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Abstract

In this chapter we use a simulation experiment to examine whether the seasonal

adjustment methods Census X12-ARIMA and TRAMO/SEATS effectively remove

seasonality properties from time series data, while preserving other features like the

stochastic trend. As data generating processes we use a variety of processes that are

actually found in practice. These processes include constant seasonality, changing

seasonal patterns due to seasonal unit roots and processes with periodically varying

parameters. To check for seasonality, we consider tests for seasonal unit roots, for

deterministic seasonality, for seasonality in the variance, and for periodicity in the

parameters. Our simulation results show that both adjustment methods are able to

remove stochastic seasonal patterns from the data with the exception of changing

seasonal patterns due to periodicity in the parameters. On average, the two methods

perform equally well.
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1 Introduction

Many quarterly observed macroeconomic time series, such as Gross Domestic Product,

Private Consumption, and Industrial production often display (i) an upward trend, (ii)

substantial intra-year seasonal variation, (iii) several aberrant observations and (iv) non-

linearity. Macroeconomists and policymakers tend to be interested mainly in the trend

and in variable-specific business-cycle variation.

Some macroeconomists tend to feel that seasonal variation is likely to blur the view

on the trend and the business cycle in macroeconomic time series and therefore they want

this variation to be removed from the data before any business cycle analysis. Indeed, a

first glance at almost any graph of a quarterly macroeconomic time series immediately

indicates that seasonal variation can be quite dominant. Rough calculations, based on

regressing the growth rates of such variables on quarterly seasonal dummies, show that

almost 80 to 90 per cent of the variation may be attributable to seasonality, see, for

example, Miron (1996). Whether this is the best way of summarizing the data is not

beyond discussion, see Hylleberg (1994) among others, but it does indicate that business-

cycle variation is not immediately and visually obvious in the presence of such substantial

seasonality.

There are two main criticisms on (the use of) seasonally adjusted data. The first

states that seasonal variation can be important to study in its own right, and it might, for

example, be informative concerning which variables lead others into or out of a recession,

see Miron (1996), Hylleberg (1994), Ghysels (1994), Franses and Paap (1999) and Matas-

Mir and Osborn (2003), among many others. Of course, the analysis of unadjusted data

is more involved, as one needs to include specific parameters and variables in the model to

capture seasonality. However, recent advances in the area of modelling seasonality show

that this analysis need not be that difficult, see Ghysels and Osborn (2001) and Franses

and Paap (2004).

The second criticism is that the process of seasonal adjustment may change (dynamic)

correlations between macroeconomic variables. Long-run relationships and short-run dy-

namics in multivariate models tend to differ across models calibrated with unadjusted

and with adjusted data. Only in case the seasonal adjustment filter is linear and common

to all variables, there is no conflicting inference, see Sims (1974) and Wallis (1974) for

early references, and Ghysels and Perron (1993) and Ericsson et al. (1994) for more recent

evidence. Ghysels et al. (1996) however challenge the linearity of the Census X-11 filter.
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In this chapter we abstain from a discussion on whether one should seasonally adjust

data or not. As starting point we will assume that one is simply interested in seasonally

adjusted data and that one needs an automatic adjustment method to remove seasonality

from many time series. For this purpose, there are two popular methods for seasonal

adjustment. The first method is the Census X12-ARIMA method, see Findley et al.

(1998). This method is data-based and consists of several steps including outlier correc-

tion, trading-day correction and various sequences of moving average filters. The second

method TRAMO/SEATS is more model-based, see Gómez and Maravall (1997). There, a

reasonably adequate univariate time series model for the data is specified, and the seasonal

adjustment filter is derived from the model properties.

To judge the quality of both adjustment methods, in this chapter we consider a sim-

ulation experiment. Instead of comparing the adjusted series with the raw series, our

main focus is to analyze whether seasonal adjustment methods are able to remove the

seasonal patterns in time series in an adequate way while leaving the possible stochastic

trend properties of the series untouched. To stay close to reality, we use data generating

processes which are likely to be found in practice. These processes display either constant

seasonality or changing seasonal patterns due to seasonal unit roots and processes with

periodically varying parameters. Plausible parameter values are obtained by estimat-

ing the corresponding time series models for fourteen US industrial production series. To

search for seasonal patterns before and after correction, we consider tests for seasonal unit

roots, for deterministic seasonality, for seasonality in the variance, and for periodicity in

the parameters.

