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Abstract

We present a mathematical analysis of the long-run behavior of genetic algorithms that

are used for modeling social phenomena. The analysis relies on commonly used mathe-

matical techniques in evolutionary game theory. Assuming a positive but infinitely small

mutation rate, we derive results that can be used to calculate the exact long-run behavior

of a genetic algorithm. Using these results, the need to rely on computer simulations can

be avoided. We also show that if the mutation rate is infinitely small the crossover rate has

no effect on the long-run behavior of a genetic algorithm. To demonstrate the usefulness of

our mathematical analysis, we replicate a well-known study by Axelrod in which a genetic

algorithm is used to model the evolution of strategies in iterated prisoner’s dilemmas. The

theoretically predicted long-run behavior of the genetic algorithm turns out to be in perfect

agreement with the long-run behavior observed in computer simulations. Also, in line with

our theoretically informed expectations, computer simulations indicate that the crossover

rate has virtually no long-run effect. Some general new insights into the behavior of genetic

algorithms in the prisoner’s dilemma context are provided as well.

Keywords
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theory.
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1 Introduction

The field of evolutionary computation is concerned with the study of all kinds of evolutionary

algorithms. These algorithms can be used for various purposes. Perhaps the most popular

purpose for which they can be used is function optimization (e.g., [24, 27, 36]). In the function

optimization context, evolutionary algorithms can be seen as heuristics that serve as alternatives

to more traditional techniques from the fields of combinatorial optimization and mathematical

programming. Another important purpose for which evolutionary algorithms can be used is the

modeling of biological and social phenomena (e.g., [39]). This is the topic with which we are

concerned in this paper. Our focus is in particular on the use of evolutionary algorithms for

modeling social phenomena.

When using evolutionary algorithms in the social modeling context, one of the assumptions

one makes is that the agents whose behavior is being modeled are boundedly rational. This

basically means that the agents are assumed not to behave in a utility maximizing manner.

There are numerous ways in which boundedly rational behavior can be modeled (e.g., [15,23]).

A popular approach is to rely on an evolutionary metaphor. This is the approach that is taken by

evolutionary algorithms. In its simplest form, the evolutionary approach assumes that there is a

population of agents and that for each agent in the population the strategy it uses depends on the

population-wide past performance of strategies. The better the past performance of a strategy,

the more likely the strategy is to be used again. The evolutionary approach also assumes that

there always is a small probability that an agent experiments with a new strategy.

The evolutionary approach to modeling boundedly rational behavior has attracted a lot of

attention, not only from researchers in the field of evolutionary computation but also from re-

searchers in the social sciences, in particular from economists. Traditionally, economists have

typically relied on game-theoretic models to analyze interactions between agents. These mod-

els assume agents to behave in a fully rational way. Nowadays, however, the limitations of

game-theoretic models are well recognized and many economists have started to study evolu-

tionary models of agent behavior. These models are based on the assumption that the behavior

of agents can best be described using some evolutionary mechanism rather than using the idea

of full rationality.

In the field of economics, there are two quite separate streams of research that are both con-

cerned with the evolutionary approach to modeling boundedly rational behavior. One stream
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of research, which is usually referred to as agent-based computational economics (e.g., [46]),

makes use of techniques from the field of evolutionary computation. Especially genetic algo-

rithms (GAs) are frequently used. Early work in this stream of research includes [5–7, 19, 29,

34, 37, 38], and examples of more recent work are [1, 3, 25, 28, 33, 54, 55]. The other stream

of research is more closely related to traditional game theory and is referred to as evolutionary

game theory (e.g., [26,35,51,56]). Like the traditional game-theoretic approach, the evolution-

ary game-theoretic approach is model-based and relies heavily on mathematical analysis. The

use of computer simulations is not very common in evolutionary game theory.

In this paper, it is not our aim to argue in favor of either the agent-based computational eco-

nomics approach, which emphasizes algorithms and computer simulations, or the evolutionary

game-theoretic approach, which emphasizes models and mathematical analysis. Instead, we

want to show how the former approach can benefit from the mathematical techniques used

in the latter approach. More specifically, we want to show how evolutionary algorithms that

are used for modeling social phenomena can be analyzed mathematically using techniques

that are popular in evolutionary game theory. Our focus in this paper is on one particular

type of evolutionary algorithm, namely GAs with a binary encoding. However, we empha-

size that the approach that we take can be applied to other types of evolutionary algorithms

as well. The reason for focusing on GAs with a binary encoding is that this seems to be the

type of evolutionary algorithm that is used most frequently for modeling social phenomena

(e.g., [1–7, 10, 12, 18, 19, 25, 30, 33, 34, 37, 38, 50, 54, 55, 57]).

The mathematical analysis that we present in this paper deals with the long-run behavior of

GAs with a binary encoding. The GAs are assumed to be used in the social modeling context

(for theoretical work on GAs in the function optimization context, see e.g. [39, 42–44, 53]). In

the terminology of [54], we are concerned with GAs that are used for modeling social learning

(as opposed to individual learning). Our work can be seen as an extension of the work of Dawid

[19], who derived a number of important mathematical results on the behavior of GAs. For small

and moderate population sizes, the results of Dawid do not provide a full characterization of the

long-run behavior of GAs. We extend the work of Dawid by deriving results that do provide a

full characterization of the long-run behavior of GAs for small and moderate population sizes.

Using our results, the long-run behavior of a GA can be calculated exactly and needs not be

estimated using computer simulations. This means that it is no longer necessary to run a GA a
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large number of times for a large number of iterations in order to get insight into its long-run

behavior. The use of our mathematical results has at least three advantages over the use of

computer simulations:

(1) Our mathematical results can be used to calculate the long-run behavior of a GA exactly,

while computer simulations can only be used to estimate the long-run behavior of a GA.

(2) When using computer simulations, it can be difficult to determine how many iterations

of a GA are required to approximate the long-run behavior of the GA reasonably closely.

Our mathematical results do not have this problem.

(3) Calculating the exact long-run behavior of a GA using our mathematical results requires

less computing time than obtaining a reasonably accurate estimate of the long-run behav-

ior of a GA using computer simulations.

Our mathematical results have one important limitation, which is that on most of today’s com-

puters they can only be used if the chromosome length is not greater than about 24 bits. If the

chromosome length is greater than about 24 bits, the use of our mathematical results to calculate

the long-run behavior of a GA most likely requires a prohibitive amount of computer memory.

Like in [19], the mathematical analysis presented in this paper relies on the assumption that

the mutation rate is positive but infinitely small. (In other words, the analysis is concerned with

the limit case in which the mutation rate approaches zero.) In simulation studies with GAs, re-

searchers typically work with values between 0.001 and 0.01 for the mutation rate. This seems

to be a rather pragmatic choice (cf. [19]). On the one hand, lower values for the mutation rate

would lead to very slow convergence and, consequently, very long simulation runs. On the other

hand, higher values for the mutation rate would lead to convergence to unstable, difficult to in-

terpret outcomes. We believe that our assumption of an infinitely small mutation rate is justified

because an infinitely small mutation rate is less arbitrary than a mutation rate whose value is

determined solely based on pragmatic grounds (cf. [21]). The assumption of an infinitely small

mutation rate is also in line with the common practice in evolutionary game theory, in which

a similar assumption is almost always made. The advantage of assuming an infinitely small

mutation rate is that it greatly simplifies the mathematical analysis of the long-run behavior of

GAs (see also [19]). In fact, GAs with an infinitely small mutation rate can be analyzed in a

similar way as well-known models in evolutionary game theory (e.g., [21, 31, 52, 58]). Like in
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evolutionary game theory, mathematical results provided by Freidlin and Wentzell [22] are the

key tool for analyzing the long-run behavior to which convergence will take place. We note that,

in addition to the assumption of an infinitely small mutation rate, there are some other assump-

tions on which our mathematical analysis relies. However, these assumptions are quite mild.

Most GAs will probably satisfy them, and if a GA does not satisfy them, a minor modification

of the GA will usually be sufficient to meet the assumptions.

To demonstrate the usefulness of our mathematical analysis, we replicate a well-known

study by Axelrod [12] (reprinted in [13]; see also [19, 39]). Axelrod used a GA to model

the evolution of strategies in iterated prisoner’s dilemmas. He showed that an evolutionary

mechanism can lead to cooperative behavior. Axelrod’s study has been one of the first and

also one of the most influential studies on the use of evolutionary algorithms for modeling

social phenomena. Directly or indirectly, his study seems to have inspired many researchers

(e.g., [4, 8–10, 16–18, 20, 30, 40, 41, 47, 50, 57]). The results obtained by Axelrod are all based

on computer simulations. In this paper, we show that more or less the same results can be

calculated exactly, with no need to rely on simulations. We also discuss some new insights that

exact calculations provide.

The mathematical analysis that we present in this paper also has an important implication

for the choice of the parameters of a GA. The analysis indicates that if the mutation rate is

infinitely small the crossover rate has no effect on the long-run behavior of a GA. This is a

quite remarkable result that, to the best of our knowledge, has not been reported before in the

theoretical literature on GAs. The result implies that when GAs are used for modeling social

phenomena the crossover rate is likely to be a rather insignificant parameter, at least when one

is mainly interested in the behavior of GAs in the long run (for the short run, see [47]). This

suggests that in many cases the crossover rate can simply be set to zero, in which case no

crossover will take place at all. Simulation results that we report in this paper indeed show no

significant effect of the crossover rate on the long-run behavior of a GA.

The remainder of this paper is organized as follows. In Section 2, we present a mathematical

analysis of the long-run behavior of GAs that are used for modeling social phenomena. Based

on the analysis, we derive an algorithm for calculating the long-run behavior of GAs in Sec-

tion 3. In Section 4, we demonstrate an application of the algorithm by replicating Axelrod’s

study [12]. Finally, we discuss the conclusions of our research in Section 5. Proofs of our
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mathematical results are provided in the appendix.

