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1 Introduction

Forecasts of the volatility of asset returns are of great interest to many financial market par-

ticipants. Applications such as risk management, portfolio allocation and derivative pricing

all require such forecasts. There has been a vast literature relating to forecasting asset return

volatility. Much of this has focused on the development of econometric models of volatility,

surveys of which can be found in Campbell, Lo and MacKinlay (1997) and Gourieroux and

Jasiak (2001). Much of this literature has stemmed from the development of the GARCH class

of models attributable to Engle (1982) and Bollerslev (1986). Recently, it has benefited from

the development of Realized Volatility (RV) by Andersen, Bollerslev, Diebold and Labys (2001,

2003). Times series models such as the Mixed Interval Data Sampling (MIDAS) framework

have been directly applied to RV estimates for forecasting purposes. An alternative method for

obtaining forecasts is to rely on implied volatility (IV), derived from option prices. IV should

represent a market’s best prediction of an assets’ future volatility (see, amongst others, Jorion,

1995, Poon and Granger, 2003, 2005). Poon and Granger (2003, 2005) provide a wide rang-

ing survey of articles relating to forecasting volatility. While the results are somewhat mixed,

overall, option based forecasts are often more accurate than those based on econometric models.

This paper proposes a nonparametric approach to forecasting realized volatility. The principle

is similar in nature to that of Brandt (1999) however the mechanics in this context are quite

different. The proposed approach begins by measuring short-term trends in volatility as a

measure of market conditions. A forecast is then given by a weighted average of historical

RV, where the greatest weight is given to periods that are most similar to the time at which

the forecast is being formed. Weights are obtained by the application of a multivariate kernel,

while historical observations of both RV and IV are used to capture market conditions. While

results pertaining to IV as a forecast in its own right are mixed, it has been found to be a

useful measure of market volatility in conjunction with RV. The performance of the proposed

kernel based forecast will be compared to IV forecasts, a model based solely on daily returns,

and a number of time series models that utilize RV. It is found that at a 1 day horizon, the

kernel based forecast is statistically superior to the competing models. At longer horizons, the

performance of the proposed approach is equivalent to a number of alternative models.

The paper proceeds as follows. Section 2 describes the data used in this study. Specifically,

the daily returns data, intraday data upon which RV is based and the IV estimates. Section 3

will outline the proposed kernel based forecast, competing forecasts and the manner in which

their performance will be evaluated. Sections 4 and 5 report the empirical results and provide

concluding remarks respectively.
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2 Data

This study utilizes data relating to the S&P 500 Composite Index, from 2 January 1990 to

31 October 2008 equating to 4791 daily observations. Daily index return data, IV and RV

estimates are required for the current analysis.

The V IX index constructed by the Chicago Board of Options Exchange from S&P 500 index

options constitutes the estimate of IV utilized in this paper. It is derived from out-of-the-

money put and call options that have maturities close to the target of 22 trading days 1. The

V IX is constructed to be a general measure of the market’s estimate of average S&P 500

volatility over the subsequent 22 trading days BPT, 2001, Christensen and Prabhala, 1998 and

CBOE, 2003. Having a fixed forecast horizon is advantageous and avoids various econometric

issues. This index has only been available since September 2003 when the CBOE replaced a

previous implied volatility index based on S&P 100 options2. Its advantages in comparison to

the previous implied volatility index is that it no longer relies on option implied volatilities

derived from Black-Scholes option pricing models, it is based on more liquid options written on

the S&P500 and is easier to hedge against (CBOE, 2003).

For the purposes of this study estimates of actual volatility were obtained using the RV method-

ology outlined in ABDL (2001, 2003). RV estimates volatility by means of aggregating intra-day

squared returns. It should be noted that the daily trading period of the S&P500 is 6.5 hours

and that overnight returns were used as the first intra-day return in order to capture the varia-

tion over the full calender day. ABDL (1999) suggest how to deal with practical issues relating

to intra-day seasonality and sampling frequency when dealing with intra-day data. Based on

the volatility signature plot methodology, daily RV estimates were constructed using 30 minute

S&P500 index returns3. It is widely acknowledged that RV is a more accurate and less noisy

estimate of the unobservable volatility process than squared daily returns (Poon and Granger

2003). Patton (2006) suggests that this property of RV is beneficial when RV is used a proxy

for observed volatility when evaluating forecasts.

