will not exit 

until expected returns no longer cover variable costs. The introduction of price variation 

(and real options) causes this zone of inactivity to widen. The options to exit or enter have 

value and will not be exercised until the discounted losses or discounted profits exceed the 

respective value, and therefore altering the price spread without risk considerations. 
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In addition, firms have operational decisions beyond just getting in or getting out. 

As prices decrease and the plant begins to incur losses, managers can elect to suspend 

operations and mothball the plant under reduced maintenance costs. The plant could then 

be reactivated in the future when prices improve and at a sunk cost less than the original 

cost of investment. This option may be particularly valid in an immature industry subject to 

abrupt price fluctuations or, in the case of corn ethanol, in an industry for which the 

underlying market conditions have shifted dramatically due to market structural changes.   

We contribute to and extend the literature on ethanol plant investments and 

profitability by directly considering the economic values of entering, suspending, 

reactivating, and exiting the corn-based ethanol industry. Studies of firm investment and 

operation of ethanol plants have focused largely on break-even analysis, NPV, return on 

investment, or similar assessments in a deterministic framework, with sensitivity analyses 

conducted on important costs, technologies, or prices (Eidman 2007; Ellinger 2007; Whims 

2002; Gallagher et. al. 2006).  

Additional studies of plant investment have incorporated risk and uncertainty via 

stochastic simulations in the evaluation of firm profitability and returns given various 

pricing scenarios (Richardson et. al. 2007; Richardson, Lemmer, and Outlaw 2007, 

Gallagher, Shapouri, and Brubaker 2007), while others have focused on economies of size 

in production and profitability or costs by firm size (Gallagher, Brubaker, and Shapouri 

2005; Gallagher, Shapouri, and Brubaker 2007). In general, however, these approaches 

take the plant investment as given and evaluate profitability over time given prices and/or 
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price uncertainty. However, none have considered intermediary firm decisions such as 

temporary suspension of operations. 

The application of plant investment decisions considering option values in the 

ethanol industry has received scant attention. From a similar perspective, Paulson et al. 

(2008) consider the development of an insurance approach to risk management in the 

ethanol industry. While the availability of margin insurance would affect returns and 

investment decisions, the connection to its impact on entry decisions and industry 

development was not made. Gallagher, Shapouri, and Brubaker (2007) considered option 

values in their preliminary analyses of the appropriate size of ethanol firms, but argue that 

plant closure analysis is less important than in the past (prior to 1985) due to the 

infrequency in which margins dropped below operating costs. While until recently this 

argument carried merit, large reductions in margins and substantial increases in margin 

volatility bring the likelihood of firm exits or operational suspensions a current reality.  

From this more thorough analysis, and with firm-specific data, it is possible to 

identify firm trigger prices that signal the optimal times in which to change the status of 

plant operations. From an industry perspective, more effectively capturing these decisions 

will promote a better understanding and evaluation of optimal industry developments and 

adjustments. We continue now with a description of the conceptual model and data 

collected. Next, the empirical results and implications of the research are discussed. We 

conclude with some summary conclusions and directions for future research  
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Entry and Exit Decisions under Uncertainty 

In considering price risk, we adapt the approach developed by Dixit and Pindyck (1994) to 

identify ethanol gross margin levels that would encourage entry into or exit from the 

industry, as well as margin triggers that would induce currently operating firms to suspend 

operations, and those so suspended to reactivate. To begin, the Dixit and Pindyck (1994) 

model requires assumptions concerning the characteristics of the investment. First is that 

the investment has an infinite life and is nondepreciating. Presuming that most firms will 

replace equipment as it becomes depreciated to maintain the capital value, we include these 

costs in the firm’s operating costs.  

Now, suppose you can invest in and operate an ethanol plant that will produce a 

given level of output and incur constant operating costs, w, for each unit of output. To enter 

the industry, there is a fixed cost k of investment per unit of output; and for operating 

plants, there is an exit (or shut-down) cost per unit of output, l, to close it. If some of the 

original investment can be recovered on exit (i.e., positive liquidation value) those 

proceeds would reduce other exit costs and can result in an overall negative cost to exit. 

Firms also have the options to suspend operations and mothball an active plant, and 

to reactivate a mothballed plant back to active production. Mothballing requires a sunk cost 

of Em > 0 per unit of expected output. Assets here remain with the firm and positive costs, 

such as compensatory costs to displaced laborers, would be incurred. Once a plant is 

mothballed, a unit maintenance cost of m > 0 is required to maintain the existing capital. 