2 Analysis

The general form of the GAs that we analyze in this paper is shown in Figure 1. In this figure,

and also in the rest of this paper, the positive integers n and m and the probabilities γ and ε

denote, respectively, the population size, the chromosome length, the crossover rate, and the

mutation rate. For simplicity, we assume the population size n to be even. We further assume

the crossover rate γ and the mutation rate ε to remain constant over time. We also assume ε

to be positive. The GAs that we analyze are generalizations of the canonical GA discussed

in, for example, [27, 39]. Like the canonical GA, we assume the use of a binary encoding,

that is, chromosomes correspond to bit strings in our GAs. Unlike the canonical GA, we do

not assume the use of specific selection and crossover operators. Instead, the GAs that we

analyze may use almost any selection operator, such as roulette wheel selection (sometimes

referred to as fitness-proportionate selection), tournament selection, or rank selection, and any

crossover operator, such as single-point crossover, two-point crossover, or uniform crossover.

Furthermore, in the GAs that we analyze, the fitness of a chromosome may depend, either

deterministically or stochastically, on the entire population rather than only on the chromosome

itself. When using GAs for social modeling, the fitness of a chromosome typically depends on

the entire population. This is referred to as state-dependent fitness in [19]. In most studies, GAs

that are used for social modeling have the same general form as the GAs that we analyze in this

paper.

We now introduce the terminology and the mathematical notation that we use in our analysis.

We note that an overview of the mathematical notation is provided in Table 1. There are µ =

2m different chromosomes, denoted by 0, . . . , µ − 1. Each chromosome has a unique binary

encoding, which is given by a bit string of length m.1 C = {0, . . . , µ − 1} denotes the set of

all chromosomes. i and j denote typical chromosomes and take values in C. The following

definition introduces the notion of uniform and non-uniform populations.

1In this paper, we use a standard binary encoding. Hence, if m = 2, chromosomes 0, 1, 2, and 3 have binary

encodings 00, 01, 10, and 11, respectively. We emphasize that the use of a standard binary encoding is by no means

essential for our analysis. Other binary encoding schemes, such as Gray encoding, can be used as well. This does

not require any significant changes in our analysis.
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Input: n, m, γ, and ε

1 Initialize the population by randomly setting nm bits to zero or one

2 repeat

3 Selection: Apply the selection operator to select n chromosomes from the population (a chro-

mosome may be selected more than once), and use the selected chromosomes as the new pop-

ulation

4 Crossover: Randomly partition the population into n/2 pairs of two chromosomes, and apply

the crossover operator to each pair of chromosomes with probability γ

5 Mutation: Mutate the population by inverting each bit with probability ε

6 until some stopping criterion is satisfied

Figure 1: General form of the genetic algorithms analyzed in this paper.

Definition 1. A population is said to be uniform if and only if all n chromosomes in the popu-

lation are identical. A population is said to be non-uniform if and only if some chromosomes in

the population are different.

U denotes the set of all uniform populations. Obviously, since there are µ different chromo-

somes, there are also µ different uniform populations, that is, |U| = µ. u(i) ∈ U denotes the

uniform population consisting of n times chromosome i. δ(i, j) denotes the Hamming distance

between chromosomes i and j, that is, the number of corresponding bits in the binary encodings

of i and j that are different. G(i) denotes the set of all chromosomes that have the same binary

encoding as chromosome i except that one bit has been changed from one into zero. Conversely,

H(i) denotes the set of all chromosomes that have the same binary encoding as chromosome i

except that one bit has been changed from zero into one. In mathematical notation,

G(i) = {j | j < i and δ(i, j) = 1}
H(i) = {j | j > i and δ(i, j) = 1}.

Notice that j ∈ G(i) if and only if i ∈ H(j). There are

ν = µm/2 = m2m−1

combinations of two chromosomes i and j such that δ(i, j) = 1, that is, such that the binary

encodings of i and j differ by exactly one bit. k and k′ denote indices that take values in

{1, . . . , ν}. Ṽ denotes the set of all populations in which there are exactly two different chro-

mosomes and in which the binary encodings of these chromosomes differ by exactly one bit.
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There are

ξ = |Ṽ| = ν(n− 1) = (n− 1)m2m−1

such populations. (The order of the chromosomes within a population has no effect on the be-

havior of a GA. Populations consisting of the same chromosomes in different orders are there-

fore considered identical.) V denotes the set that is obtained by adding the uniform populations

to Ṽ , that is, V = Ṽ ∪U . For i and j such that δ(i, j) = 1 and for λ ∈ {0, . . . , n}, v(i, j, λ) ∈ V
denotes the population consisting of λ times chromosome i and n − λ times chromosome j.

Notice that v(i, j, λ) = v(j, i, n−λ) and that v(i, j, 0) = u(j) and v(i, j, n) = u(i). W denotes

the set of all possible populations. As shown in [42, Lemma 1] and [19], the number of possible

populations equals

|W| =
(

n + µ− 1

µ− 1

)
=

(n + µ− 1)!

n!(µ− 1)!
.

(Again, populations consisting of the same chromosomes in different orders are considered

identical.) For t ∈ {0, 1, . . .}, the random variable Wt ∈ W denotes the population at the

beginning of iteration t of a GA. For i and j such that δ(i, j) = 1 and for λ ∈ {1, . . . , n − 1}
and λ′ ∈ {0, . . . , n}, π(i, j, λ, λ′) denotes the limit as the mutation rate ε approaches zero of the

probability that population v(i, j, λ) is turned into population v(i, j, λ′) in a single iteration of a

GA. In mathematical notation,

π(i, j, λ, λ′) = lim
ε→0

Pr(Wt+1 = v(i, j, λ′) |Wt = v(i, j, λ)) (1)

where t ∈ {0, 1, . . .}. Because the binary encodings of the chromosomes i and j differ by only

one bit, the crossover operator has no effect on π(i, j, λ, λ′). Moreover, because ε approaches

zero, the mutation operator has no effect on π(i, j, λ, λ′) either. π(i, j, λ, λ′) therefore equals

the probability that the selection operator turns population v(i, j, λ) into population v(i, j, λ′)

in a single iteration of a GA.

The following definition introduces the notion of almost uniform populations.

Definition 2. A non-uniform population w ∈ W \ U is said to be almost uniform if and only if

lim
ε→0

Pr(Wt+N = u |Wt = w) > 0

for all t ∈ {0, 1, . . .}, some finite positive integer N , and some u ∈ U .

Hence, a non-uniform population is almost uniform if and only if no mutation is required to

go from the non-uniform population to some uniform population. We note that in many cases
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Table 1: Overview of the mathematical notation.

C Set of all chromosomes

G(i) Set of all chromosomes that have the same binary encoding as chromosome i

except that one bit has been changed from one into zero

H(i) Set of all chromosomes that have the same binary encoding as chromosome i

except that one bit has been changed from zero into one

m Chromosome length

n Population size

q̄(w) Long-run probability of population w

q̂(w) Long-run limit probability of population w

q̂ Long-run limit distribution

U Set of all uniform populations

u(i) Uniform population consisting of n times chromosome i

V Set of all populations in which there are at most two different chromosomes and

in which the binary encodings of chromosomes differ by at most one bit

v(i, j, λ) Population consisting of λ times chromosome i and n− λ times chromosome j

W Set of all populations

Wt Population at the beginning of iteration t of a GA

γ Crossover rate

δ(i, j) Hamming distance between chromosomes i and j

ε Mutation rate

µ Number of different chromosomes

Number of uniform populations

ν Number of combinations of two chromosomes whose binary encodings differ by

exactly one bit

ξ Number of populations in which there are exactly two different chromosomes and

in which the binary encodings of chromosomes differ by at most one bit

π(i, j, λ, λ′) Probability that the selection operator turns population v(i, j, λ) into population

v(i, j, λ′) in a single iteration of a GA
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all non-uniform populations are almost uniform. For example, if a GA uses roulette wheel

selection or tournament selection, the selection operator can turn any non-uniform population

into a uniform population in a single iteration and, consequently, all non-uniform populations

are almost uniform.

The following two definitions introduce the notion of a connection from one chromosome

to another.

Definition 3. A direct connection from chromosome i to chromosome j is said to exist if and

only if δ(i, j) = 1 and

lim
ε→0

Pr(Wt+N = u(j) |Wt = v(i, j, n− 1)) > 0

for all t ∈ {0, 1, . . .} and some finite positive integer N .

Definition 4. A connection from chromosome i to chromosome j is said to exist if and only if

there exists a sequence (i1, . . . , iN) such that i1, . . . , iN ∈ C, i1 = i, iN = j, and iM is directly

connected to iM+1 for all M ∈ {1, . . . , N − 1}.

Definition 3 states that there is a direct connection from chromosome i to chromosome j if

and only if the minimum number of mutations required to go from uniform population u(i) to

uniform population u(j) is one. We note that in many cases all chromosomes i and j such that

δ(i, j) = 1 have mutual direct connections. This is for example the case if a GA uses roulette

wheel selection and the fitness of a chromosome is always positive. Definition 4 states that

there is a connection from chromosome i to chromosome j if and only if there is a sequence

of chromosomes starting at i and ending at j such that each chromosome in the sequence is

directly connected to its successor. Clearly, if all chromosomes i and j such that δ(i, j) = 1

have mutual direct connections, then each chromosome is connected to all other chromosomes.

It is well-known that the population in the current iteration of a GA has no effect on the

behavior of the GA in the long run (e.g., [19, 42]). More specifically, the population an infinite

number of iterations in the future is statistically independent of the population in the current

iteration. The following lemma states this result in a formal way.

Lemma 1. For each population w ∈ W , there exists a long-run probability q̄(w) such that

lim
N→∞

Pr(Wt+N = w |Wt = wt) = q̄(w) (2)

for all t ∈ {0, 1, . . .} and all wt ∈ W .
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Proof. See the appendix.