Figure 1 shows the V IX and daily S&P500 RV for the sample period considered. While RV

estimates exhibit a similar overall pattern when compared to the V IX, RV reaches higher

peaks than the V IX. This difference is mainly due to the fact that the V IX represents an

average volatility measure for a 22 trading day period as opposed to RV that is a measure of

daily volatility. The high volatility period of September to December 2008 is clearly evident.
1For technical details relating to the construction of the V IX index, see Chicago Board Options Exchange

CBOE, 2003.
2The new version of the VIX has been calculated retrospectively back to January 1990, the beginning of the

sample considered here.
3Intraday S&P 500 index data were purchased from Tick Data, Inc.
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Figure 1: Daily VIX index (top panel) and daily S&P 500 index RV estimate (bottom panel).

During this time, both RV and the VIX reached unprecedented levels as equity markets fell as

a consequence of the credit crisis and ensuing financial turmoil.

3 Methodology

This section will begin by outlining the details of the proposed nonparametric forecast. This

will be followed by a brief description of the forecasts with which it will be compared, along

with the technique utilized in evaluating the forecasts.

3.1 A nonparametric forecast

As briefly discussed in Section 1, the nonparametric forecast is based on a weighted average of

historical RV. The greatest weight is given to periods that are most similar in terms of market

conditions to the time at which the forecast is being formed. Market conditions at time τ are

captured by short-term moving averages in historical RV and IV which we shall define as

Φτ = [RV
(λ1)
τ , . . . , RV

(λp)
τ , V IX

(λ1)
τ , . . . , V IX

(λp)
τ ]′, (1)

where RV
(λi)
τ and V IX

(λi)
τ are λi period moving averages (ending) at time τ and values for λi

have been selected to be λi = 1, 2, 3, 4, 5, 7, 10.
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Assume that at time t we are to forecast volatility over the subsequent period of q days (i.e.

over days t+1 to t+q−1). The forecast will be a weighted average of all available RV
(q)
τ , τ ≤ t.

Collect all RV
(q)
τ , τ ≤ t, in a vector RV

(q)
t , such that the forecast at time t for the subsequent

period of q days is w′RV(q)
t .

The weights associated with each RV
(q)
τ will be determined by the similarity of the market

conditions on the day before the start of the q period covered by RV
(q)
τ , Φτ−q, with those

pertaining at time t, Φt. Given Φτ−q, the weight attached to RV
(q)
τ is given by a multivariate

product kernel,

w̃τ−q =
N∏

n=1

K

{
Φt,n − Φτ−q,n

hn

}
, (2)

where K is a standard normal kernel, Φt,n is the nth element in Φt and N is the number of

dimensions in Φ. Based on the optimal bandwidths for multivariate density estimation of Scott

(1992), the bandwidth for dimension n, hn is given by

hn = σnT
−1

4+N (3)

where σn is the standard deviation of the elements of dimension n in Φ and T is the corresponding

number of observations of Φ available in the estimation period4. The weight vector w is then

scaled

w =
w̃τ−q

w̃′
τ−qι

(4)

where ι is a vector of ones, ensuring that the elements in w sum to 1.

This nonparametric weighting mechanism does not, per se, require any parameter estimation,

although, as with any nonparametric procedure, it is necessary to choose the smoothing param-

eter hn.

3.2 Competing forecasts

The kernel based forecast will be compared to a number of alternatives, including IV, in the

form of the VIX along with a number of model based forecasts. The simplest begins with the

GJR model of Glosten, Jagannathan and Runkle (1993) based on daily return observations,

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−1Iεt−1<0 + α3σ

2
t−1 (5)

where εt is a residual from a conditional mean equation and Iεt<0 is an indicator taking the

value of 1 if εt < 0. This simple model is also extended to include RVt−1 as an exogenous

regressor in equation 5 and will be denoted below as GJRRV . The final forecast considered
4As we are not estimating a density function, the kernel weighting scheme is a simple data dependent approach

for obtaining weights
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here is a MIDAS forecast, given a direct time-series model of RV, see Ghysels, Santa-Clara and

Valkanov (2006). A MIDAS forecast is generated according to5

RV t+1→t+q =
kmax∑
k=0

b (k, θ)RVt−k + εt (6)

The maximum lag length kmax can be chosen rather liberally as the weight parameters b (k, θ)

are tightly parameterized. In this case kmax = 200 is chosen. Here the weights are determined by

means of a beta density function and normalized such that
∑

b (k, θ) = 1. A beta distribution

function is fully specified by the 2 × 1 parameter vector θ. Parameter estimation was achieved

by nonlinear least squares, minimizing the sum of squared residuals in equation (6).

