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COMPETITIVE EXCEPTION LEARNING

USING

FUZZY FREQUENCY DISTRIBUTIONS

W-M. van den Bergh, J. van den Berg �

Faculty of Economics, Erasmus University of Rotterdam

Email : vandenbergh@few.eur.nl, jvandenberg@few.eur.nl

Abstract: A competitive exception learning algorithm for �nding a non-linear
mapping is proposed which puts the emphasis on the discovery of the important
exceptions rather than the main rules. To do so, we �rst cluster the output space
using a competitive fuzzy clustering algorithm and derive a fuzzy frequency dis-
tribution describing the general, average system's output behavior. Next, we look
for a fuzzy partitioning of the input space in such a way that the correspond-
ing fuzzy output frequency distributions `deviate at most' from the average one
as found in the �rst step. In this way, the most important `exceptional regions'
in the input-output relation are determined. Using the joint input-output fuzzy
frequency distributions, the complete input-output function as extracted from the
data, can be expressed mathematically. In addition, the exceptions encountered
can be collected and described as a set of fuzzy if-then-else-rules. Besides present-
ing a theoretical description of the new exception learning algorithm, we report on
the outcomes of certain practical simulations.

1. Introduction

The quotes (1) \The ability to handle exceptions and uncertain rules is extremely
important, but is orthogonal to the task of understanding the general ontology." [5],
(2) \These monitors, however, generally cannot predict when the robot will get

into trouble." [7], and (3) \This structure can be viewed either as a generalization
of rules allowing exceptions (. . . )." [2], show that at least at certain places in
the literature of Arti�cial Intelligence some attention is given to the concept of
`exceptions'. However, a search for more references to exceptions in this wide
literature, yields the ironical result that paying attention to exceptions seems to be
itself an exception because practically all emphasis is put on the discovery (learning,
mining) of the main or general rules.

Our inspiration for developing the competitive exception learning algorithm

(CELA) stems from the wish to analyze certain time series based on economi-
cal data. Here, one often discovers various `regimes' of behavior: the volatility may

�We thank Maarten van Enschot for being our inspiring sparring partner during the kick-o�
of this research project.



change over time (slowly or rapidly), a certain trend may suddenly be interrupted,
or the period of a cycle may strongly di�er during various, possibly short, time
periods. In more extensive terms, our motivation may expressed as follows: The
e�cient market hypothesis (EMH) states that all relevant information is instan-
taneously and fully assimilated in the asset prices. So, in a truly e�cient (and
frictionless) market, an agent cannot gain utility by entering a (buy or sell) trans-
action. However, if one admits the fact that \agents are constantly learning" [6] -
i.e., if one admits a less rigid view of e�ciency - the possibility to add utility (i.e.,
to employ pro�t opportunities) may exist temporally for fast learning agents. In
other words, if an agent is better able to perceive the true risk involved, taking a
position may yield him risk-adjusted returns. In addition, since pro�t opportunities
often (seem to) appear randomly and infrequently, the agent should concentrate
on detecting the unusual, abnormal states (which we call exceptions) rather than
the average normal states1. Within this economic framework, an agent (or, in
our case, a software method) capable of identifying exceptions has to interpret
accurately the available information, that is the collection of time series signals.
His (its) primary concern is to detect this kind of exploitable departures from a
random walk, that is, to identify deterministic parts in relevant time series. His
(its) task is to predict the future market state y(t + 1) given m historical states
y(t); y(t� 1); y(t� 2); : : : ; y(t�m+1) where the predicting power of the historical
data changes over time. In most periods, the time series behaves like a random
walk and historical data do not possess any forecasting value. But infrequently at
certain sudden moments, the actual data contain some exceptional pattern having
predicting information of interest: it is conditional for the subsequent behavior of
the market.

We think that our algorithms can be useful in many other �elds of pattern
recognition (outside the area of time series), namely in all cases where it is required
to pay especial attention to exceptions. Therefore, we formulated our algorithm
in very broad terms. The general purpose underlying our new algorithm CELA,
which, basically, is a composition of two unsupervised learning algorithms, can be
stated as follows: Given a set S of, often noisy, training data, its goal is to �nd a
(non-linear) mapping

f : X ! Y: (1)

More particularly however, we are interested in �nding exceptions, that is, regions
in the input space X where the corresponding function values y = f(x) notably

deviate from the average ones. This is, of course, a quite vague criterion that should
be formalized mathematically.