The plant can be reactivated in the future at an additional sunk cost of r. For the 

mothballing option to be feasible, we assume m < w and r < k. 
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Denote the threshold price that triggers investment and a new firm to enter as Ph, 

and the threshold price that triggers an existing plant to exit as Pl. Further, denote the 

threshold price that triggers an active firm to mothball as Pm, and the threshold price for a 

mothballed plant to reactivate as Pr. Since the cost of reactivation is less than that of the 

original investment, we expect that Pr < Ph. If we define the Marshallian or NPV trigger 

prices for entry and exit as Wh = w + δk and Wl = w – δl, respectively (where δ is the 

discount rate) we can express the relative price relations as: Ph > Pr > Wh > Wl > Pm > Pl. 

The ethanol gross margin per unit of output (P) is assumed to evolve according to 

Geometric Brownian motion (GBM) and can be specified as dP = μPdt + σPdz , where μP 

is the expected drift rate of P, σ2P2 is the variance rate of P, and dz follows a Wiener 

process (dz = ε dt ), with ε being a random draw from a standardized normal distribution. 

To make the model operational, we require δ > μ. Normalizing output to unity implies the 

revenue from the plant is simply P.  

 Under general conditions, an active firm will choose to mothball before it exits. 

However, in some cases it may not be optimal to consider mothballing at all. For example, 

if mothballing costs are sufficiently high or if the liquidation of assets returns sufficiently 

negative exit costs (l) it may be optimal to exit the industry directly (Dixit and Pindyck 

1994). We assume that the expected exit costs (l) are unchanged with the addition of the 

mothballing option; i.e., the remaining liquidation value of plant assets is the same whether 

coming from active or mothballed state. In reality, going from an active project to an exit 

may be more or less costly than when exiting from a mothballed state depending on the 

particular investment project (Dixit and Pindyck 1994). For ease of exposition, we proceed 
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on the assumption that when price falls to a certain point, mothballing is used. 

Accordingly, there are four switching scenarios: idle to active, active to mothballed, 

mothballed to active, and mothballed to idle.1  

The Decision to Enter 

Let V0(P) equal the discounted expected value of an idle project with the option of 

operating. The idle project is receiving no income but has the prospect of capital gains in 

the future if activated. If current investors ‘sold’ the project and instead invested the 

proceeds, they would earn δV0(P). Equilibrium in the asset market requires: 

(1)  δV0(P) = (1/dt)Et[dV0(P)],  

where Et[ ] is the expectation operator at time t. The left hand side represents the normal 

return from the value of the investment and the right hand side is the expected capital gain 

of the idle project. This is a differential equation with stochastic variable P. From Ito’s 

Lemma, we know for a function V = V(P), 

(2)  dV = [Vt  + μP  + (σ2/2)P2
0V ′ 0V ′′ ]dt + σP 0V ′ dz,  

where Vt = ∂V/∂t = 0 given the infinite time horizon, 0V ′  = ∂V/∂P, 0V ′′  = ∂2V/∂P2, and E[dz] 

= 0. Simplifying (2) and substituting into (1) results in the equilibrium condition: 

(3)  δV0 = μP  + (σ2/2)P2    or   (σ2/2)P2
0V ′ 0V ′′ 0V ′′  + μP 0V ′  - δV0 = 0  

As shown by Dixit and Pindyck (1994), this homogenous, second-order, ordinary 

differential equation has the solution: 

(4)  V0 = A0P -α + B0Pβ  

where A0 and B0 are constants to be determined and -α = [(1-2μ/σ2)-((1-2μ/σ2)2+8δ/σ2)½]/2 

< 0 and β = [(1-2μ/σ2)+((1-2μ/σ2)2+8δ/σ2)½]/2 > 1. Since the project is idle, V0(P) can be 
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interpreted as the value of the option to enter. As such, V0(P) should go to zero as P goes to 

zero. Since -α < 0 and β > 1, this requires A0 = 0, and simplifies (4) to: 

(5)  V0(P) = B0Pβ . 