3.3 Evaluating volatility forecasts

The Model Confidence Set approach (MCS) of Hansen, Lunde and Nason (2003) will be used

to evaluate the forecast performance of the competing models. The MCS is a modified version

of the Superior Predictive Ability (SPA) test of Hansen (2005) in that it has greater power and

does not require a benchmark forecast to be chosen. Application of the MCS produces a set of

models that are statistically indistinguishable in terms of their forecast performance.

The procedure starts with a full set of candidate models M0 = {1, ...,m0}. The MCS is

determined by sequentially trimming models from M0 therefore reducing the number of models

to m < m0. Prior to starting the sequential elimination procedure, all loss differentials between

forecasts i and j, hi
t+1→t+q and hj

t+1→t+q are computed,

dij,t+1→t+q = L(σ̂2
t+1→t+q, hi

t+1→t+q)) − L(σ̂2
t+1→t+q, hj

t+1→t+q)), (7)

∀i, j = 1, ...,m0 and t = T1, ..., T2 − q. In this case, T1 represents the final observation prior

to the first forecast period and T2 is the final observation in the dataset. The volatility proxy,

σ̂2
t+1→t+q is RV t+1→t+q and the forecasts are those described in Sections 3.1 and 3.2. Mean

Squared Error (MSE) and the Quasi-Likelihood (QLIKE) loss functions, L(·, ·) in equation 7

will be used within the MCS,

MSE = (σ̂2
t+1→t+q − ht+1→t+q)2

QLIKE = log(ht+1→t+q) +
σ̂2

t+1→t+q

ht+1→t+q
. (8)

Patton (2006) proved that while many loss functions exist, MSE and QLIKE are commonly

used loss functions that belong to a family of loss functions are robust to noise in the volatility

proxy.
5MIDAS models are more general as indicated by the notation here. They can deal with data being sampled

at different frequencies and can also directly utilize intra-day data directly. These generalizations are not required

here.
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At each step, the EPA hypothesis

H0 : E(dij,t+1→t+q) = 0, ∀ i > j ∈ M (9)

is tested for a set of models M ⊂ M0, with M = M0 at the initial step. If H0 is rejected at

the significance level α, the worst performing model is removed and the process continued until

non-rejection occurs with the set of surviving models being the MCS, M̂∗
α. If a fixed significance

level α is used at each step, M̂∗
α contains the best model from M0 with (1 − α) confidence6.

At the core of the EPA statistic is the t-statistic

tij =
dij√

v̂ar(dij)
, (10)

where dij = 1
T2−q−T1+1

∑T2−q
t=T1

dij,t+1→t+q. tij provides scaled information on the average differ-

ence in the forecast quality of models i and j. v̂ar(dij) is an estimate of var(dij) and is obtained

from a bootstrap procedure7. In order to decide whether, at any stage, the MCS must be further

reduced, the null hypothesis in equation 9 is to be evaluated. The difficulty being that for each

set M the information from (m − 1) m/2 unique t-statistics needs to be distilled into one test

statistic. Hansen et al. (2003) propose the following the range statistic,

TR = max
i,j∈M

|tij | = max
i,j∈M

∣∣dij

∣∣√
v̂ar(dij)

(11)

and a semi-quadratic statistic,

TSQ =
∑

i,j∈M
i<j

t2ij =
∑

i,j∈M
i<j

(dij)2

v̂ar(dij)
(12)

as test statistics to establish EPA. Both test statistics indicate a rejection of the EPA hypothesis

for large values. The actual distribution of the test statistic is complicated and depends on the

covariance structure between the forecasts included in M. Therefore p-values for each of these

test statistics have to be obtained from the bootstrap distribution. When the null hypothesis

of EPA is rejected, the worst performing model is removed from M. The latter is identified as

Mi where

i = arg max
i∈M

di√
v̂ar(di.)