Before doing so, we think that some words on the methodology we used are
appropriate. The research leading to this paper started using a mainly empirical
approach. Only later on, when simulation results turned out to be quite success-
ful, we started to look for a more mathematical description. We then decided to

formulate our �ndings within the framework of machine learning: both fuzzy sys-
tems and competitive learning, with in the background the paradigm of genetic
algorithms, appeared to be appropriate �elds in this context. The term `exception
learning', we introduced ourselves.

1In this sense, the goal of an economic agent deviates from the goal of a descriptive statistician.
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The structure of this paper is follows. In the next section, we introduce our
CELA using a mathematical description and illuminating the various (sub)steps
using a chaotic time series example where quite a lot of noise is added to the data.
Altogether this explanation takes 3 subsections. In the �nal section, we take a
look at what we have done so far, evaluate the results and propose some future
directions of research.

2. Competitive exception learning

We now present in detail the new competitive exception learning algorithm. As
mentioned above, we seek to �nd a mapping (1) from an (M -dimensional) input
space X into an (N -dimensional) output space Y , given a representative data set S.
The set S contains P data pairs (xp; yp) = (xp;1; xp;2 : : : xp;M ; yp;1; yp;2 : : : yp;N ),
where p = 1; : : : ; P . The CELA consists of three steps:

2.1 Finding the unconditional output cluster membership distribution

Irrespective of the xp-values of the data points of S, we (unconditionally) cluster
the given yp-values using the following fuzzy competitive learning approach:

� Consider the case of using Cy cluster centroids �yc = (yc;1; yc;2; : : : ; yc;N ),
(c = 1; : : : ; Cy) somewhere in the output space Y . We de�ne the degree �Y

p;c

to which data point yp belongs to cluster centroid �yc as

�
Y

p;c
=

d
�q

p;cPCy

k=1
d
�q

p;k

; (2)

where the power q usually equals 2 and where dp;c represents a certain natural
distance measure between the points yp and �yc (e.g., dp;c = kyp � �yck, with
k � k representing the Euclidean norm). The above-given de�nition implies
that, irrespective the concrete cluster centroid locations �yc, we have

8yp :

CyX
k=1

�
Y

p;k
= 1: (3)

Or, in words, every data point yp belongs to all clusters �yc in some degree as
de�ned by the fuzzy membership function �

Y

p;c
. These membership values are

normalized: for any data point yp, they sum up till precisely 1, independent
of the actual positions �yc of the cluster centroids.

For any data point yp, the index c
� is used for the index of the winning

cluster, i.e., the cluster with the highest membership value with respect to
yp. So c

� has the property that - given p -

8c : �Y
p;c�

� �
Y

p;c
: (4)

� We next introduce our �rst competitive learning algorithm in order to discover
an `optimal' partitioning of the output space. In order to measure the quality
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of a partition found, we use the so-called partition �tness function PF () being
the average of the winner membership values �Y

p;c�
:

PF (�y1; �y2; : : : ; �yCy ) =
1

P

PX
p=1

�
Y

p;c�
: (5)

Note that
8p : 0 � �

Y

p;c�
� 1 =) 0 � PF () � 1: (6)

By changing the cluster centroid positions �y1; �y2; : : : ; �yCy , we try to maximize
PF (). The motivation for this is as follows: If every data point yp have been
able to `attract' (at least) one cluster centroid �yc such that yp = �yc, the
�tness function will have its maximum value, i.e., PF () = 1. In the more
general case that the number of cluster centroids is smaller than the number
of data points, the highest value of PF () is less than 1 and corresponds to
a constellation where each cluster centroid is situated in the center of one of
the `data clouds'.

Instead of applying some gradient-based competitive learning [3] strategy, we
experimented several other search heuristics. The simplest one is a random

search heuristic: applying this approach, we continuously generate at random
a set of Cy cluster centroid positions and calculate (5). If this value (PF curr)
is lower than the previous best one found, we replace this previous best one by
PF

curr and generate a new set of randomly chosen cluster centroid positions.
Otherwise, we directly generate such a new set2.