In our analysis, we are concerned with the long-run behavior of GAs in the limit as the mutation

rate ε approaches zero. We therefore use the following definition.

Definition 5. For w ∈ W , q̂(w) = limε→0 q̄(w) is called the long-run limit probability of

population w.

We now introduce the vectors and matrices that we need to state the main result of our

analysis. We first note that throughout this paper vectors and matrices are represented by, re-

spectively, bold lowercase and bold uppercase letters and that the transpose of a matrix X is

written as XT. IN denotes an identity matrix of order N × N , and 0M×N and 1M×N denote

matrices of order M × N in which all elements are equal to, respectively, zero and one. We

simply write I, 0, or 1 when the order of a matrix is clear from the context. g = [gk] and

h = [hk] denote vectors of length ν that satisfy

∀k : gk, hk ∈ C
∀k : hk ∈ H(gk)

∀k, k′ : k 6= k′ ⇒ (gk, hk) 6= (gk′ , hk′).

Hence, for each k, (gk, hk) denotes a combination of two chromosomes such that the binary

encodings of the chromosomes differ by exactly one bit. g and h together contain all such

combinations of two chromosomes. A, B, C, and D denote matrices of order µ × ξ, ξ × µ,

ξ × ξ, and µ× µ, respectively. Matrix A is given by

A =




a(0, 1) · · · a(0, ν)
... . . . ...

a(µ− 1, 1) · · · a(µ− 1, ν)


 (3)

where

a(i, k) =





ã1, if gk = i

ã2, if hk = i

01×(n−1), otherwise

(4)

and

ã1 =
[
01×(n−2) 1

]
ã2 =

[
1 01×(n−2)

]
. (5)
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Matrix B is given by

B =




b(1, 0) · · · b(1, µ− 1)
... . . . ...

b(ν, 0) · · · b(ν, µ− 1)


 (6)

where

b(k, i) =





b̃(gk, hk, n), if gk = i

b̃(gk, hk, 0), if hk = i

0(n−1)×1, otherwise

(7)

and

b̃(i, j, λ) =




π(i, j, 1, λ)
...

π(i, j, n− 1, λ)


 . (8)

Matrix C is given by

C =




C(1, 1) · · · C(1, ν)
... . . . ...

C(ν, 1) · · · C(ν, ν)


 (9)

where

C(k, k′) =





C̃(gk, hk), if k = k′

0(n−1)×(n−1), otherwise
(10)

and

C̃(i, j) =




π(i, j, 1, 1) · · · π(i, j, 1, n− 1)
... . . . ...

π(i, j, n− 1, 1) · · · π(i, j, n− 1, n− 1)


 . (11)

Matrix D is obtained from A, B, and C and is given by

D = A(I−C)−1B−mI. (12)

The following theorem states the main result of our analysis.

Theorem 1. Let all non-uniform populations be almost uniform, and let each chromosome in

C be connected to all other chromosomes in C. Then, (i) all non-uniform populations have a

long-run limit probability of zero, that is, q̂(w) = 0 for all w ∈ W \ U , and (ii) the long-run

12



limit distribution q̂ =
[
q̂(u(0)) · · · q̂(u(µ− 1))

]
satisfies

q̂D = 0 (13)

q̂1 = 1 (14)

which has a unique solution.

Proof. See the appendix.

There are three comments that we would like to make on the above theorem. First, the result

that under certain assumptions non-uniform populations have a long-run limit probability of

zero is not new. A similar result can be found in [19, Proposition 4.2.1]. Second, under the

assumptions of the theorem, the long-run limit probability of a population does not depend on

the crossover rate γ. This is a quite remarkable result that, to the best of our knowledge, has

not been reported before in the theoretical literature on GAs. It indicates that in the limit as

the mutation rate ε approaches zero γ has no effect on the long-run behavior of a GA. Third,

the theorem can be used to calculate the long-run limit distribution q̂ only if the probabilities

π(i, j, λ, λ′) defined in (1) can be calculated for all i and all j such that δ(i, j) = 1 and for all

λ ∈ {1, . . . , n − 1} and all λ′ ∈ {0, . . . , n}. Whether this is possible depends on the way in

which the fitness of a chromosome is determined and on the selection operator that is used. This

in turn depends heavily on the specific problem that one wants to model using a GA. Because

of the dependence on the problem to be modeled, we cannot provide any general results for the

calculation of the probabilities π(i, j, λ, λ′). In Section 4, however, we demonstrate how the

probabilities π(i, j, λ, λ′) can be calculated for a GA that is similar to the GA used by Axelrod

in his seminal paper on GA modeling [12].

3 Algorithm

In this section, we present an algorithm for calculating the long-run limit distribution q̂. The

algorithm is based on Theorem 1. Like Theorem 1, it assumes that all non-uniform populations

are almost uniform and that each chromosome in C is connected to all other chromosomes in C.

It also assumes that the probabilities π(i, j, λ, λ′) defined in (1) can be calculated for all i and

all j such that δ(i, j) = 1 and for all λ ∈ {1, . . . , n− 1} and all λ′ ∈ {0, . . . , n}.

13



The most straightforward approach to calculating the long-run limit distribution q̂ would

be to start with calculating the matrices A, B, and C using (3)–(11). Matrix D would then

be calculated using (12), which would require solving a linear system. Finally, q̂ would be

obtained by solving the linear system given by (13) and (14). Unfortunately, this approach to

calculating q̂ requires a lot of computer memory and is therefore infeasible even for problems

of only moderate size. Most memory is required for storing matrix C. This matrix has (at

most) ν(n− 1)2 = (n− 1)2m2m−1 non-zero elements. Clearly, as the population size n and

the chromosome length m increase, storing the non-zero elements of C in a computer’s main

memory soon becomes infeasible. The algorithm that we propose for calculating q̂ exploits

the sparsity of the matrices A, B, and C in order to calculate matrix D in a memory-efficient

way. The algorithm does not require the entire matrices A, B, and C to be stored in memory.

The algorithm also solves the linear system given by (13) and (14) in a memory-efficient way.

This is achieved by exploiting the sparsity of D. The algorithm is shown in Figure 2. We now

discuss it in more detail.

We first consider the efficient calculation of matrix D. Let Ĉ = (I−C)−1. Because C is a

block diagonal matrix, Ĉ can be written as

Ĉ =




Ĉ(1, 1) · · · Ĉ(1, ν)
... . . . ...

Ĉ(ν, 1) · · · Ĉ(ν, ν)




where

Ĉ(k, k′) =





(I− C̃(gk, hk))
−1, if k = k′

0(n−1)×(n−1), otherwise.

Hence, Ĉ is a block diagonal matrix too. Let D be written as

D =




d(0, 0) · · · d(0, µ− 1)
... . . . ...

d(µ− 1, 0) · · · d(µ− 1, µ− 1)


 .
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Input: n, m, q̂0, and ω

Output: q̂

1 // Calculation of D =
[
d(i, j)

]

2 // Only non-zero elements of D should be stored

3 µ ← 2m

4 D ← −mIµ

5 ã1 ← ã1 given by (5)

6 ã2 ← ã2 given by (5)

7 for i ← 0 to µ− 1 do

8 for all j ∈ H(i) do

9 b̃ ← b̃(i, j, n) given by (8)

10 C̃ ← C̃(i, j) given by (11)

11 ẽ ← (I− C̃)−1b̃ // Use, e.g., Gaussian elimination

12 d(i, i) ← d(i, i) + ã1ẽ

13 d(j, j) ← d(j, j) + 1− ã2ẽ

14 d(i, j) ← 1− ã1ẽ

15 d(j, i) ← ã2ẽ

16 end for

17 end for

18 // Calculation of q̂ =
[
q̂(u(i))

]

19 // The linear system given by (13) and (14) will be solved using successive overrelaxation

20 q̂ ← q̂0

21 repeat

22 for i ← 0 to µ− 1 do

23 σ ← 0

24 for all j ∈ G(i) ∪H(i) do

25 σ ← σ + q̂(u(j))d(j, i)

26 end for

27 σ ← −σ/d(i, i)

28 q̂(u(i)) ← (1− ω)q̂(u(i)) + ωσ

29 end for

30 until some convergence criterion is satisfied

31 q̂ ← q̂/(q̂1)

Figure 2: Algorithm for calculating the long-run limit distribution of a genetic algorithm.
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Taking into account the sparsity of A, B, and Ĉ, it can be seen that

d(i, j) =





∑
i′∈G(i) ã2ẽ(i′, i, 0) +

∑
i′∈H(i) ã1ẽ(i, i′, n)−m, if i = j

ã2ẽ(j, i, n), if j ∈ G(i)

ã1ẽ(i, j, 0), if j ∈ H(i)

0, otherwise

(15)

where

ẽ(i, j, λ) = (I− C̃(i, j))−1b̃(i, j, λ).

This result shows that each non-zero element of D can be calculated by solving one or more

relatively small linear systems, that is, systems of n − 1 equations and unknowns. Moreover,

by calculating the elements of D one by one, there is no need to store the entire matrices A,

B, and C in memory. Solving a linear system of n − 1 equations and unknowns can be done

using standard Gaussian elimination methods. Except for very large values for the population

size n, today’s computers have sufficient main memory to apply Gaussian elimination methods

to such systems. We further note that the amount of computation required for obtaining D can

be reduced by taking into account that

ẽ(i, j, 0) = (I− C̃(i, j))−1b̃(i, j, 0)

= (I− C̃(i, j))−1(1−∑n
λ=1 b̃(i, j, λ))

= (I− C̃(i, j))−1(1− C̃(i, j)1− b̃(i, j, n))

= (I− C̃(i, j))−1(I− C̃(i, j))1− ẽ(i, j, n)

= 1− ẽ(i, j, n).