The Decision to Mothball 

Now consider a plant that is operating and earning instantaneous net revenue P – w. Let 

V1(P) denote the value function of the active plant. Equilibrium conditions require: 

(6)  δV1 = (P – w) + (1/dt)Et[dV1] 

where the left-hand-side is the normal return if the plant was sold and proceeds invested at 

δ, and the right-hand-side is the net revenue flow plus the expected capital gain. Analogous 

to above, the value function for the active plant can be expressed as:  

(7)  V1(P) = P/(δ - μ) – w/δ + A1P-α + B1Pβ 

where A1 and B1 are constants to be determined, P/(δ - μ) – w/δ is the present value of the 

net revenue, and A1P-α + B1Pβ is the value of the option to mothball the plant (Dixit and 

Pindyck 1994). As the price P goes to infinity, the value of the mothballing option goes to 

zero implying that B1 = 0. 2 Thus, (7) simplifies to: 

(8)  V1(P) = P/(δ - μ) – w/δ + A1P-α. 

The Decision to Reactivate or Exit 

Now consider a plant that is mothballed and incurring unit maintenance costs of m. Let 

Vm(P) denote the value function of the mothballed plant with the option of reactivating or 

exiting. Equilibrium in the asset market requires: 

(9)  δVm = (1/dt)Et[dVm] – m, 
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where the left-hand-side is the normal return if the firm sold the mothballed plant and 

invested it at δ, and the right-hand-side is the expected capital gain of the mothballed plant 

less ongoing maintenance costs. The resulting value function can be expressed as:  

(10)  Vm(P) =AmP-α + BmPβ – m/δ  

where Am and Bm are constants to be determined, the first term on the right-hand-side is the 

value of the option to exit, the second term is the value of the option to reactivate the 

mothballed plant, and the last term is the capitalized maintenance cost assuming the plant 

remains mothballed forever (Dixit and Pindyck 1994). 

Deriving the Trigger Prices 

Following Dixit and Pindyck (1994), at each of the four defined switching points, we have 

smooth-pasting and value-matching conditions. Smooth-pasting conditions require 

tangency of the value functions at the respective trigger prices. At the investment trigger 

price, Ph, the value of the option to enter must equal the value of the active project minus 

the sunk cost of investment. This implies (with the smooth pasting condition): 

(11)  V0(Ph) = V1(Ph) − k  and  (Ph) = 0V ′ 1V ′ (Ph). 

At the mothball trigger price, PM, the value of the option to mothball must equal the 

value of the mothballed plant minus the sunk cost of mothballing, or: 

(12)  V1(Pm) = Vm(Pm) − Em  and  1V ′ (Pm) = mV ′ (Pm). 

At the reactivate trigger price, Pr, the value of the option to reactivate must equal 

the value of the active project minus the sunk cost of reactivation, or: 

(13)  Vm(Pr) = V1(Pr) − r and (Pr) = mV ′ 1V ′ (Pr). 

Finally, at the exit trigger price, Pl, the value of the option to exit must equal the 
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value of exiting less any sunk costs of exit, or:  

(14)  Vm(Pl) = V0(Pl) − l and (Pl) = mV ′ 0V ′ (Pl). 

This simultaneous set of equations results in eight equations with eight unknowns (A1, B0, 

Am, Bm, Ph, Pr, Pm, Pl) and can be solved for using a numerical analytic approach. 

Cost Data and Parameter Estimation 

Application of the empirical model requires estimates of μ and σ from corn and ethanol 

prices, and estimates of firm operational and investments costs; i.e., m, Em, r, k, l, and w. 

Ethanol and Corn Prices 

Daily corn prices were collected from the Datastream (2008) representing settlement prices 

for nearby corn futures contracts on the Chicago Board of Trade. Daily ethanol prices were 

retrieved from the Bloomberg (2008) representing national average rack (wholesale) prices. 

To compute the gross margin, we convert the corn price into a dollar per gallon of ethanol 

equivalent using a conversion rate of 2.8 gallons per bushel of corn.3  The data collected 

encompassed prices from 1 January 1998 through 18 June 2008 (figure 1). 

From 1998 through 2004, ethanol prices were in the range of $1 to $2 per gallon.  

Rapid growth in demand pushed daily ethanol prices to a peak in July 2006 at nearly $3.98. 

Since then prices have retreated precipitously and are currently in the range of $2 to $2.50 

(figure 1). Relative to ethanol prices, corn prices were relatively less variable early in the 

sample period but have demonstrated strong price growth since October 2006. With corn 

and ethanol prices moving in opposite directions, ethanol gross margins dropped sharply 

from its high in July 2006 to a low of less than $0.50 in June 2008 (figure 1). 
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Given that investors and plant managers do not likely respond to daily price 

movements, the original data were converted to monthly levels by averaging the daily price 

quotes within each month. While it is clear from figure 1 that the variation in corn and 

ethanol prices are quite different, it is the gross margin, or the combined effect of both 

price series, that is of ultimate importance to firm investor/managers.   