� The result of the above-given sub-step is a fuzzy clustering where the output
space Y has been fuzzily partitioned [1]: the fuzzy centroid positions should
be met near the centers of the various data crowds. This partitioning can
also be used to construct a fuzzy frequency distribution of y. To do so, the
fuzzy subsets as resulting from the partitioning are chosen as the (fuzzy)
classes. To �nd the fuzzy frequency distribution, the membership values of
all data points yp with respect to all fuzzy classes are summed up3 and, for
normalization reasons, divided by P . This yields

��Y = (��Y
1
; ��Y

2
; : : : ; ��Y

Cy
); where ��Y

c
=

1

P

PX
p=1

�
Y

p;c
: (7)

So, the vector ��Y = (��Y
1
; ��Y

2
; : : : ; ��Y

Cy
) describes the distribution of the ex-

pected (average) membership values ��Y
c
(c = 1; 2; : : : ; Cy). Since our analysis

so far only takes y-values into account and ignores the corresponding x-values,
this frequency distribution is called the unconditional output cluster member-

ship distribution (UOD).

Note that based on the membership and the cluster centroid values of the
UOD, we can easily calculate an (unconditional) output estimate ŷ of the

2In addition, a local search step can be applied in order to improve this heuristic.
3Note the di�erence of this approach to the classical crisp one where any data point belongs

to precisely one class.
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overall output mean �y conform

ŷ =

CyX
c=1

�yc � ��Y
c
: (8)

In addition, we can also calculate an unconditional output estimate ŷp for
any data point yp conform

ŷp =

CyX
c=1

�yc � �
Y

p;c
: (9)

An illustrative example

A simple example may further clarify the �rst step. We will investigate a chaotic
one-dimensional time series known as a logistic map. Above the deterministic (but
seemingly random) process of the logistic map, we add uniformly distributed noise
ep, drawn randomly from U(0;1). The logistic map has the form

�yp = 1� 4yp�1 + 4y2
p�1

(10)

and the resulting series looks like

yp = 0:5�yp + 0:5ep: (11)

Note that the deterministic part and the randomly drawn part each weight for 50
percent. Since the average value of the noise is .5, the unconditional expectation
of the (p)-th element in this series is

�yp = 0:75� 2yp�1 + 2y2
p�1

: (12)

In �gure 1 we plot the time series for 100 subsequent values resulting from this
process and in �gure 2 the scatter plot from state p� 1 to state p is shown. In this

�gure we also inserted the deterministic part of the map following (12). To conclude
we added the linear regression line between yp and yp�1. The downward slope

Fig. 1. Noisy chaotic time series used. Fig. 2. Scatter plot and 2 �tting curves.

of this regression is merely coincidence: the randomly drawn noise added to the
(infrequent) higher values of the series proves to be lower than average (no central
limit helping us here), thus introducing some downward bias. Preferably a pattern

5



recognition system should not be led away by this bias. The only deterministic (i.e.
predictable) part is the pattern described by (12) and that is precisely the structure
we are trying to infer from the noisy data given. We applied the above-given step 1
of the algorithm to the noisy logistic series using 2, 3, and 4 Y -clusters respectively.
The UOD conform equation (7) and the corresponding clusters centroids �yc for each
are shown in the following tables:

Cy = 2 c = 1 c = 2

��Y
c

0.8728 0.1272

�yc 0.4047 1.0000

Cy = 3 c = 1 c = 2 c = 3

��Y
c

0.0962 0.5938 0.3100

�yc 0.9959 0.4077 0.1023

Cy = 4 c = 1 c = 2 c = 3 c = 4

��Y
c

0.2686 0.3804 0.2668 0.0842

�yc 0.1339 0.3546 0.5418 0.8758

Based on these values and using (2), we can determine the cluster membership
value for all points y. The next �gures at the left-hand side show the resulting

cluster membership distribution for Cy = 2, Cy = 3, and Cy = 4 respectively.

Fig. 3. Cluster membership distributions. Fig. 4. Reconstruction of the Y -space.

The case Cy = 4 deserves some special attention. At �rst sight the number of
clusters seems redundant, especially the �rst two clusters. However, a more careful
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examination reveals that the regions which are more di�cult to classify - i.e.,
around yp = 0:25 and yp = 0:75 - are better captured using the extra degrees of
freedom. Following (8), we can also calculate the unconditional estimate ŷ. For
Cy = 2, Cy = 3 and Cy = 4 respectively, we get 0.4804, 0.3696 and 0.3892. These
values approximate the mean y-value which appears to be �y = 0:3806. Note that
the more cluster are used, the approximation is better4.