(13)

and di. = 1
m−1

∑
j∈M dij . The tests for EPA are then conducted on the reduced set of mod-

els and one continues to iterate until the null hypothesis of EPA is not rejected. Thus, the
6Despite the testing procedure involving multiple hypothesis tests this interpretation is a statistically correct

one. See Hansen et al. (2003) for a detailed discussion of these aspects.
7For specific details on the bootstrap procedure see Becker and Clements (2008) and Hansen et al. (2003)
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MSE QLIKE

TR TSQ TR TSQ

GJR 0.4750 0.4880 V IX 0.0000 0.0000
Kern 0.6130 0.5960 GJR 0.0000 0.0000
GJRRV 0.8010 0.7420 MIDRV 0.0100 0.0120
MIDRV 0.8010 0.7420 GJRRV 0.0220 0.0220
V IX 1.0000 1.0000 Kern 1.0000 1.0000

Table 1: MCS results for 1 day forecasts of volatility. p-values given both the TR and TSQ test
statistics are reported for both MSE and QLIKE loss functions.

final set of models constituting the MCS are models whose forecast performance is statistically

indistinguishable.

4 Empirical Results

The forecasts will be evaluated at horizons of 1, 5 and 22 trading days. All models, including the

kernel forecast were initially estimated on the first 1000 observations. A recursive estimation

scheme was implemented with the estimation window extended by one day leading to 3791, 3787

and 3770, 1, 5 and 22 day ahead forecasts respectively. MCS results will be presented for each

of the forecast horizons and are contained in Tables 1, 2 and 3 for the 1,5 and 22 day horizons

respectively.

Results in Table 1 indicate that based on the MSE loss function, all of the models are statistically

indistinguishable given the relatively high p-values. Given the QLIKE loss function, the result is

quite different, the proposed kernel based forecast is the sole model in MCS (GJRRV is rejected

from the MCS at a p-value of 0.0220). Patton and Sheppard (2006) show that QLIKE, relative

to MSE exhibits significantly more power in differentiating between forecasts. Given the MCS

results of Table 1, it appears as though the kernel based method generates significantly superior

forecasts at the 1 day horizon as it is the sole model in the MCS under QLIKE. Results are similar

for the 5 day forecast horizon, as reported in Table 2. MSE cannot distinguish between any of

the forecasts whereas under QLIKE the MCS contains 3 forecasts, one of which is the proposed

kernel method. At the 22 day however, there is little difference between the performance of all

of the forecasts. Results in Table 3 show that once again MSE cannot discriminate between

any of the forecasts, and under QLIKE only the VIX forecast is identified as inferior. Thus

overall, at very short forecast horizons, the proposed nonparametric approach provides forecast

performance gains relative to a number of common alternatives.

8



MSE QLIKE

TR TSQ TR TSQ

Kern 0.4880 0.5180 V IX 0.0000 0.0000
GJR 0.6320 0.7200 GJR 0.0360 0.0550
MIDRV 0.7740 0.7680 GJRRV 0.7710 0.8000
V IX 0.7740 0.7680 MIDRV 0.9640 0.9640
GJRRV 1.0000 1.0000 Kern 1.0000 1.0000

Table 2: MCS results for 5 day forecasts of volatility. p-values given both the TR and TSQ test
statistics are reported for both MSE and QLIKE loss functions.

MSE QLIKE

TR TSQ TR TSQ

MIDRV 0.2940 0.2670 V IX 0.0600 0.1630
Kern 0.2940 0.2670 Kern 0.8640 0.8560
V IX 0.2940 0.2670 MIDRV 0.8640 0.8560
GJR 0.2940 0.2670 GJRRV 0.8640 0.8560
GJRRV 1.0000 1.0000 GJR 1.0000 1.0000

Table 3: MCS results for 22 day forecasts of volatility. p-values given both the TR and TSQ test
statistics are reported for both MSE and QLIKE loss functions.

5 Conclusion

This paper proposed a novel nonparametric technique for forecasting volatility. The forecast is

a weighted average of historical RV, where the greatest weight is given to periods that exhibit

the most similar market conditions to the time at which the forecast is being formed. Weight-

ing occurs by comparing short-term trends in volatility across time (as a measure of market

conditions) by the application of a multivariate kernel scheme.

It has been found that by utilizing historical RV and IV in determining market conditions, the

proposed approach can produce significantly superior forecasts at a 1 day horizon. While Becker

and Clements (2008) find that the VIX index is an inferior forecast in its own right, it seems to

contain useful information about the state of market volatility.

The short-term forecast performance of the kernel approach may be attributable to the fact

that the forecast is not simply a smoothed function historical RV. By taking a weighted average

of RV we are not smoothing out potentially useful information such as the jump component of

total volatility.
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