The premise underlying real option pricing is that the stochastic price variable, here 

the gross margin, follows a random walk. In addition, the option model assumes that gross 

margins are log-normally distributed. Accordingly, we use the statistic dt = ln(Pt/Pt-1) to 

compute the monthly mean and variance parameters. Given that other cost data is on an 

annual basis, we annualize the monthly statistics resulting in an annually adjusted mean of 

0.07 and variance of 0.64.4 The positive mean rate of drift implies gross margins have 

trended upward over the sample period, a result clearly affected by the abrupt rise in 

margins in 2006. Given this recent ‘bias’ to the trend estimate, we initially assume μ = 0. 

While price theory suggests commodity prices should be stationary, the literature 

have frequently implied the opposite (Wang and Tomek 2007). In fact, Wang and Tomek 

(2007) conclude that one should have a “healthy skepticism about the existence of unit 

roots in time series of nominal, spot prices for agricultural commodities.” Alternatively, 

Postali and Picchetti (2006) conclude that GBM is a good approximation for crude oil 

prices. Historically, ethanol and crude oil prices have been highly positively correlated 

giving some support to the GBM assumption towards, at least, ethanol prices. In addition, 

recent market adjustments have led to increased correlation between corn and oil prices.  
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While not shown, Augmented Dickey-Fuller (ADF) tests were conducted to test for 

a random walk in the ethanol gross margin. Regressions were estimated to test for a 

random walk with drift and trend, with drift and no trend, and with only a random walk.5 

Lagged dependent variable terms were included to ensure white noise residuals. 

Surprisingly, in all cases for corn prices, we cannot reject the null hypothesis of a unit root, 

supporting the argument that corn prices are becoming more and more priced in relation to 

oil price movements. These results differ from Wang and Tomek (2007) who find that 

under most specifications, but not all, a unit root was rejected for monthly corn prices from 

1960 to 2005, notably ending prior to the strong price increases.  

Ethanol prices also show evidence of a unit root in both the random walk and 

random walk with drift specifications. Finally, in only the random walk equation did the 

gross margin series exhibit a unit root. Given the empirical results that indicate at least one 

specification for each variable returns a unit root, we argue that it is reasonable to assume 

that ethanol firms would act as if prices follow a random walk. 

Investment and Operating Costs 

Investment and operating cost data for corn ethanol plants were taken from the existing 

literature and represent actual plant data, enterprise budgets, or engineering estimates. Plant 

costs were grouped by plant size to ascertain any differences in investment and operational 

decisions when accounting for changes in relative costs. Size classes were broadly defined 

as less than or equal to 25 million gallons (mgal) per year, 26 - 60 mgal, and more than 60 

mgal for the small, medium and large classes, respectively. Table 1 shows the investment 
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and operational cost data collected, along with the value of by-product sales, namely 

distillers dried grains with solubles (DDGS). 

 All costs are expressed in dollars per gallon of ethanol and converted to constant 

2006 dollars for proper comparison. Capital and depreciation costs were deflated by the 

Chemical Engineering Plant Cost Index (CECPI 2008), raw material and chemical costs by 

the Producer Price Index for Chemicals and Allied Products (BLS 2008), utilities and 

energy costs by Department of Energy prices (DOE 2008), labor and other costs by the 

Current Employment Statistics survey of average hourly earnings of production workers 

(BLS 2008), and by-product sales by average wholesale DDGS prices (Feedstuffs 2008). 

 As expected, capital investment costs decline with increases in plant size (table 1). 

Capital costs include construction costs (e.g., equipment, engineering, installation) and 

non-construction costs (e.g., land, start up inventories, working capital). On average, 

capital costs decrease from $1.95 per gallon for small plants to $1.22 for the large plants. 

Operating costs were aggregated into four general categories. Chemical inputs 

include other raw materials and non-corn feedstocks (e.g., denaturants, enzymes, and 

yeast). Utilities and energy costs include costs for electricity, steam, water, water treatment, 

and fuel. Capital investments were generally amortized (depreciated) over a 10 to 15 year 

time horizon. Labor and other costs include labor, supplies, administration, overhead, 

maintenance, and waste management. Average operating costs (w) were $0.74, $0.69, and 

$0.70 per gallon for the small, medium, and large plant classes, respectively (table 2). With 

economies of size in production expected, we would expect to see a monotone reduction in 

costs as size increases. The fact that average operating costs for the large plant increase 
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modestly from that of the medium plant is likely an artifact of the unequal and limited 

number of observations in each size category. 