The outline of the remainder of this chapter is as follows. In Section 2 we briefly

discuss the two seasonal adjustment procedures we apply in this chapter. In Section 3

we discuss several diagnostic and specification tests that we use to evaluate the quality

of both seasonal adjustment filters. Section 4 discusses the data generating processes for

our simulation experiment. The outcomes of our simulation study are given in Section 5.

We conclude in Section 6.

2 Seasonal adjustment procedures

In this section we briefly discuss the two seasonal adjustment methods under scrutiny.

We have no intention to be complete and we strongly suggest readers to consult other

studies, like Hylleberg (1986), Findley et al. (1998), Maravall (1985, 1995) and Harvey
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(1989) for more details.

The main assumption of seasonal adjustment is that a seasonally observed time series

yt, t = 1, . . . , T , can be decomposed into two unobserved components, that is,

yt = yns
t + ys

t (1)

(or yt = yns
t ys

t in case of multiplicative seasonality) with yns
t denoting the nonseasonal

component containing the trend, cycle and all kinds of other features, and ys
t denoting

the seasonal component.

When seasonality is purely deterministic, ys
t is assumed to be a function of sine and co-

sine functions. When seasonality is not constant over time, one can consider certain mov-

ing average filters to characterize changing seasonality. Preferably, these filters are linear,

symmetric and centered around the current observation, see Grether and Nerlove (1970).

Denoting the backward shift operator as L, defined by Lkyt = yt−k, k = 0,±1,±2, . . . ,

such a linear moving average filter is given by

Cm(L) = c0 +
m∑

i=1

ci(L
i + L−i), (2)

where c0, c1, . . . , cm are the weights. A simple example is the C1(L) filter with c0 = 1/2

and c1 = −1/4, which equals −1/4(L2−2L+1)L−1, where it is used that LL−1 = 1. This

filter assumes two unit roots at the nonseasonal frequency because (L2−2L+1) = (1−L)2.

Hence, it removes the stochastic trend (in fact, it removes two such trends). Generally,

when one aims to remove stochastic trends, it holds that Cm(1) = c0 + 2
∑m

i=1 ci = 0.

Notice that the commonly applied differencing filter (1− L) is not a symmetric filter.

Following the same line of thought, to remove changing seasonality in quarterly data,

one may opt for a filter like

4C3(L) = (1 + L + L2 + L3)(1 + L−1 + L−2 + L−3) (3)

This C3(L) filter has two times three seasonal unit roots, that is, two times −1 and two

times ±i, see Hylleberg et al. (1990). Writing (3) as (2), we have that 4c0 = 4, 4c1 = 3,

4c2 = 2 and 4c3 = 1. Generally, for filters that remove changing seasonality, it holds that

c0 +2
∑m

i=1 ci = 1 (which also holds for (3) after scaling). More details of the use of linear

moving average filters are given in Maravall (1995) and in Grether and Nerlove (1970),

where it is shown that filters like (3) have certain optimal properties.
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2.1 Census X12-ARIMA

The X12-ARIMA method is one of the most popular seasonal adjustment procedures

around. The key references for this approach are Shiskin and Eisenpress (1957) and

Shiskin et al. (1967). A recent extensive documentation of this method appears in Findley

et al. (1998). Apart from the treatment of holiday, trading-day and calendar effects, the

additive version of the X12-ARIMA method concerns two main actions. The first is the

sequential application of a set of linear moving average filters as in (2) to characterize the

trend and seasonal fluctuations. The filters have to be selected by the practitioner, that

is, one has to select the value of m, where often m equals 5, 7 or 9 for quarterly data.

The second and very important action is the removal of outlying observations in several

rounds of moving average filtering, and the replacement of these observations by data

points that are somehow weighted. Again, this involves decisions that should be made by

the practitioner and that will vary across the time series at hand. The outlier weighting

part makes the overall procedure an intrinsically nonlinear method in the sense that the

weights will depend on the choice of moving average filters. Indeed, Ghysels et al. (1996)

show that after seasonally adjustment nonlinear features may appear in linear time series.

Neglecting the outlier removal part of the official Census method, it is possible to give

a linear symmetric moving average approximation to an often applied sequence of moving

average filters in the Census X-11 program. For quarterly time series, the weights in this

C28(L) filter are given in Laroque (1977). An approximate version of the C28(L) filter is

given in Ghysels and Perron (1993), and a detailed version in Franses (1996, Table 4.1).