Because of this, d(i, j) can be written as

d(i, j) =





∑
i′∈G(i)(1− ã2ẽ(i′, i, n)) +

∑
i′∈H(i) ã1ẽ(i, i′, n)−m, if i = j

ã2ẽ(j, i, n), if j ∈ G(i)

1− ã1ẽ(i, j, n), if j ∈ H(i)

0, otherwise.

(16)

Using (16) rather than (15) to calculate D halves the number of linear systems that need to be

solved. In the algorithm in Figure 2, the calculation of D based on (16) is performed between

lines 1 and 17.
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Matrix D has µ2 = 22m elements. Consequently, storing all elements of D in a computer’s

main memory is possible only if the chromosome length m is not too large. It follows from (15)

and (16) that the number of non-zero elements in D equals µ(m + 1) = (m + 1)2m. Hence,

D is a rather sparse matrix and a lot of memory can be saved by storing only its non-zero

elements.2 In addition to the memory efficiency of the way in which D is stored, one should

also pay attention to the memory efficiency of the method that is used to solve the linear system

given by (13) and (14). Gaussian elimination and other direct (i.e., non-iterative) methods

for solving linear systems generally require that at least a large number of elements of the

coefficient matrix, including zero elements, are stored in memory. Consequently, when using

such a method to solve the linear system given by (13) and (14), it would not be possible to fully

exploit the sparsity of D. Linear systems can also be solved using iterative methods that require

only the non-zero elements of the coefficient matrix to be stored in memory. One such method

is the method of successive overrelaxation (e.g., [14, 45, 48, 49]). In the algorithm in Figure 2,

this method is used to solve the linear system given by (13) and (14) (see lines 18–31 of the

algorithm). In addition to an initial guess q̂0 for the solution of the linear system, the method of

successive overrelaxation also requires a value for the relaxation factor ω. The value of ω, which

should be between 0 and 2, may have a large effect on the rate of convergence of the method,

and for some values of ω the method may not converge at all. An appropriate value for ω has

to be determined experimentally. For ω = 1, the method of successive overrelaxation reduces

to the Gauss-Seidel method, which is another iterative method for solving linear systems. We

refer to [45] for an in-depth discussion of both the method of successive overrelaxation and a

number of alternative methods for solving linear systems similar to the one given by (13) and

(14). We further note that the amount of main memory in most of today’s computers allows the

algorithm in Figure 2 to be run for chromosomes with length m up to about 24 bits.

2The non-zero elements of D can be stored efficiently by using two arrays: a one-dimensional array of size µ

for the diagonal elements of D and a two-dimensional array of size m× µ for the non-zero off-diagonal elements

of D. The element in the κth row and the ith column of the latter array is used to store d(j, i), where j has the

same binary encoding as i except that the κth bit is inverted.
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4 Application

In this section, we demonstrate an application of the algorithm presented in the previous section.

We study the use of a GA for modeling the evolution of strategies in iterated prisoner’s dilemmas

(IPDs). The use of GAs in this context was first studied by Axelrod [12] (reprinted in [13]; see

also [19, 39]) and after him by many others (e.g., [4, 8–10, 18, 30, 38, 40, 41, 47, 50, 57]). The

algorithm presented in the previous section is used to analyze the long-run behavior of our

GA. The results of the analysis are compared with results obtained using computer simulations.

We emphasize that our primary aim is merely to illustrate the usefulness of the mathematical

analysis provided in Section 2 and of the algorithm derived from the analysis in Section 3. It is

not our primary aim to provide new insights into the behavior of GAs in the context of IPDs.

4.1 Genetic algorithm modeling in iterated prisoner’s dilemmas

The way in which we model the evolution of strategies in IPDs is similar to the way in which

this was done by Axelrod [12]. However, Axelrod studied two approaches for modeling the

evolution of strategies. In one approach, the fitness of a chromosome is determined by the

performance of the chromosome in IPD games against a fixed set of opponents. In the other

approach, the fitness of a chromosome is determined by the performance of the chromosome in

IPD games against other chromosomes in the population. We restrict our attention to the second

approach. This is the approach on which almost all studies after Axelrod’s work have focused

(an exception is [40]).

We model the evolution of strategies in IPDs using a GA with a population size of n = 20

chromosomes. Each chromosome represents a strategy for playing IPD games. Players in IPD

games are assumed to choose the action they play, that is, whether they cooperate or defect,

based on their own actions and their opponent’s actions in the previous τ periods of the game,

where τ is referred to as players’ memory length. Players are further assumed to play only

pure strategies. We use the same binary encoding of strategies as was used by Axelrod [12].

For a description of this encoding, we refer to [12, 13, 19, 39]. Using Axelrod’s encoding, the

chromosome length m depends on the memory length τ . We consider three memory lengths,

1, 2, and 3 periods, which result in chromosome lengths of, respectively, 6, 20, and 70 bits. In

each iteration of the GA, each chromosome in the population plays an IPD game of 151 periods
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Table 2: Payoff matrix for a single period of an iterated prisoner’s dilemma game. The payoff

obtained by the row (column) player is reported first (second).

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

against all other chromosomes. In addition, each chromosome also plays a game against itself.

The payoff matrix for a single period of an IPD game is shown in Table 2. The payoffs in this

matrix must satisfy

S < P < R < T

and

S + T < 2R.

The payoff obtained by a chromosome in an IPD game equals the mean payoff obtained by the

chromosome in all periods of the game. The fitness f of a chromosome equals the mean payoff

obtained by the chromosome in the IPD games that it has played in the current iteration of the

GA. Like in Axelrod’s work [12], we use sigma scaling (e.g., [39]) to normalize the fitness of a

chromosome. The normalized fitness f̃ of a chromosome is given by

f̃ =





max

(
f − µf

σf

+ 1, 0

)
, if σf > 0

1, otherwise
(17)

where µf and σf denote, respectively, the mean and the standard deviation of the fitness of the

chromosomes in the population. The selection operator that we use is roulette wheel selection.

Selection is performed based on the normalized fitness of the chromosomes in the population.

The crossover operator that we use is single-point crossover.

4.2 Calculation of the long-run limit distribution of the genetic algorithm

In this subsection, we are concerned with the calculation of the long-run limit distribution of

the GA discussed in the previous subsection. To calculate the long-run limit distribution of the

GA, we use the algorithm presented in Section 3. This algorithm assumes that the probabilities

π(i, j, λ, λ′) defined in (1) can be calculated for all i and all j such that δ(i, j) = 1 and for all
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λ ∈ {1, . . . , n− 1} and all λ′ ∈ {0, . . . , n}. We now discuss the calculation of the probabilities

π(i, j, λ, λ′) for our GA. For i′, j′ ∈ C, let ϕ(i′, j′) denote the payoff obtained by chromosome

i′ in an IPD game against chromosome j′. Suppose that the population in the current iteration

of our GA equals v(i, j, λ), where i and j satisfy δ(i, j) = 1 and where λ ∈ {1, . . . , n − 1}.

That is, the population in the current iteration of our GA consists of λ times chromosome i and

n− λ times chromosome j. The fitness fi of chromosome i is then given by

fi =
λϕ(i, i) + (n− λ)ϕ(i, j)

n
.

Similarly, the fitness fj of chromosome j is given by

fj =
λϕ(j, i) + (n− λ)ϕ(j, j)

n
.

Furthermore, the mean µf and the standard deviation σf of the fitness of the chromosomes in

the population are equal to, respectively,

µf =
λfi + (n− λ)fj

n

and

σf =

√
λ(fi − µf )2 + (n− λ)(fj − µf )2

n
.

The normalized fitness f̃i of chromosome i is obtained by substituting fi, µf , and σf into (17).

The normalized fitness f̃j of chromosome j is obtained in a similar way. Let π̃i and π̃j denote

the probabilities that the roulette wheel selection operator selects, respectively, chromosome i

and chromosome j. Obviously, π̃i and π̃j equal

π̃i =
λf̃i

λf̃i + (n− λ)f̃j

π̃j =
(n− λ)f̃j

λf̃i + (n− λ)f̃j

.

π(i, j, λ, λ′), where λ′ ∈ {0, . . . , n}, equals the probability that the roulette wheel selection

operator turns population v(i, j, λ) into population v(i, j, λ′) in a single iteration of our GA.

Taking into account that the roulette wheel selection operator selects chromosomes indepen-

dently of each other, it can be seen that π(i, j, λ, λ′) equals the probability mass function of a

binomial distribution and is given by

π(i, j, λ, λ′) =

(
n

λ′

)
π̃i

λ′π̃j
n−λ′
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where the binomial coefficient
(

n
λ′
)

is defined as
(

n

λ′

)
=

n!

λ′!(n− λ′)!
.

The algorithm presented in Section 3 also assumes that all non-uniform populations are

almost uniform and that each chromosome in C is connected to all other chromosomes in C.

Because of the use of roulette wheel selection, the assumption that all non-uniform populations

are almost uniform is satisfied. The assumption that each chromosome in C is connected to

all other chromosomes in C is satisfied if and only if matrix D calculated in lines 1–17 of the

algorithm in Figure 2 is irreducible. (D =
[
d(i, j)

]
is said to be irreducible if and only if there

does not exist a non-empty set of chromosomes C̃ ⊂ C such that d(i, j) = 0 for all i ∈ C̃ and all

j ∈ C \ C̃.) For the particular values that we use for the parameters S, P , R, T , and τ (see the

next subsection), D turns out to be irreducible. Hence, the assumption that each chromosome

in C is connected to all other chromosomes in C is satisfied.

4.3 Analysis of the long-run behavior of the genetic algorithm

In this subsection, we analyze the long-run behavior of our GA for the prisoner’s dilemma

payoffs S = 0, P = 1, R = 3, and T = 5. These are the same payoffs as were used by

Axelrod [12] (see also [11]) and by many others. The analysis is performed using the algorithm

presented in Section 3. The use of this algorithm to analyze the long-run behavior of our GA

was discussed in the previous subsection. We compare the results obtained using the algorithm

with results obtained using computer simulations.3

The long-run limit distribution for a memory length of τ = 1 period is shown in Figure 3

(in dark grey). The distribution was calculated using the algorithm from Section 3. As men-

tioned before, τ = 1 results in a chromosome length of m = 6 bits. This implies that there are

µ = 2m = 64 different chromosomes and, as a consequence, that there are 64 different uniform

populations. The long-run limit distribution is a probability distribution over these populations.