Another interesting result of step 1 is that by application of (9), we can recon-
struct (actually `decompress') the original Y-space. In the �gures 4, we have plotted
the resulting y-values against the original ones. A diagonal line has been included
as a reference. As �tness criterion we used the mean squared error criterion

�t = 1�

vuut 1

P

PX
p=1

(ŷp � yp)2; (13)

which appears to be .8065, .9359, and .9456 respectively. An again, the �t becomes
better when more clusters are used.

2.2 Finding the conditional output cluster membership distribution

In the second step of the CELA, we consider the complete data set of pairs (xp; yp)
and suppose that some (non-)linear stochastic dependency of y on x exists. We
want to identify fuzzy regions in the domain of x where the corresponding cluster
membership values of y signi�cantly deviate from the expected unconditional ones
��Y
c

as found in step 1. In short, we want to identify values of x that relate to
exceptional values of y, or, in still other words, we want to identify exceptional
behavior as compared to expected behavior. There are 3 sub steps:

� We start calculating the `output exception' OE for every output value yp
conform

OE(p) =

vuut
CyX
c=1

(�Y
p;c
� ��Y

c
)2: (14)

So, OE(p) tells how much the cluster membership values of yp deviate uncon-
ditionally from expected cluster membership values. These output exceptions
can be normalized to so-termed Exception Signals (ES) de�ned as

ES(p) =
OE(p)P
P

p=1
OE(p)

(15)

� Now, we take the x-values into account supposing that they a�ect the depen-
dent variable y. More particularly, we de�ne fuzzy clusters in the input space
and try to discover fuzzy input clusters (by again using a competitive learning
strategy) that explain at best exceptional y-values. This is the trickiest part
of the algorithm: For any set of cluster centroids �xb = (xb;1; xb;2; : : : ; xb;M),
(b = 1; : : : ; Bx, Bx being a user-de�ned number) in the domain of X, the

4If we use P clusters the �t would be 1, i.e., an exact representation, but at the cost of loosing
generality.
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input membership values �X
p;b

can be calculated using the approach as given
by equation (2):

�
X

p;b
=

d
�q

p;bP
Bx

k=1
d
�q

p;k

: (16)

This time, dp;b represents the distance between xp and �xb. Next, we calculate
the Exception Contributions (ECs) conform

EC(p; b) = �
X

p;b
ES(p): (17)

Roughly spoken, EC(p; b) expresses how much the input cluster b contributes
to the output exception ES(p). For every xp, we can also calculate the
winning input cluster b� indicating which of the input clusters contributes at
most to the output exception5 ES(p). So b� has the property that - given p -

8b : ECX

p;b�
� EC

X

p;b
: (18)

Finally, the exception �tness EF () de�ned as

EF (�x1; �x2; : : : ; �xBx
) =

PX
p=1

EC
X

p;b�
; (19)

can be used as yield function for the second competitive learning algorithm.
Applying a simple heuristic, we again use the random search approach from
step 1 by (a) repeatedly generating new input cluster centroid positions and
(b) calculating the corresponding �tness EF (). The set of input clusters
resulting into the highest exception �tness is the one we are looking for.6

� Having determined both the input and the output cluster centroids, we
can calculate the so-called conditional output cluster membership distribu-

tion (COD): For any input cluster b

��Y j��X
b
= (��Y

1
j��X
b
; ��Y

2
j��X
b
; : : : ; ��Y

Cy
j��X
b
); (20)

where

��Y
c
j��X
b
=

P
p
�
X

p;b
�
Y

p;cP
p
�
X

p;b
�
Y

p;1
+ : : :+

P
p
�
X

p;b
�
Y

p;Cy

=

P
p
�
X

p;b
�
Y

p;cP
p
�
X

p;b

: (21)

Thus, the COD is composed of a set of Cx fuzzy membership distributions

��Y j��X
b

of y. Each of these distributions consists of a series of normalized
frequency values expressing in which percentages the output training values
on average belong to the various fuzzy output classes, given the average
membership value of x in respect of input cluster b.