By-product contributions were similar across plant sizes and predominantly reflect 

the sales of DDGS. Some studies discuss the value of other by-products (e.g., CO2), but 

were generally not reported. Rajagopalan et al. (2005) present alternative dry-grind 

technologies with germ and fiber separation equipment that produce alternative by-

products and alter ethanol yields. The values of by-products are non-trivial and represent 

roughly 50% of the non-corn operating costs (table 2).6 The resulting net operating costs 

after subtracting out the value of by-product sales (w′) are $0.40, $0.35, and $0.36 per 

gallon for the small, medium, and large plants, respectively.  

Given the specialized nature of the ethanol processing technology and equipment, 

the overall liquidation value of assets upon exit is unknown. Given that land holds it value 

and production facilities could be retrofitted for alternative uses, we initially assume a 25% 

liquidation value upon exit (i.e., exit costs = -0.25k). 

 Little information is available on mothballing costs for ethanol facilities. 

Soontornrangson et al. (2003) cite mothball maintenance costs (m) for an electrical power 

plant at 1% of capital costs, or around 20% of operating costs. Applying the 20% 

relationship to our estimates in table 2 results in maintenance costs of around 5%. 

Conservatively, we select a mid-range estimate of 2.5%. In a 2005 press release, Terra 

Industries, Inc. announced that it would cost $5 million to mothball a 225 mgal/year 

methanol facility (Chemical Engineering Press 2005). Linearly extrapolating our 

investment costs (table 2) out to this size would imply a sunk cost (Em) of around 3%. 
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Given the optimistic nature of most press releases, we assume a more conservative estimate 

of 5%. Reactivation costs (r) were assumed double that of the initial cost to mothball, or 

10%. All baseline parameters are displayed in table 2. Finally, we assume a discount rate 

(δ) of 8% to reflect a relatively higher credit risk of ethanol plant investment. 

Empirical Results 

The estimated cost and margin parameters were substituted into the 8-equation system and 

solved for using Matlab software (version 7.5). We begin by discussing the results of the 

baseline solution using input parameters from table 2. This is followed by sensitivity 

analysis of the results over key cost and margin parameters. 

Baseline Solutions 

Ethanol gross margins by plant size that would encourage entry in (Ph) and exit from (Pl) 

ethanol processing at the baseline parameters (table 2) are shown in table 3. Also included 

are trigger prices that correspond to a NPV analysis (Wh and Wl, respectively). Entry price 

triggers drop with increases in firm size given decreased unit capital investment costs. 

Relative to the small plant entry trigger ($1.78), entry triggers are 22% and 25% lower for 

medium ($1.39) and large ($1.33) plants, respectively. Exit costs follow a similar pattern 

where, relative to the small plant exit trigger ($0.17), exit triggers are 18% and 24% lower 

for medium ($0.14/gal) and large ($0.13) plants, respectively. While larger plants exhibited 

slightly higher net operating costs than medium plants, exit costs are also affected by the 

options and costs to mothball and reactivate. Given that these costs are based on a fixed 

percentage of capital investment costs (k) and unit capital costs decrease with plant size 
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growth, lower per unit mothball costs for the larger plant class more than offset its 

relatively higher operating costs, resulting in a lower overall exit price.7  

The importance of considering price uncertainty with respect to ethanol gross 

margins cannot be understated. Entry (exit) prices considering real options are, on average, 

207% (63%) above (below) their NPV counterparts (table 3). With the relatively optimistic 

baseline assumption of a 25% residual liquidation value, the NPV entry and exit price 

triggers are relatively close – a spread of only $0.07 to $0.12. However, with the addition 

of real options, the entry-exit price spreads range from $1.20 to $1.61. Idle firms will wait 

considerably longer to invest in order to take advantage of possible gains from higher 

margins in the future, while currently operating firms will wait longer before exiting with 

the expectation that margin prices will improve. 