As can be seen in Figure 3, the long-run limit distribution spreads most of its mass over ap-

proximately fifteen populations. It puts almost no mass on the remaining populations. Since all

3The software used to obtain the results reported in this subsection is available online at http://www.

ludowaltman.nl/ga_analysis/. The software runs in MATLAB and has been written partly in the MAT-

LAB programming language and partly in the C programming language.
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chromosomes in a uniform population are identical and represent the same strategy, the long-

run limit distribution can be used to determine the long-run limit probability that a particular

strategy is played. However, when doing so, it should be noted that there is some redundancy

in the binary encoding of strategies that we use (as was already pointed out by Axelrod [12]).

Due to this redundancy, it is possible that different chromosomes represent the same strategy.

Some strategies can be encoded in two or three different ways, and the strategies always coop-

erate and always defect can even be encoded in twelve different ways. Taking into account the

redundancy in the encoding, we have calculated the long-run limit probabilities of all possible

strategies. The six strategies with the highest long-run limit probability are reported in Table 3.

Together, these strategies have a long-run limit probability of almost 0.95. The remaining strate-

gies all have very low long-run limit probabilities. It is sometimes claimed (e.g., [11, 12]) that

a very effective strategy for playing IPD games is the tit for tat strategy, which is the strategy

of cooperating in the first period and repeating the opponent’s previous action thereafter. The

results reported in Table 3 do not really support this claim. As can be seen in the table, the

always defect strategy has by far the highest long-run limit probability. In the long run, this

strategy is played about 43% of the time. The tit for tat strategy has a long-run limit probability

of no more than 0.14. This is even slightly less than the long-run limit probability of another

cooperative strategy, namely the strategy that keeps cooperating until the opponent defects and

then keeps defecting forever.

In order to check the correctness of the algorithm presented in Section 3, we have also used

computer simulations to analyze the long-run behavior of our GA. Like above, we first focus

on the behavior of the GA for a memory length of τ = 1 period. We performed 500 runs of

the GA. The crossover rate was set to γ = 1.0, and the mutation rate was set to ε = 10−5.

Because of the very small value of ε, the simulation results should be similar to the results

obtained using the algorithm from Section 3. (Recall that the latter results hold in the limit as ε

approaches zero.) Each run of the GA lasted 2 ·105 iterations. This seemed sufficient for the GA

to reach its steady state. After the last iteration of a GA run, we almost always observed that the

population was uniform. Based on the 500 GA runs that we had performed, we estimated for

each uniform population the probability of observing that population at the end of a GA run. In

this way, we obtained a probability distribution over the uniform populations. This distribution

is shown in Figure 3 (in light grey). Figure 3 allows us to compare the distribution with the
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Figure 3: The long-run limit distribution calculated using the algorithm presented in Section 3

(in dark grey) and a probability distribution over the uniform populations estimated using com-

puter simulations (in light grey). The memory length τ equals 1. On the horizontal axis, integers

between 0 and 63 are used to represent the uniform populations. Integer i represents the uniform

population consisting of 20 times chromosome i.

Table 3: The six strategies with the highest long-run limit probability (reported in the first

column). The memory length τ equals 1.

Prob. Strategy Chromosomes

0.430 Always defect 0, 2, 8, 10, 16, 24, 32,

34, 40, 42, 48, 50

0.147 Start cooperating; cooperate if and only if both you and

your opponent cooperated in the previous period

56

0.139 Start cooperating; cooperate if and only if your opponent

cooperated in the previous period (tit for tat)

44, 60

0.133 Start defecting; cooperate if and only if you and your op-

ponent played different actions in the previous period

6, 54

0.051 Start cooperating; cooperate unless you cooperated in the

previous period and your opponent did not

13, 45, 61

0.049 Start defecting; cooperate unless you cooperated in the pre-

vious period and your opponent did not

29
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long-run limit distribution calculated using the algorithm from Section 3. It can be seen that the

two distributions are very similar. This confirms the correctness of the algorithm presented in

Section 3.

In order to examine to what extent our GA results in the evolution of cooperative strategies,

we now focus on the long-run mean fitness, that is, the mean fitness of a chromosome after a

large number of iterations of the GA. For various values of the memory length τ , the crossover

rate γ, and the mutation rate ε, the long-run mean fitness estimated using computer simulations

is reported in Table 4. The associated 95% confidence interval is also provided in the table.

The simulation results for τ = 1 are based on 500 runs of the GA, and the simulation results

for τ = 2 and τ = 3 are based on 200 runs. Each run lasted 2 · 105 iterations. The long-run

mean fitness was estimated by taking the average over all GA runs of the mean fitness of a

chromosome at the end of a run. In the limit as ε approaches zero, the long-run mean fitness

can be calculated exactly and does not depend on γ. The calculation of the long-run mean

fitness is based on the long-run limit distribution of the GA, which can be obtained using the

algorithm presented in Section 3. For τ = 1 and τ = 2, the long-run mean fitness in the limit

as ε approaches zero is reported in Table 4. For τ = 3, we cannot calculate the long-run limit

distribution of the GA and we therefore do not know the long-run mean fitness in the limit as ε

approaches zero. Calculating the long-run limit distribution of the GA is impossible for τ = 3

because the chromosome length equals m = 70 bits and because for such a chromosome length

storing the long-run limit distribution requires a prohibitive amount of computer memory.

Based on the results in Table 4, a number of observations can be made. First, for τ = 1 and

τ = 2, the results obtained for ε = 10−4 and ε = 10−5 turn out to be very similar to the results

obtained for ε → 0. This again confirms the correctness of the algorithm presented in Section 3.

Second, for τ = 1, we find that the results are quite sensitive to the value of ε. Studies on GA

modeling sometimes report that the long-run behavior of a GA is relatively insensitive to the

value of ε. Our results demonstrate that this need not always be the case. Third, for small values

of ε, it can be seen that increasing τ leads to a higher long-run mean fitness and, hence, to more

cooperation. The evolution of cooperative strategies in IPD games therefore seems more likely

when players have longer memory lengths. Finally, it can be observed that the value of γ has

no significant effect on our results. This is in line with the mathematical analysis provided

in Section 2. The mathematical analysis implies that for ε → 0 the long-run mean fitness is
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independent of γ. The results in Table 4 indicate that this is the case not only for ε → 0 but

more generally.

5 Conclusions

In this paper, we have presented a mathematical analysis of the long-run behavior of GAs that

are used for modeling social phenomena. Under the assumption of a positive but infinitely

small mutation rate, the analysis provides a full characterization of the long-run behavior of

GAs with a binary encoding. Based on the analysis, we have derived an algorithm for calcu-

lating the long-run behavior of GAs. In an economic context, the algorithm can for example

be used to determine whether convergence to an equilibrium will take place and, if so, what

kind of equilibrium will emerge. Compared with computer simulations, the main advantage of

the algorithm that we have derived is that it calculates the long-run behavior of GAs exactly.

Computer simulations only estimate the long-run behavior of GAs.

To demonstrate the usefulness of our mathematical analysis, we have replicated a well-

known study by Axelrod in which a GA is used to model the evolution of strategies in iterated

prisoner’s dilemmas [12]. We have used both our exact algorithm and computer simulations to

replicate Axelrod’s study. By comparing the results of the two approaches, we have confirmed

the correctness of our algorithm. We have also obtained some interesting new insights. For

example, when players have a memory length of one period, the tit for tat strategy turns out

to be less important than is sometimes claimed (e.g., [11, 12]). In the long run, the strategy is

played only 14% of the time. Another finding is that the long-run behavior of a GA can be

quite sensitive to the value of the mutation rate. We regard this as a serious problem, since the

value of the mutation rate is typically chosen in a fairly arbitrary way without any empirical

justification (see also [19]).

The mathematical analysis that we have presented also reveals that if the mutation rate is

infinitely small the crossover rate has no effect on the long-run behavior of a GA. This remark-

able result is perfectly in line with the simulation results that we have reported in Section 4.

For various values of the mutation rate, the simulation results show no significant effect of the

crossover rate on the long-run behavior of a GA. Hence, when GAs are used for modeling social

phenomena, the crossover rate seems to be a rather unimportant parameter, at least when the

25



Ta
bl

e
4:

E
st

im
at

ed
lo

ng
-r

un
m

ea
n

fit
ne

ss
an

d
as

so
ci

at
ed

95
%

co
nfi

de
nc

e
in

te
rv

al
fo

rv
ar

io
us

va
lu

es
of

th
e

m
em

or
y

le
ng

th
τ

,t
he

cr
os

so
ve

rr
at

e

γ
,a

nd
th

e
m

ut
at

io
n

ra
te

ε.
Fo

rε
→

0,
th

e
lo

ng
-r

un
m

ea
n

fit
ne

ss
ha

s
be

en
ca

lc
ul

at
ed

ex
ac

tly
.