In Laroque (1977, Table 3) it is shown that the linear C28(L) filter approximately contains

the component

(1 + L + L2 + L3)2 = (1 + L)2(1− iL)2(1 + iL)2, (4)

see also Bell and Kramer (1996). Hence, the resulting seasonal adjustment filter from the

Census program approximately encompasses the C3(L) filter in (3).

In order to seasonally adjust observations at time t with the C28(L) filter, one needs

the observations over the sample yt−28, . . . , yt+28. Since such observations are not available

at the beginning and at the end of a sample, one needs to obtain backcasts and forecasts of

yt. One approach is now to estimate seasonal ARIMA models for yt, t = 1, 2, . . . , T , and

to generate ŷ−27, . . . , ŷ0, ŷT+1, . . . , ŷT+28, see Dagum (1980) for details. The ARIMA esti-

mation routine is known as regARIMA. This routine also allows for additional regressors

to capture, for example, calendar effects and allows for outlier correction.
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In our simulation study below, we use the X12-ARIMA procedure with all the default

settings. In accordance with the data generating processes we consider, we impose an

additive seasonal pattern (so, no natural logs are taken). As regressor variables we only

use an intercept. The ARIMA model selection is done using the automatic procedure.

We let X12 select the best ARIMA specification out of a (default) set of options.

2.2 TRAMO/SEATS

In response to the possible ambiguities involved in the application and evaluation of

the Census X-11 procedure, Hillmer and Tiao (1982) propose the so-called ARIMA-

model-based approach to seasonal adjustment, see also Burman (1980) and Gómez and

Maravall (1994). A lucid exposition of the model-based method is given in Maravall

and Pierce (1987). The most popular seasonal adjustment method in this area is the

TRAMO/SEATS (Time Series Regression with ARIMA Noise, Missing Observations,

and Outliers/Signal Extraction in ARIMA Time Series) method of Gómez and Maravall

(1997). The adjustment method consists of two steps. In the first step (TRAMO) a time

series model is estimated. The second part (SEATS) deals with the extraction of the

seasonal pattern from the selected ARIMA model.

In a very simple version, it is assumed that a time series can be decomposed as (1).

The seasonal component in (1) is described by seasonal ARIMA model as proposed by

Box and Jenkins (1970) and Box et al. (1994), for example,

(1 + L + L2 + L3)ys
t = ψ(L)ηt (5)

and the nonseasonal part by a nonseasonal ARIMA model like,

(1− L)dyns
t = θ(L)ξt, (6)

where ψ(L) and θ(L) are polynomials in L. The two components are imposed to be

orthogonal. This routine also allows for outlier correction and for additional regressors to

capture, for example, calendar effects. After model selection by TRAMO, in the SEATS

part the Wiener-Kolmogorov filter is used to extract the seasonal component from the

series.

In our simulation study below, we apply the TRAMO and SEATS procedures with

the default settings. To fit the data, we do not use the standard data transformation

to logs. With the default settings the TRAMO/SEATS procedure uses an Airline model

(see Section 4.4 below) to estimate the seasonal component of a series.

6



3 Diagnostic tests

There are several criteria that can be used to evaluate the quality of seasonally adjusted

data obtained from the above procedures. An extensive discussion of several such criteria

is given in Hylleberg (1986, Chapter 3) and Bell and Hillmer (1984). In this chapter we

judge the quality of a seasonal adjustment procedure by applying a number of diagnos-

tic and specification tests concerning the presence of seasonal patterns before and after

correction. Each test focusses on a property that should (or should not) be present in

seasonally adjusted data. We consider tests for the presence of seasonal unit roots, the

presence of changing seasonal means, the presence of deterministic seasonality, the pres-

ence of correlation at the seasonal lag, the presence of periodicity in the autoregressive

parameters and the presence of seasonality in the variance of the series. In this section

we consider tests for quarterly data but the tests can easily be extended to monthly data.

3.1 HEGY test

The unit roots in seasonal data, which can be associated with changing seasonality, are

the so-called seasonal unit roots, see Hylleberg et al. (1990). For quarterly data, these

roots are −1, i, and −i. For example, data generated from the model yt = −yt−1 + εt

would display seasonality. Similar observations hold for the model yt = −yt−2 + εt, which

can be written as (1+L2)yt = εt, where the autoregressive polynomial 1+L2 corresponds

to the seasonal unit roots i and −i, as these two values solve the equation 1 + z2 = 0.