5Here we have the crux: we look for regions in the input space which correspond at most to
exceptional output values.

6The nett e�ect of maximizing the exceptional �tness function EF () can also be expressed
as follows: It is tried to position the cluster centroids �xb near those points xp which correspond
to exceptional yp-values or, more generally, near those clouds of xp-points which correspond to

clouds of exceptional yp-values.
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Continuation of the illustrative example

For our previous example we have estimated a mapping from 2, 3, 4, and 5 X-
clusters respectively to 3 Y-clusters. The resulting conditional output cluster mem-
bership mapping is shown in the following table:

Cy = 3 c = 1 c = 2 c = 3

�yc 0.9959 0.4077 0.1023

�xb ŷb

b = 1 0.4112 ��Y
c
j��X

1
0.0971 0.3147 0.5881 0.2852

b = 2 1.0000 ��Y
c
j��X

2
0.0894 0.2774 0.6332 0.2669

b = 1 0.0979 ��Y
c
j��X

1
0.2561 0.6082 0.1357 0.5169

b = 2 0.4140 ��Y
c
j��X

2
0.0242 0.5763 0.3995 0.2999

b = 3 1.0000 ��Y
c
j��X

3
0.0214 0.6563 0.3224 0.3219

b = 1 0.9014 ��Y
c
j��X

1
0.0271 0.6886 0.2843 0.3368

b = 2 0.5017 ��Y
c
j��X

2
0.0181 0.5126 0.4693 0.2750

b = 3 0.1411 ��Y
c
j��X

3
0.2736 0.6229 0.1034 0.5370

b = 4 0.3404 ��Y
c
j��X

4
0.0467 0.6186 0.3347 0.3330

b = 1 0.1776 ��Y
c
j��X

1
0.1041 0.7460 0.1498 0.4231

b = 2 0.5015 ��Y
c
j��X

2
0.0119 0.5120 0.4761 0.2693

b = 3 0.3376 ��Y
c
j��X

3
0.0354 0.6149 0.3497 0.3217

b = 4 0.0605 ��Y
c
j��X

4
0.4546 0.4726 0.0728 0.6529

b = 5 0.8947 ��Y
c
j��X

5
0.0210 0.6904 0.2887 0.3319

The second row and the second column show the cluster centroid locations of the
output y and the input x respectively. Most cells are used to show the conditional
membership values ��Y

c
j�xX
b
. They sum up to 1 for each row. In the last column we

calculated the estimated y-centroid value ŷb for every input cluster b, according to
(23). This will be further illuminated in the next step.

2.3 The �nal map and its interpretation

In this last step of the CELA, we derive a formula describing the structure under-
lying the given data set S. We also show how the mapping can be interpreted.

� Using the above-given analysis, we can formulate the mapping (1). For any
input point xp, even outside the training set S, the corresponding yp can be
estimated conform

ŷp = F (xp) =

CxX
b=1

�
X

p;b
(

CyX
c=1

�yc � ��Y
c
j��X
b
): (22)

Here the �yc-values come from the step 1, the ��Y
c
j��X
b
equal (21), and the �X

p;b

equal (16). So the desired value of y is calculated from an (input membership)
weighted sum of (conditional output membership) weighted sum of cluster
centroid locations.

The following observations may be illustrative to understand formula (22):

9



(1) If xp coincides with cluster centroid �xb, then (22) reduces to

ŷb =

CyX
c=1

�yc � ��Y
c
j��X
b
; (23)

i.e., to the sum of output cluster centroids �yc, weighted by the `local' mem-
bership values ��Y

c
j��X
b
.

(2) If xp does not coincide with one of the input cluster centroids, we sim-
ply extend the previous procedure by summing over the weighted sums of
output cluster centroids also taking the input membership values �X

p;b
(b =

1; 2; : : : ; Cx) of xp into account.

� If desired, a fuzzy rule base describing the exceptions in linguistic terms, can
also be derived. To illuminate: we know that around input centroids �xp,
the y-values are exceptional. Inspecting both the input centroids and the
exceptional output values and providing them with `linguistic values' [4], it
is possible to derive fuzzy rules of type

if x�;1 is small, if x�;2 is large,: : :, and if x�;M is medium,

then y�;1 is large, : : :, and y�;N is medium.