τ
=

1
τ

=
2

τ
=

3

γ
=

0.
0

γ
=

0.
5

γ
=

1.
0

γ
=

0.
0

γ
=

0.
5

γ
=

1.
0

γ
=

0.
0

γ
=

0.
5

γ
=

1.
0

ε
=

10
−2

2.
76
±

0.
05

2.
71
±

0.
05

2.
79
±

0.
04

2.
64
±

0.
08

2.
72
±

0.
07

2.
67
±

0.
07

2.
67
±

0.
06

2.
64
±

0.
07

2.
70
±

0.
06

ε
=

10
−3

2.
23
±

0.
08

2.
24
±

0.
08

2.
25
±

0.
08

2.
34
±

0.
12

2.
41
±

0.
11

2.
38
±

0.
11

2.
55
±

0.
09

2.
60
±

0.
09

2.
59
±

0.
08

ε
=

10
−4

1.
93
±

0.
09

1.
94
±

0.
09

1.
90
±

0.
09

2.
25
±

0.
12

2.
24
±

0.
12

2.
32
±

0.
12

2.
57
±

0.
09

2.
53
±

0.
09

2.
50
±

0.
09

ε
=

10
−5

1.
85
±

0.
09

1.
81
±

0.
09

1.
85
±

0.
09

2.
28
±

0.
12

2.
31
±

0.
11

2.
22
±

0.
12

2.
58
±

0.
09

2.
44
±

0.
10

2.
44
±

0.
10

ε
→

0
1.

84
1.

84
1.

84
2.

29
2.

29
2.

29
?

?
?

26



focus is on the long run (for the short run, see [47]). It seems likely that in many cases leaving

out the crossover operator altogether has no significant effect on the long-run behavior of a GA.

Interestingly, leaving out the crossover operator brings GAs quite close to well-known models

in evolutionary game theory, such as those studied in [31, 52].

Finally, we note that an analysis such as the one presented in this paper can be performed

not only for GAs with a binary encoding but also for other types of evolutionary algorithms.

From a modeling point of view, a binary encoding in many cases has the disadvantage that it

lacks a clear interpretation (e.g., [19]). The use of a binary encoding can therefore be difficult

to justify and may even lead to artifacts (as suggested in [55]). Probably for these reasons, some

researchers use evolutionary algorithms without a binary encoding (e.g., [28,33]). The analysis

presented in this paper then does not directly apply. However, when the action space of agents is

assumed discrete, the long-run behavior of evolutionary algorithms without a binary encoding

can still be analyzed in a similar way as we have done in this paper, namely by relying on

mathematical results provided by Freidlin and Wentzell [22]. This indicates that our approach

is quite general and can be adapted relatively easily to other types of evolutionary algorithms.

Appendix

In this appendix, we prove the mathematical results presented in Section 2. Before proving the

results, we first provide some definitions and lemmas on Markov chains.

Definition 6. A collection of random variables {Xt}, where the index t takes values in {0, 1, . . .}
and where X0, X1, . . . take values in a finite set X , is called a finite discrete-time Markov chain

if

Pr(Xt+1 = xt+1 |Xt = xt) = Pr(Xt+1 = xt+1 |Xt = xt, . . . , X0 = x0)

for all t and all x0, . . . , xt+1 ∈ X . The elements of X are called the states of the Markov chain.

X is called the state space of the Markov chain.

Definition 7. A finite discrete-time Markov chain {Xt} is said to be time-homogeneous if

Pr(Xt+1 = xt+1 |Xt = xt) = p(xt, xt+1)

for all t, all xt, xt+1 ∈ X , and some function p : X 2 → [0, 1] that does not depend on t. For

x, x′ ∈ X , the probability p(x, x′) is called the transition probability from state x to state x′.
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The matrix

P =
[
p(x, x′)

]
x,x′∈X

is called the transition matrix of the Markov chain.

In the remainder of this appendix, the term Markov chain always refers to a finite discrete-time

Markov chain that is time-homogeneous.

Definition 8. Consider a Markov chain {Xt}. A row vector p̄ = [p̄(x)]x∈X that satisfies

p̄P = p̄

p̄1 = 1

is called a stationary distribution of the Markov chain. For x ∈ X , the probability p̄(x) is called

the stationary probability of state x.

Definition 9. A Markov chain {Xt} is said to be irreducible if for each x, x′ ∈ X there exists a

positive integer N such that Pr(Xt+N = x′ |Xt = x) > 0.

Lemma 2. If a Markov chain {Xt} is irreducible, it has a unique stationary distribution p̄.

Proof. See, for example, [48, Th. 2.3.3].

Definition 10. An irreducible Markov chain {Xt} is said to be aperiodic if for each x ∈ X
there exists a positive integer N such that Pr(Xt+M = x |Xt = x) > 0 for all integers M ≥ N .

Lemma 3. If a Markov chain {Xt} is irreducible and aperiodic, then

lim
t→∞

Pr(Xt = x |X0 = x0) = p̄(x)

for all x, x0 ∈ X .

Proof. See, for example, [48, Th. 2.3.1 and Lemma 2.3.2].

Lemma 4. Let a Markov chain {Xt} be irreducible. Let Y ⊂ X and Y 6= ∅. Let

T =
[
p(x, x′)

]
x,x′∈Y

U =
[
p(x, x′)

]
x∈Y,x′∈X\Y

V =
[
p(x, x′)

]
x∈X\Y,x′∈Y

W =
[
p(x, x′)

]
x,x′∈X\Y
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and let

PY = T + U(I−W)−1V.

Let {Yt} denote a Markov chain with state space Y and transition matrix PY . Markov chain

{Yt} is then irreducible and has stationary probabilities p̄Y (y) that are given by

p̄Y (y) =
p̄(y)∑

y′∈Y p̄(y′)

where y ∈ Y .

Proof. See [32, Th. 6.1.1].4

Definition 11. Consider a set X . For x, x′ ∈ X , the ordered pair (x, x′) is called an arrow from

x to x′. For x1, . . . , xN ∈ X , the sequence of arrows ((x1, x2), (x2, x3), . . . , (xN−2, xN−1), (xN−1, xN))

is called a path from x1 to xN . For x ∈ X , a set of arrows E is called an x-tree onX if it satisfies

the following conditions:

(1) E contains no arrow that starts at x.

(2) For each x′ ∈ X \ {x}, E contains exactly one arrow that starts at x′.

(3) For each x′ ∈ X \ {x}, E contains a path from x′ to x (or, formulated more accurately,

for each x′ ∈ X \ {x}, there exists a path from x′ to x such that E contains all arrows of

the path).

Lemma 5. Let a Markov chain {Xt} be irreducible. For x ∈ X , let E(x) denote the set of all

x-trees on X . The stationary probabilities p̄(x) of the Markov chain are then given by

p̄(x) =
p̃(x)∑

x′∈X p̃(x′)

where x ∈ X and

p̃(x) =
∑

E∈E(x)

∏

(x,x′)∈E

p(x, x′).

Proof. A proof is provided by Freidlin and Wentzell [22, Ch. 6, Lemma 3.1] (see also [19,

Th. 4.2.1]).
4The terminology used in [32] differs from the terminology used in many other texts on Markov chains. In

particular, an ergodic Markov chain in [32] corresponds to an irreducible Markov chain in this paper.

29



Using the above definitions and lemmas, we now prove the mathematical results presented

in Section 2.

Proof of Lemma 1. Notice that

Pr(Wt+1 = wt+1 |Wt = wt) = Pr(Wt+1 = wt+1 |Wt = wt, . . . , W0 = w0)

for all t ∈ {0, 1, . . .} and all w0, . . . , wt+1 ∈ W . That is, the population in iteration t + 1 of

a GA depends only on the population in iteration t. Given the population in iteration t, the

population in iteration t + 1 is independent of the populations in iterations 0, . . . , t− 1. Notice

further that

Pr(Wt+1 = wt+1 |Wt = wt) = q(wt, wt+1)

for all t ∈ {0, 1, . . .}, all wt, wt+1 ∈ W , and some function q : W2 → [0, 1] that does not depend

on t. That is, the probability of going from one population to some other population remains

constant over time. (Recall that the crossover rate γ and the mutation rate ε are assumed to

remain constant over time.) It now follows from Definitions 6 and 7 that {Wt}, where the index

t takes values in {0, 1, . . .}, is a Markov chain with state space W and transition probabilities

q(w, w′). Since the mutation rate ε is assumed to be positive, any population can be turned into

any other population in a single iteration of a GA. Hence, q(w,w′) > 0 for all w,w′ ∈ W .

Consequently, it follows from Definitions 9 and 10 that Markov chain {Wt} is irreducible and

aperiodic. Lemma 3 then implies that for each population w ∈ W there exists a stationary

probability q̄(w) such that

lim
t→∞

Pr(Wt = w |W0 = w0) = q̄(w) (18)

for all w0 ∈ W . We refer to a stationary probability q̄(w) as the long-run probability of pop-

ulation w. Finally, (2) is obtained from (18) by taking into account the time-homogeneity of

Markov chain {Wt}. This completes the proof of Lemma 1.

Proof of Theorem 1. As shown in the proof of Lemma 1, {Wt}, where the index t takes values

in {0, 1, . . .}, is an irreducible and aperiodic Markov chain with state space W . Markov chain

{Wt} has stationary probabilities q̄(w), to which we refer as long-run probabilities. We now

introduce some additional mathematical notation. Like in the proof of Lemma 1, the function

q : W2 → [0, 1] denotes the transition probabilities of Markov chain {Wt}. For w, w′ ∈ W ,
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q(w, w′) is a polynomial in the mutation rate ε and can therefore be written as

q(w,w′) =
∞∑

l=0

α(w,w′, l)εl (19)

where α(w,w′, 0), α(w,w′, 1), . . . denote the coefficients of the polynomial. c(w, w′) is defined

as

c(w,w′) = min{l |α(w, w′, l) 6= 0}. (20)

That is, c(w, w′) is defined as the rate at which q(w,w′) approaches zero as ε approaches zero.