Given that mothball costs are based on a fixed percentage of capital investment, 

irrespective of plant size, the changes in trigger prices across size classes are less dramatic 

than exhibited for entry and exit. Firms will mothball plants when gross margins drop to a 

range of $0.17 and $0.18 and later reactivate if margins increase to between $0.66 and 

$0.79, depending on class size (table 3). Medium size plants will delay mothballing, 

relative to the small and large plants, until margins are slightly lower, and will reactivate 

sooner. The slightly higher operating costs for the large plant result in a mothballing trigger 

at prices roughly the same as that for the small plant, but lower initial investment costs 

imply that the larger plant can reactivate sooner. The relatively high liquidation value (-

0.25k) compared with mothballing and reactivation costs (ranging from 0.025k to 0.10k) 

result in trigger prices to mothball and exit that are relatively close. 
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Using the medium size plant results as approximate industry-averages, figure 2 

plots the computed trigger margins overlaid with the number of ethanol plants that are 

currently in operation or under construction (RFA, 2008). Based on the annual plant 

numbers, actual plant exits did not occur or at least the total number of plants increased 

monotonically over the sample period. However, relative to the NPV trigger prices, plant 

exits would have been expected to occur in the late 1990s, and in some periods of 2002 and 

2003. In contrast, under the real options framework, at no time during the sample period, 

were mothballing or exit trigger prices reached. 

The real option margin triggers imply that new entrants into the industry would not 

occur until 2006 (figure 2). While actual plant numbers increased annually during the 

period of 1998 to 2005, the rate of change was modest compared with increases more 

recently. Our results are consistent with the fast growth in plant numbers exhibited in 2006 

and 2007. Also, as margins drop below the entry trigger margin in 2007 and in 2008, the 

rate of increase in the number of plants slowed precipitously. If reductions in gross margins 

continue to be realized, mothballing and plant exits may well become an economic reality. 

As a short-run example, flooding in areas of Iowa and Illinois in June 2008 resulted in 

estimated margins in the $0.20 to $0.30 range, well below the NPV exit prices, and close to 

or at the real option mothballing and exit price triggers. 

Sensitivity Analysis 

Clearly, the results are conditional on a number of factors, including the sample period and 

assumed discount rate. If the drift rate, μ, is not adjusted to zero, but remains at the 

estimated value of 0.07, both the exit and entry trigger values would decrease, 
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approximately 4% and 6%, respectively. Intuitively, this makes sense – if there is an 

expected upward trend in gross margins, investors today would be willing to enter sooner 

and, once in, would delay exit given an expected positive margin trend. Conversely, a 

higher discount rate (δ), ceterus paribus, will increase both the entry and exit trigger prices 

as the opportunity cost to alternatively invest funds increases, approximately 2% and 3% 

for each 100 basis points, respectively 

As the variability in gross margin increases, entry and reactivation trigger prices 

increase substantially, particularly for new investment, and decreases the trigger prices to 

exit and mothball (figure 3, panel a). With higher upside potential in prices, it is optimal for 

firms to further delay entry (or reactivate) until more favorable prices are realized, while 

existing plants will stay in operation (or mothballed) longer with an increased expectation 

that prices will improve. It is also the case that as margin variability decreases the option to 

mothball makes less economic sense. All else held constant, at a margin variance below σ2 

= 0.18, it would be optimal to simply exit directly as prices decline, rather than mothball to 

a suspended state first. As margin variation decreases below this point, the odds of 

improved margin performance in the future is so low, it would be optimal to simply exit the 

industry and invest the liquidated funds elsewhere. 

For all else held constant, entry (exit) price triggers increase (decrease) as 

liquidation values decline (figure 3, panel b). To compensate for expected higher exit costs, 

investors will wait longer to enter until margins are increased sufficiently to compensate, 

while active firms will wait longer to get out avoiding the higher cost of exit. Furthermore, 

at liquidation values above 37%, if prices decline sufficiently, it is optimal to directly exit 
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than to go into a mothballed state first. As more of a firm’s initial investment is able to be 

recouped upon exit, it is increasingly beneficial to take those funds and reinvest elsewhere 

rather then delay retrieval of those funds in a mothballed state.  

 Finally, figure 3 (panel c) demonstrates the impact on trigger margins as the costs to 

mothball (and reactivate) changes, assuming that all mothballing costs (Em, m, and r) move 

proportionately. As mothballing costs increase, trigger margins for exit increase since as 

the cost to suspend operations increases, the costs to exit become relatively more 

inexpensive. Likewise, an active firm will wait longer to go into this relatively more 

expensive state and, once mothballed, will wait longer to reactivate to active production. 

Furthermore, when the mothballing costs increase 25% above baseline values, ceterus 

paribus, as gross margins decrease it does not make sense to consider mothballing at all.  