Hence, when a model for yt contains an autoregressive polynomial with roots −1 and/or

i, −i, the data are said to have seasonal unit roots.

To test for the presence of seasonal unit roots, we consider the approach of Hylleberg

et al. (1990), henceforth abbreviated by HEGY. The HEGY method amounts to a re-

gression of ∆4yt = yt − yt−4 on deterministic terms like seasonal dummies and a trend

and on x1t = (1 + L + L2 + L3)yt−1, x2t = (−1 + L− L2 + L3)yt−1, x3t = −(1 + L2)yt−1,

x4t = −(1 + L2)yt−2, and on lags of ∆4yt, where ∆iyt = yt − yt−i. The test regression

reads

∆4yt =
4∑

s=1

βsDs,t + γt + π1x1t + π2x2t + π3x3t + π4x4t +

p∑
i=1

φi∆4yt−i + εt, (7)

where Ds,t = 1 if t corresponds to season s and 0 otherwise. The t-test for the significance

of the parameter for x1t (π1) is denoted by t1, the t-test for π2 by t2, and the joint

significance test for π3 and π4 is denoted by F34. If the π parameters are equal to 0, this
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corresponds to the presence of the associated root(s), which are 1, −1, and the pair i,

−i, respectively. Critical values of these test statistics are given in Hylleberg et al. (1990,

Table 1).

We argue that in a properly seasonally adjusted times series seasonal unit roots −1, i

and −i should not be present. Ideally, the finding of the unit root 1 should not be altered

if it is present, as this root is associated with the stochastic trend in the series. The value

of p can be determined using an information criterion such as the Bayesian Information

Criterion [BIC].

3.2 Canova-Hansen test

The test developed by Canova and Hansen (1995) takes as the null hypothesis that the

seasonal pattern is deterministic. To explain the test, consider the process

yt =
4∑

s=1

δstDs,t + εt (8)

with
δ1t = µt + α1t − α3t δ2t = µt − α2t + α3t

δ3t = µt − α1t − α3t δ4t = µt + α2t + α3t,
(9)

where the stochastic trend is defined as

µt = µ + µt−1 + ξt (10)

with ξt ∼ N(0, σ2
ξ ) and the stochastic seasonal terms are given by

αjt = βj + αj,t−1 + ηjt (11)

with ηjt ∼ N(0, σ2
j ) for j = 1, . . . , 3. The process has a stochastic seasonal pattern if one

or more σ2
j > 0. If σ2

j = 0 for all j, we have deterministic seasonality. The Canova-Hansen

test corresponds to jointly testing for σ2
1 = σ2

2 = σ2
3 = 0. The asymptotical critical values

are given in Canova and Hansen (1995). For the quarterly case and a significance level of

5%, the critical value is 1.010. We will denote this test by CH in the remainder of this

chapter.

The CH test also allows for testing for stationarity of the process itself, that is, testing

for σ2
ξ = 0. However, this is not considered here as we only focus on the seasonal prop-

erties of the data. In fact, given our data generating process we apply in our simulation

experiment the CH test to the first difference of the series to circumvent possible size
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distortions in the test for the seasonal part, see, for example, Taylor (2003) and Busetti

and Taylor (2003).

The null hypothesis in the CH test is rejected in case seasonality of a series is not

constant. After seasonal adjustment the CH test therefore should not reject the null

hypothesis. Note that having no seasonal pattern at all also implies constant seasonality.

3.3 Test for equal seasonal dummies

A basic test for the presence of seasonality in a time series is to regress the time series

on four seasonal dummies. If there is no seasonality in the series, the four coefficients

associated with these dummies should be equal. This property can easily be tested with

a standard F -test. The test regression equals

∆1yt =
4∑

s=1

βsDs,t + εt, (12)

where ∆1yt = yt − yt−1 and Ds,t = 1 if t corresponds to season s and 0 otherwise. If

seasonal adjustment is properly done, and hence there is no seasonality, the F -test for

β1 = β2 = β3 = β4 should not reject the null hypothesis.

3.4 Test for correlation at the seasonal lag

Seasonal time series typically display autocorrelation at seasonal lags. To test for signifi-

cant autocorrelation at the seasonal lag we consider the following regression model

∆1yt = µ + φ1∆1yt−1 + φ2∆1yt−2 + φ3∆1yt−3 + φ4∆1yt−4 + εt (13)

and we test for φ4 = 0 using a t-test. Insignificant values of the t-test mark the absence

of correlation at the seasonal lag. One has to be a little cautious with this approach.