It follows from this definition that c(w, w′) equals the minimum number of mutations required

to go from population w to population w′ in a single iteration of a GA. α(w,w′) is defined as

α(w,w′) = α(w, w′, c(w, w′)). (21)

For w ∈ W , q̃(w) is defined as

q̃(w) =
∑

E∈E(w)

∏

(w,w′)∈E

q(w, w′) (22)

where E(w) denotes the set of all w-trees on W . Since the transition probabilities q(w,w′) are

polynomials in ε, q̃(w) is a polynomial in ε too. q̃(w) can therefore be written as

q̃(w) =
∞∑

l=0

α̃(w, l)εl (23)

where α̃(w, 0), α̃(w, 1), . . . denote the coefficients of the polynomial. c̃(w) is defined as

c̃(w) = min{l | α̃(w, l) 6= 0}. (24)

That is, c̃(w) is defined as the rate at which q̃(w) approaches zero as ε approaches zero. α̃(w)

is defined as

α̃(w) = α̃(w, c̃(w)). (25)

Using the mathematical notation introduced above, we first prove part (i) of Theorem 1. It

follows from (19), (20), and (22)–(24) that c̃(w) can be written as

c̃(w) = min
E∈E(w)

∑

(w,w′)∈E

c(w,w′). (26)

At least one mutation is required to go from a uniform population u ∈ U to any other population

w ∈ W \{u}. Hence, c(u,w) ≥ 1 for all u ∈ U and all w ∈ W such that u 6= w. Consequently,
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it follows from (26) that c̃(u) ≥ µ − 1 for all u ∈ U and that c̃(w) ≥ µ for all w ∈ W \ U .

We now show that for each chromosome i it is possible to construct a u(i)-tree E on W that

satisfies
∑

(w,w′)∈E

c(w, w′) = µ− 1. (27)

Consider an arbitrary chromosome i. Let the function ρ : C → C satisfy the following condi-

tions:

(1) For each j 6= i, chromosome j is directly connected to chromosome ρ(j).

(2) For each j 6= i, ρN(j) = i for some positive integer N .

In condition (2), ρN(j) is defined as

ρN(j) =





ρ(j), if N = 1

ρ
(
ρN−1(j)

)
, otherwise.

Because Theorem 1 assumes that each chromosome is connected to all other chromosomes, a

function ρ that satisfies the above two conditions is guaranteed to exist. In order to construct a

u(i)-tree E on W that satisfies (27), we start with an empty set of arrows E. For each j 6= i,

we then add an arrow to E that starts at u(j) and ends at v(j, ρ(j), n − 1). It follows from

condition (1) that one mutation is required to go from u(j) to v(j, ρ(j), n − 1) in a single

iteration of a GA. Hence, c(u(j), v(j, ρ(j), n − 1)) = 1. Next, for each j 6= i, we add a path

to E that starts at v(j, ρ(j), n − 1) and ends at u(ρ(j)). Each path that we add to E must

contain no cycles, that is, it must contain no two arrows (w1, w
′
1) and (w2, w

′
2) such that either

w1 = w2 or w′
1 = w′

2. In addition, each path must only contain arrows (w,w′) for which

c(w, w′) = 0. Condition (1) guarantees the existence of paths that satisfy the latter requirement.

Due to condition (2), for each u ∈ U \ {u(i)}, E now contains a path from u to u(i). Finally,

for each w ∈ W \ U , if E does not yet contain an arrow that starts at w, we add such an arrow

to E. We choose the arrows that we add to E in such a way that, after adding the arrows, E

contains, for each w ∈ W \ U , a path from w to some u ∈ U (which implies that E contains a

path from w to u(i)). In addition, we only choose arrows (w,w′) for which c(w,w′) = 0. We

can choose the arrows in this way because Theorem 1 assumes that all non-uniform populations

are almost uniform. Using Definition 11, it can be seen that the set of arrows E constructed as

discussed above is a u(i)-tree on W . Moreover, E satisfies (27). We have therefore shown that
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for each chromosome i a u(i)-tree E onW that satisfies (27) can be constructed. Consequently,

it follows from (26) that c̃(u) ≤ µ − 1 for all u ∈ U . Since it has been shown above that

c̃(u) ≥ µ − 1 for all u ∈ U , this implies that c̃(u) = µ − 1 for all u ∈ U . It has also been

shown above that c̃(w) ≥ µ for all w ∈ W \ U . Hence, as the mutation rate ε approaches zero,

q̃(w) approaches zero faster for w ∈ W \ U than for w ∈ U . It then follows from Lemma 5

that for all non-uniform populations w ∈ W \ U the long-run probability q̄(w) approaches zero

as ε approaches zero. In other words, the long-run limit probability q̂(w) equals zero for all

non-uniform populations w ∈ W \ U . This completes the proof of part (i) of Theorem 1.

We now prove part (ii) of Theorem 1. It has been shown above that c̃(u) = µ − 1 for all

u ∈ U . Consequently, as the mutation rate ε approaches zero, q̃(u) approaches zero equally fast

for all u ∈ U . Using Lemma 5, it can therefore be seen that the long-run limit probability q̂(u)

of a uniform population u ∈ U is given by

q̂(u) = lim
ε→0

q̄(u) =
α̃(u)∑

u′∈U α̃(u′)
. (28)

For u ∈ U , let Ẽ(u) be defined as

Ẽ(u) =
{

E ∈ E(u)
∣∣∣ ∑

(w,w′)∈E c(w, w′) = µ− 1
}

. (29)

It then follows from (19)–(25) that α̃(u) can be written as

α̃(u) =
∑

E∈Ẽ(u)

∏

(w,w′)∈E

α(w, w′). (30)

Consider an arbitrary uniform population u ∈ U and an arbitrary u-tree E on W , where E ∈
Ẽ(u). Let E1 and E2 denote sets of arrows that are given by

E1 = {(w,w′) ∈ E |w ∈ V}
E2 = E \ E1.

It is immediately clear that E1 satisfies the following conditions:

(A1) E1 contains no arrow that starts at u or at some w ∈ W \ V .

(A2) For each v ∈ V \ {u}, E1 contains exactly one arrow that starts at v.

Notice that c(u′, w) ≥ 1 for all u′ ∈ U and all w ∈ W such that u′ 6= w. Notice further that, due

to (29),
∑

(w,w′)∈E1
c(w, w′) ≤ µ − 1. These observations imply that, for each (w, w′) ∈ E1,

c(w, w′) = 1 if w ∈ U and c(w, w′) = 0 otherwise. They also imply that E1 satisfies the

following condition:
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(A3)
∑

(w,w′)∈E1

c(w,w′) = µ− 1.

It is easy to see that c(v, w) ≥ 1 for all v ∈ V and all w ∈ W \ V and that c(u′, w) ≥ 2 for all

u′ ∈ U and all w ∈ W \ V . Consequently, E1 contains no arrows that end at some w ∈ W \ V .

This implies the following condition on E1:

(A4) For each v ∈ V \ {u}, E1 contains a path from v to u.

It is immediately clear that E2 satisfies the following conditions:

(B1) E2 contains no arrow that starts at some v ∈ V .

(B2) For each w ∈ W \ V , E2 contains exactly one arrow that starts at w.

(B3) For each w ∈ W \ V , E2 contains a path from w to some v ∈ V .

Furthermore, taking into account that E1 satisfies condition (A3), (29) implies that E2 satisfies

the following condition:

(B4)
∑

(w,w′)∈E2

c(w,w′) = 0.

For u ∈ U , let Ẽ1(u) denote a set that contains all sets of arrows E1 satisfying conditions (A1)–

(A4). Let Ẽ2 denote a set that contains all sets of arrows E2 satisfying conditions (B1)–(B4).

Notice that Ẽ2 does not depend on u. Clearly, for each E ∈ Ẽ(u), there exist an E1 ∈ Ẽ1(u) and

an E2 ∈ Ẽ2 such that E = E1 ∪ E2. Conversely, it can be seen that for each E1 ∈ Ẽ1(u) and

each E2 ∈ Ẽ2 there exists an E ∈ Ẽ(u) such that E = E1 ∪ E2. Hence,

Ẽ(u) =
{

E1 ∪ E2

∣∣∣ E1 ∈ Ẽ1(u), E2 ∈ Ẽ2

}
.

Equation (30) can now be written as

α̃(u) =
(∑

E1∈Ẽ1(u)

∏
(w,w′)∈E1

α(w, w′)
)(∑

E2∈Ẽ2
∏

(w,w′)∈E2
α(w,w′)

)
.

Consequently, it follows from (28) that

q̂(u) = lim
ε→0

q̄(u) =

∑
E1∈Ẽ1(u)

∏
(w,w′)∈E1

α(w,w′)∑
u′∈U

∑
E1∈Ẽ1(u′)

∏
(w,w′)∈E1

α(w, w′)
. (31)

Based on (31), the following observations can be made:
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(1) For w, w′ ∈ W such that w 6= w′ and such that there exists an E1 ∈ ⋃
u′∈U Ẽ1(u

′)

that contains an arrow (w, w′), limε→0 q̄(u) depends on the term of lowest degree in the

transition probability q(w, w′) and does not depend on other terms in q(w, w′).

(2) For w, w′ ∈ W such that w 6= w′ and such that there does not exist an E1 ∈
⋃

u′∈U Ẽ1(u
′)

that contains an arrow (w, w′), limε→0 q̄(u) does not depend on any of the terms in the

transition probability q(w, w′).

Let {Vt}, where the index t takes values in {0, 1, . . .}, denote a Markov chain with state space V ,

transition probabilities r(v, v′), and stationary probabilities r̄(v), where v, v′ ∈ V . For v 6= v′,

let

r(v, v′) =





α(v, v′)ε, if v ∈ U and c(v, v′) = 1

α(v, v′), if v /∈ U and c(v, v′) = 0

0, otherwise.

(32)

Furthermore, let r(v, v) = 1 − ∑
v′∈V\{v} r(v, v′). Clearly, Markov chain {Vt} is irreducible.

Taking into account the two observations made above, it can be seen that limε→0 r̄(v) =

limε→0 q̄(v) for all v ∈ V . That is, in the limit as ε approaches zero, corresponding states

of Markov chains {Vt} and {Wt} have the same stationary probability. It follows from this that

limε→0 r̄(v) = q̂(v) for all v ∈ V .