Conclusions 

Strong growth in the demand for agricultural commodities are evident in the strong 

increases in prices and price variability of U.S. grains and oilseeds. Federal and state 

incentives have increased the demand for renewable sources of energy, resulting in 

aggressive expansion and investment in renewable fuel production, primarily corn-based 

ethanol. While produced for years, fast growth over the past three years has been both a 

haven and heartache for investors in corn ethanol facilities. Record-high returns in 2006 

and 2007 have vanquished in the face of precipitous drops in gross margins when 

continued strong growth in corn prices has not been compensated in ethanol markets. 

Entry and exit ethanol gross margin triggers were computed using both net present 

value and real options frameworks. Firm size was explicitly considered, generally revealing 
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lower margin triggers as plant size increased, essentially accounting for economies of size 

in production. Considering a large plant size and moderate liquidation costs, optimal firm 

entry is expected when ethanol gross margins exceed $1.33 per gallon and exit would 

commence when gross margins drop below $0.13. However, in the face of declining prices, 

plants would first suspend operations and mothball their plant at prices of $0.18, and 

reactivate if prices rebounded to $0.66. 

While gross margins reached a peak of nearly $3 per gallon in 2006, more recent 

margins are hovering around $0.50 or less. If margins continue to decrease as they have in 

2007 and 2008, delayed investments and construction plans may progress to suspensions 

and/or exits of currently operating facilities. In addition, continued growth in the variability 

of ethanol margins will lead to delays in new plant investments and delays in exits of 

currently operating facilities.  

Relaxing some of the assumptions in the base model may be more reflective of true 

investor options, and more accurately reflect risk and uncertainty in the ethanol production. 

Expanding the model to include additional sources of uncertainty and, thereby, additional 

stochastic variables (e.g., by-product sales, energy prices) would be a reasonable extension 

(Nostbakken, 2006), albeit at the cost of increasing the complexity of the models to be 

solved. In addition, the future level and existence of ethanol subsidies are not known with 

certainty. Incorporating probabilities of expected future subsidies may be an important 

consideration for investment and operation decisions (Viju, Kerr, and Nolan 2006). Finally, 

to the extent that alternative technologies become viable (e.g., cellulosic ethanol) the model 

can be adapted to estimate and compare the results across alternative investments. 
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Footnotes 
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1 We do not consider the option of investing in a project directly to a mothballed state. 

While in an oligopolistic industry there may be strategic reasons for this to be viable, it is 

beyond the scope of this article.  Generally, it is unlikely that this indirect route would be 

cheaper than investing in an operational project upfront (Dixit and Pindyck 1994). 

2 In the two-state entry-exit model, the analytics to this point are identical, except that the 

value of the option to mothball would be replaced with the value of the option to exit.  

3 Plant data collected revealed no obvious differences in yields across plants of different 

sizes. In all size categories, yields both above and below our estimate were evident. 

4 Comparatively, the annualized mean and variance estimates for corn and ethanol prices 

were 0.08 and 0.05, and 0.08 and 0.11, respectively. 

5 Specifically we model , where DPt=Pt - 

Pt-1, P is the ethanol gross margin, TREND is the trend term from 1 to N, and DPt-i are 

lagged dependent variables. The null hypothesis assumes non-stationarity or − =φ . 

6 The high value of ethanol by-products combined with expectations that DDGS prices will 

be increasingly variable, reduces the validity of the constant-cost assumption for w.  While 

beyond the scope of the present article, a logical direction for future research is to augment 

the existing model by including a separate stochastic variable for ethanol by-products. 

7 When mothballing is not allowed, trigger prices are $1.74, $1.36, and $1.30 for entry, and 

$0.18, $0.16, and 0.17 for exit, for the small, medium, and large plants, respectively.  
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Table 1.  Capital and Operating Costs, Excluding Corn, for Dry-Grind Corn Ethanol Plants, by Size ($/gal)

Size Capital Chem. Utilities/ Labor / Depre- Co- Net Op.
Year (mgal/yr) Cost Inputs Energy Other ciation Total Product Costs Source

1998 0.14 0.35 0.26 0.39 Shapouri, Gallagher, and Groboski 2002
1999 25.0 1.49 0.12 0.23 0.15 0.15 0.65 0.36 0.30 McAloon et al. 2000
2000 15.0 2.20 0.15 0.24 0.12 0.14 0.65 0.46 0.19 Whims 2002
2002 <40 2.11 0.11 0.31 0.18 0.21 0.81 0.29 0.52 Shapouri and Gallagher 2005
2004 16.1 2.01 0.12 0.24 0.14 0.18 0.67 0.24 0.43 Rajagopalan et al. 2005