Note that the consequence of this fuzzy rule is multidimensional.

Continuation of the illustrative example

Fig. 5. Various estimates of the structure underlying the noisy data.

To get more insight in the way the CELA is capable of recognizing the underlying
structure, we generated y-estimates ŷp for all x-values conform (22) and scattered
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them in the above-given plots where we also included the deterministic (parabolic)
pattern (12). The two �gures in the �rst row represent the estimates ŷp in case
Cx = 2, where the �gure at the right-hand side is a magni�cation of the �gure
at the left-hand side. The magni�cation clearly shows that even with 2 input
clusters the algorithm primitively recognizes the U- shape. The two �gures in the
second row represent the y-estimates in case Cx = 3, Cx = 5 respectively. The
�t values (13) now compare the estimated ŷP -values conform (22) to the noiseless
y-values conform (12) and equal, from left to right and from top to bottom, 0.6922,
0.6922, 0.7455, and 0.7697. As is to be expected, the more clusters, the better the
�t. It becomes also clear that the performance for high input values is worse than
for low and average values. The reason is, as noted earlier, the incidental bias in
the noise for the relatively few high input values. But the CELA seems to be less
vulnerable for this than the linear regression (see �g. 2).

The calculated ŷp-values as given in the table at the end of step 2 of the CELA,
reveal the hidden fuzzy rules underlying the mapping. If we look, for instance, to
the 3x3 mapping, we see that low x-values yield relatively high y- estimates, average
x-values yield average y-estimates and high x-values yield higher than average y-
estimates. Indeed, the basic properties of the U-shaped logistic map have been
(roughly) identi�ed.

3. Discussion and Future Research

This paper has introduced a new algorithm termed the Competitive Exception
Learning Algorithm (CELA) which tries to discover the functional relationship
between an input and an output space, given a large set of possibly very noisy data.
Emphasis is put on the discovery of (clouds of) exceptions in this relationship. In
order to reach this goal, the output space is fuzzily clustered: the corresponding
fuzzy frequency distribution describes in a condensed way the structure of the
output space. Next, the input space is partitioned in those fuzzy input clusters
that correspond at best to output clusters with exceptional y-values. In the end,
a mapping is found based on both the input cluster centroids, the output cluster

centroids and the corresponding (conditional) membership functions. We think,
this can be considered - like various other techniques in machine learning - as a
way of data compression. In our approach, the underlying structure is found while
putting much emphasis on the discovery of exceptions and this is precisely what

makes it so interesting. The initial simulations performed show that the CELA
is able to analyze various time series. In this paper, we presented the outcomes
of a simulation concerning a very noisy chaotic time series. Still the algorithm
approximated the underlying structure quite well. We also want to emphasize here
that the CELA can deal with mapping problems having both a multi-dimensional
input space and a multi-dimensional output space. This is big advantage over most
traditional methods since they usually consider an one-dimensional output space
only.

In our view, this initial research step is only the beginning. Much of the proper-
ties of the CELA, we still not understand. For example, simulation results suggest
that the CELA is indeed capable of discovering the basis structures underlying a
set of quite noisy training data. But how precisely does this relate to its sensi-
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tiveness to exceptions when the number of cluster centroids is gradually increased?
Does over�tting springs up here rapidly? If so, can we �nd the minimal numbers of
cluster centroids (i.e., minimalmodel complexity) that is able to represent the real,
deterministic structure? Can cross-validation be used here in order to validate the
model complexity to use? We doubt it: one can argue that the number of clusters
needed depend on the goal of the CELA-user: if (s)he is interested in �nding several
(small) exceptions rather than average behavior (compare the decision problem of
the intelligent agent trying to employ pro�t opportunities in a �nancial market, see
the Introduction), larger cluster numbers may be needed. In other words, if one is
interested in the discovery of various (possibly detailed) patterns, the complexity of
the model used should be increased appropriately (here, by increasing the number
of clusters in the input or output space). This is of course generally a very hard
problem to tackle since in practice, we often do not know much about the detailed
properties of the underlying structure.

To �nish, mathematicians might be interested in the universal approximation
capabilities of the CELA while experimentalists might prefer to try new applica-
tion domains. We ourselves shall continue our research in many of the directions
suggested in the near future.
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