The following observations can be made:

(1) For v ∈ U and v′ ∈ V , c(v, v′) = 1 if and only if v = u(i) and v′ = v(i, j, n − 1) for

some i and some j such that δ(i, j) = 1.

(2) For v ∈ U and v′ ∈ V such that c(v, v′) = 1, q(v, v′) equals the probability that the

mutation operator inverts one specific bit in the binary encoding of an arbitrarily chosen

chromosome and that it does not invert any other bits in the binary encoding of the chosen

chromosome or of any other chromosome in the population. This probability does not

depend on v or v′. Consequently, for all v1, v2 ∈ U and all v′1, v
′
2 ∈ V such that c(v1, v

′
1) =

c(v2, v
′
2) = 1, q(v1, v

′
1) = q(v2, v

′
2) and hence α(v1, v

′
1) = α(v2, v

′
2).

(3) For v ∈ V \ U and v′ ∈ V , c(v, v′) = 0 only if v = v(i, j, λ) and v′ = v(i, j, λ′) for

some i and some j such that δ(i, j) = 1 and for some λ ∈ {1, . . . , n − 1} and some

λ′ ∈ {0, . . . , n}.
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(4) For v ∈ V \ U and v′ ∈ V such that c(v, v′) = 0, α(v, v′) = π(i, j, λ, λ′), where i, j, λ,

and λ′ satisfy v = v(i, j, λ) and v′ = v(i, j, λ′) and where π(i, j, λ, λ′) is defined in (1).

Let α = α(v, v′) for all v ∈ U and all v′ ∈ V such that c(v, v′) = 1. Using (32), it follows from

the first two observations made above that r(v, v′) = αε if v = u(i) and v′ = v(i, j, n − 1) for

some i and some j such that δ(i, j) = 1. It also follows that r(v, v′) = 1−mαε if v = v′ ∈ U .

Furthermore, taking into account the last two observations made above, it can be seen from (32)

that r(v, v′) = π(i, j, λ, λ′) if v = v(i, j, λ) and v′ = v(i, j, λ′) for some i and some j such that

δ(i, j) = 1 and for some λ ∈ {1, . . . , n − 1} and some λ′ ∈ {0, . . . , n}. Finally, (32) implies

that r(v, v′) = 0 if none of the above conditions is satisfied. Let the vector ṽ =
[
ṽ1 · · · ṽξ

]

be given by

ṽT =




v(g1, h1, 1)
...

v(g1, h1, n− 1)

v(g2, h2, 1)
...
...

v(gν−1, hν−1, n− 1)

v(gν , hν , 1)
...

v(gν , hν , n− 1)




where g = [gk] and h = [hk] are defined in Section 2. Notice that ṽ contains each population

in V \ U exactly once. It can be seen that

(1−mαε)I =




r(u(0), u(0)) · · · r(u(0), u(µ− 1))
... . . . ...

r(u(µ− 1), u(0)) · · · r(u(µ− 1), u(µ− 1))


 (33)

αεA =




r(u(0), ṽ1) · · · r(u(0), ṽξ)
... . . . ...

r(u(µ− 1), ṽ1) · · · r(u(µ− 1), ṽξ)


 (34)

B =




r(ṽ1, u(0)) · · · r(ṽ1, u(µ− 1))
... . . . ...

r(ṽξ, u(0)) · · · r(ṽξ, u(µ− 1))


 (35)
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C =




r(ṽ1, ṽ1) · · · r(ṽ1, ṽξ)
... . . . ...

r(ṽξ, ṽ1) · · · r(ṽξ, ṽξ)


 (36)

where A, B, and C are defined in (3), (6), and (9). Let S denote a µ× µ matrix that is obtained

from the matrices in (33)–(36) and that is given by

S = (1−mαε)I + αεA(I−C)−1B. (37)

This can be written more simply as

S = I + αεD

where D is defined in (12). Let {Ut}, where the index t takes values in {0, 1, . . .}, denote a

Markov chain with state space U and transition matrix S. Using (33)–(37), it follows from

Lemma 4 that Markov chain {Ut} is irreducible and has stationary probabilities s̄(u) that are

given by

s̄(u) =
r̄(u)∑

u′∈U r̄(u′)
(38)

where u ∈ U . Definition 8 states that the stationary distribution s̄ =
[
s̄(u(0)) · · · s̄(u(µ− 1))

]

of Markov chain {Ut} satisfies

s̄S = s̄ (39)

s̄1 = 1. (40)

Lemma 2 implies that this linear system has a unique solution. The equality in (39) can be

written as

s̄(S− I) = αεs̄D = 0.

Since α > 0 and ε > 0, this can be simplified to

s̄D = 0. (41)

Notice that D does not depend on ε. s̄ therefore does not depend on ε either. Recall further that

limε→0 r̄(v) = q̂(v) for all v ∈ V and that q̂(w) = 0 for all w ∈ W \ U . Using (38), it now

follows that

s̄(u) = lim
ε→0

s̄(u) = lim
ε→0

r̄(u)∑
u′∈U r̄(u′)

=
q̂(u)∑

u′∈U q̂(u′)
= q̂(u)
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for all u ∈ U . Hence, the stationary distribution s̄ of Markov chain {Ut} equals the long-run

limit distribution q̂. Consequently, (40) and (41) imply that q̂ satisfies (13) and (14). It also

follows that the linear system given by (13) and (14) has a unique solution. This completes the

proof of part (ii) of Theorem 1.
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schemes on the iterated prisoner’s dilemma. Computational Economics, 17(2–3):253–263,

2001.

[51] F. Vega-Redondo. Evolution, Games, and Economic Behaviour. Oxford University Press,

1996.

[52] F. Vega-Redondo. The evolution of Walrasian behavior. Econometrica, 65:375–384, 1997.

[53] M. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press, 1999.

[54] N. Vriend. An illustration of the essential difference between individual and social learn-

ing, and its consequences for computational analyses. Journal of Economic Dynamics and

Control, 24(1):1–19, 2000.

[55] L. Waltman and N. Van Eck. Robust evolutionary algorithm design for socio-economic

simulation: Some comments. Computational Economics, 33(1):103–105, 2009.

[56] J. Weibull. Evolutionary Game Theory. MIT Press, 1995.

[57] X. Yao and P. Darwen. An experimental study of N-person iterated prisoner’s dilemma

games. Informatica, 18(4):435–450, 1994.

42



[58] H. Young. The evolution of conventions. Econometrica, 61:57–84, 1993.

43



Publications in the Report Series Research in Management 
 
ERIM Research Program: “Business Processes, Logistics and Information Systems” 
 
2009 
 
How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures 
Nees Jan van Eck and Ludo Waltman 
ERS-2009-001-LIS 
http://hdl.handle.net/1765/14528  
 
Spare Parts Logistics and Installed Base Information 
Muhammad N. Jalil, Rob A. Zuidwijk, Moritz Fleischmann, and Jo A.E.E. van Nunen 
ERS-2009-002-LIS 
http://hdl.handle.net/1765/14529  
 
Open Location Management in Automated Warehousing Systems 
Yugang YU and René B.M. de Koster 
ERS-2009-004-LIS 
http://hdl.handle.net/1765/14615  
 
VOSviewer: A Computer Program for Bibliometric Mapping 
Nees Jan van Eck and Ludo Waltman 
ERS-2009-005-LIS 
http://hdl.handle.net/1765/14841  
 
Nash Game Model for Optimizing Market Strategies, Configuration of Platform Products in a Vendor Managed Inventory 
(VMI) Supply Chain for a Product Family 
Yugang Yu and George Q. Huang 
ERS-2009-009-LIS 
http://hdl.handle.net/1765/15029  
 
A Mathematical Analysis of the Long-run Behavior of Genetic Algorithms for Social Modeling 
Ludo Waltman and Nees Jan van Eck 
ERS-2009-011-LIS 
http://hdl.handle.net/1765/15181  
 
A Taxonomy of Bibliometric Performance Indicators Based on the Property of Consistency 
Ludo Waltman and Nees Jan van Eck 
ERS-2009-014-LIS 
http://hdl.handle.net/1765/15182  
 
A Stochastic Dynamic Programming Approach to Revenue Management in a Make-to-Stock Production System 
Rainer Quante, Moritz Fleischmann, and Herbert Meyr 
ERS-2009-015-LIS 
http://hdl.handle.net/1765/15183  
 
Some Comments on Egghe’s Derivation of the Impact Factor Distribution 
Ludo Waltman and Nees Jan van Eck 
ERS-2009-016-LIS 
http://hdl.handle.net/1765/15184  
                                                 
  A complete overview of the ERIM Report Series Research in Management: 

https://ep.eur.nl/handle/1765/1 
 
 ERIM Research Programs: 
 LIS Business Processes, Logistics and Information Systems 
 ORG Organizing for Performance 
 MKT Marketing 
 F&A Finance and Accounting 
 STR Strategy and Entrepreneurship  

http://hdl.handle.net/1765/14528
http://hdl.handle.net/1765/14529
http://hdl.handle.net/1765/14615
http://hdl.handle.net/1765/14841
http://hdl.handle.net/1765/15029
http://hdl.handle.net/1765/15181
http://hdl.handle.net/1765/15182
http://hdl.handle.net/1765/15183
http://hdl.handle.net/1765/15184
https://ep.eur.nl/handle/1765/1

	Titelblad ERS 2009 011 LIS.pdf
	ERIM Report Series reference number
	Publication 
	March 2009
	Number of pages
	43
	Persistent paper URL
	http://hdl.handle.net/1765/15181
	Email address corresponding author
	lwaltman@ese.eur.nl
	Address
	 RSM Erasmus University / Erasmus School of Economics 
	Phone:  + 31 10 408 1182  
	Fax: + 31 10 408 9640

	Abstract and Keywords
	Abstract
	Free Keywords
	Availability
	Classifications

	overzicht LIS 2009.pdf
	ERIM Research Program: “Business Processes, Logistics and Information Systems”