Autocorrelation at the seasonal lag does not have to imply seasonality as the true lag-

order of the series may be 4 or higher. Note that we do not include seasonal dummies in

the test regression as we want to focus on testing for correlation at the seasonal lag. The

previous test in (12) should already indicate the presence of unequal seasonal means.

3.5 Test for periodicity in AR parameters

Another property which may indicate the presence of seasonality in time series concerns

different autoregressive parameters across the seasons, see Franses and Paap (2004). To
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investigate this periodicity we consider the PAR(p) model

∆1yt = µ +

p∑
i=1

φisDs,t∆1yt−i + εt. (14)

Absence of periodicity corresponds with the restriction φi1 = φi2 = φi3 = φi4 for i =

1, . . . , p. This can be tested with a standard F -test. If the F -statistic is not significant,

there is no statistical evidence for periodicity in the autoregressive parameters. The value

of p can be determined using an information criterion such as the BIC. Again, the test

regression does not contain seasonal dummies as we focus on periodicity in the autore-

gressive structure. Given the linear and not seasonal-specific structure of the seasonal

adjustment procedures we expect that both procedures are not fully capable of removing

periodicity from the parameters.

3.6 Test for seasonality in the variance

The previous tests mainly consider the presence of seasonality in the mean of the series. To

test for the presence of seasonality in the variance of the series we consider the estimated

residuals ε̂t of an AR(p) model for ∆1yt

∆1yt = µ +

p∑
i=1

φi∆1yt−i + εt. (15)

The LM-test for seasonality in the residuals amounts to testing for β1 = β2 = β3 = β4 in

the auxiliary regression

ε̂2
t =

4∑
s=1

βsDs,t +

p∑
i=1

ρi∆1yt−i + ηt (16)

using a standard F -test, where ε̂t denotes the estimated residuals of (15), see Franses

and Paap (2004, p. 40). A significant value of of the F -statistic indicates the presence of

seasonality in the variance. The value of p can again be determined using BIC. In the

ideal case, seasonal adjustment methods should remove any seasonality in the variance.

The abovementioned diagnostic tests will now be used to analyze the quality of the

two seasonal adjustment methods in a simulation experiment. In the next section we

discuss the data generating processes we will use in this experiment.
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Table 1: US Industrial production series

Series industry code sample

Total index 1 1919.1–2000.4

Final products 2 1939.1–2000.4

Total products 30 1939.1–2000.4

Consumer goods 1000 1939.1–2000.4

Automotive products 1001 1947.1–2000.4

Auto parts & allied goods 1002 1947.1–2000.4

Other durable goods 1006 1947.1–2000.4

Clothing 1012 1947.1–2000.4

Chemical products 1016 1954.1–2000.4

Paper products 1017 1954.1–2000.4

Energy products 1018 1954.1–2000.4

Fuels 1019 1954.1–2000.4

Durable consumer goods 1020 1947.1–2000.4

Foods & tobacco 1022 1947.1–2000.4

4 Data generating processes

To analyze whether seasonal adjustment methods are capable of removing seasonal proper-

ties from seasonal time series, we perform a simulation experiment. In this section we dis-

cuss the five data generating processes we consider. The DGPs are chosen such that they

mimic series which are frequently encountered in reality. Plausible values of parameters

are obtained by applying the model corresponding to each DGP to the logarithm of four-

teen quarterly observed US Industrial production series for different industry codes. These

are given in Table 1. The series can be downloaded from http://www.economagic.com.

A thorough analysis of the seasonal properties of these series can be found in Franses and

Paap (2004). All artificial series are generated with standard normal innovations, that is,

εt ∼ N(0, 1).
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4.1 DGP1: Constant annual growth

The first data generating process assumes a constant unconditional yearly growth rate for

each quarter. It is an autoregressive [AR] process of order 5 for the annual growth rate,

that is,

(∆4yt − µ) =
5∑

i=1

φi(∆4yt−i − µ) + σεt. (17)

Table 2 displays the parameter settings we use for this DGP, which are based on the true

parameter estimates of the fourteen US industrial production series.

This model assumes the presence of three seasonal unit roots, that is, −1 and ±i and

hence it allows for a changing seasonal pattern. We expect that both X12-ARIMA and

TRAMO/SEATS are capable of removing the changing seasonal pattern from these series.