Average 18.7 1.95 0.13 0.27 0.17 0.17 0.74 0.35 0.40

1998 0.18 0.28 0.22 0.30 Shapouri, Gallagher, and Groboski 2002
1999b 48.0 1.17 0.16 0.71 0.13 0.11 1.11 0.32 0.79 English et al. 2006
2000 30.0 1.55 0.14 0.22 0.11 0.10 0.57 0.46 0.11 Whims 2002
2000 40.0 1.38 0.13 0.22 0.10 0.09 0.54 0.46 0.08 Whims 2002
2002 1.72 0.11 0.22 0.17 0.17 0.67 0.31 0.36 Shapouri and Gallagher 2005
2004 42.2 1.34 0.12 0.25 0.07 0.12 0.56 0.24 0.32 Rajagopalan et al. 2005
2006 40.0 1.17 0.10 0.26 0.08 0.12 0.55 0.29 0.26 Kwiatkowski et al. 2006

Average 40.0 1.39 0.13 0.31 0.12 0.12 0.69 0.34 0.35

1998 0.11 0.21 0.22 0.33 Shapouri, Gallagher, and Groboski 2002
2006 100.0 1.22 0.12 0.37 0.12 0.12 0.73 0.35 0.39 Low and Isserman 2007

Average 100.0 1.22 0.11 0.29 0.17 0.12 0.70 0.34 0.36

Note: Costs were converted to 2006 dollars by the CECPI (2008) for capital and depreciation costs, by DOE's (2008) energy outlook for utilities and energy,
 by the Producer Price Index for chemicals and allied products (BLS 2008) for chemical costs, by average hourly earnings of manufacturing workers for labor
and other costs (BLS 2008), and by the April distillers dried grains with solubles price (Feedstuffs  2008) for co-product sales. Empty cells indicate that the
respective costs were not reported. Labor costs of $0.06/gal were added to the labor/other category for English et al. (2006).

 ------------------------------------------- Large Plant ------------------------------------------

Operating Costs

 ------------------------------------------- Small Plant ------------------------------------------

 ------------------------------------------- Medium Plant ------------------------------------------
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Table 2. Baseline Dry-Grind Corn Ethanol Investment and Operating Costs, ($/gal) 

 Investment   Exit Co-    Operating Cost                        Mothball Costs  

Plant Size Cost (k) Cost (l)   Product   Full (w) Net (w′) Invest.(Em)  Maint.(m) React.(r) 

Small 1.95 -0.49 0.35 0.74 0.40 0.10 0.05 0.20 

Medium 1.39 -0.35 0.34 0.69 0.35 0.07 0.03 0.14 

Large 1.22 -0.31 0.34 0.70 0.36 0.06 0.03 0.12 

Note: Baseline costs assume exit cost (l) = -0.25k, investment mothball cost (Em) = 0.05k, maintenance mothball costs (m) = 

0.025k, and reactivation cost (r) = 0.10k.  Operating costs exclude corn feedstock costs. 
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Table 3. Gross Margin Trigger Prices Using Net Present Value (NPV) 

and Real Option Analysis, Dry-Grind Corn Ethanol Plants, by Size  

  Plant Size  

Cost / Trigger Price   Small  Medium Large 

Investment Cost (k) 1.95 1.39 1.22 

Net Operating cost (w′) 0.40 0.35 0.36 

 

Entry, Ph 1.78 1.39 1.33 

Reactivate, Pr 0.79 0.66 0.66 

Entry (NPV), Wh  0.55 0.46 0.45 

Exit (NPV), Wl 0.43 0.37 0.38 

Mothball, Pm 0.18 0.17 0.18 

Exit, Pl 0.17 0.14 0.13 

Note: Exit cost (l) = -0.25k, investment mothball cost (Em) = 0.05k, maintenance mothball 

costs (m) = 0.025k, and reactivation cost (r) = 0.10k.  Net operating costs exclude corn 

feedstock costs. 
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Figure 1.  Monthly corn, ethanol, and gross margin prices, 1988-2008 
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Figure 2.  Ethanol gross margins, plant numbers, and real option and NPV trigger 

prices, medium-size ethanol plant, baseline parameters 
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Figure 3.  Adjustments in Real Option Trigger Prices with respect to Changes in 
Gross Margin Variation (a), Liquidation Value (b), and Mothball Costs (c) 
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