4.2 DGP2: Deterministic seasonality

The second process we consider is a seasonal autoregressive moving average [ARMA]

process for the first difference of the series with different but constant unconditional

growth rates per quarter. The exact specification is

(1− φ4L
4)(∆1yt − µ− δ1D1,t − δ2D2,t − δ3D3,t) = (1 + ψ1L + ψ4L

4)σεt. (18)

Table 3 displays the values of the parameters which are used to generate the data. The

values corresponds to the parameter estimates of (18) for the fourteen US industrial

production series.

This particular specification allows for a nonzero expected growth over an entire year.

Nonzero values of the δs parameters imply different growth rates in each quarter. The

seasonal pattern in these series is however constant over time. Also for this DGP, we

expect all seasonal adjustment procedures to perform well although the methods impose

seasonal unit roots which should appear as moving average seasonal unit roots in the

adjusted series.

4.3 DGP3: Stochastic seasonality

For some economic series the seasonal pattern changes over time. The third DGP in our

simulation experiment mimics this feature through stochastic seasonality. We consider a

structural time series process with a random walk with drift and trigonometric seasonality,
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that is,

yt = µt + δ2t + δ3t + σεt

µt = µ + µt−1 + σµηt

δ1t = δ2,t−1 + σ1ξ1t

δ2t = δ1,t−1 + σ1ξ2t

δ3t = −δ3,t−1 + σ3ξ3t,

(19)

where ηt, ξ1t, ξ2t, ξ3t ∼ NID(0, 1), see, for example, Harvey (1989, p. 41) for a discussion.

This DGP is close to the process in DGP1, although now seasonality does not change as

quickly. Table 4 displays the parameter values used to generate the series based on the

fourteen industrial production series.

DGP3 does not assume seasonal unit roots in the series, but it does assume random

walk like patterns in the parameters. When the variances of the error terms are large,

it is quite likely that the data from this process can be approximated by a model with

seasonal unit roots. When the variances are zero, this process collapses to DGP2. When

the variances are very small, the data from this process can display slowly changing

seasonal patterns.

4.4 DGP4: Airline model

The fourth data generating process in our simulation experiment is exactly the model

underlying the TRAMO/SEATS method, that is, the airline model. This process is

specified as

∆1∆4yt = (1 + ψ1L)(1 + ψ4L
4)σεt. (20)

DGP4 assumes 3 three seasonal unit roots. Bell (1987) shows that when the MA(4)

parameter gets closer to −1, the model generates data that are close to those of DGP2.

In principle, the airline model can describe data that show varying patterns of changing

seasonality over time.

It is to be expected that TRAMO/SEATS will yield the best seasonally adjusted

series for this DGP. The parameter values based on parameter estimates for the fourteen

industrial production series are given in Table 5.
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4.5 DGP5: Periodic autoregressive process

The final DGP we consider is a periodic autoregressive process of order 2, that is,

yt =
4∑

s=1

(δsDs,t + τsDs,tTt +
2∑

i=1

φisDs,tyt−i) + σεt, (21)

where Tt = [(t − 1)/4] + 1 where [·] is the integer function, see Franses and Paap (2004)

for a survey on periodic models. The values of the autoregressive parameters are different

across the seasons. In fact, test results in Franses and Paap (2004, Table 3.2) show that

this feature cannot be rejected for any of the fourteen industrial production series. The

values of the parameters are displayed in Table 6 and are based on parameter estimates

of a periodic autoregression of order 2 for the fourteen series.

This DGP displays a slowly changing seasonal pattern. As the seasonal adjustment

filters do not use periodic filters, we expect that the seasonal adjustment methods are not

able to fully remove this seasonal pattern from the series.

5 Simulation results

In this section we discuss the results of our simulation experiment. The setup of our

experiment is as follows. For each DGP in Section 4 we simulate 1000 time series with

the fourteen different parameter settings and hence we obtain 5 times 14000 seasonal time

series with different properties. Each time series contains 60 years of quarterly data. The

first ten years are discarded to initialize the data generating process. The analysis below

is based on the remaining 50 years. All series are seasonally adjusted using X12-ARIMA

and TRAMO/SEATS using default options. We apply the diagnostic tests discussed in

Section 3 to the raw series and both seasonally adjusted series.

The results of our simulation experiment are presented in Table 71. The table dis-

plays the rejection frequencies of the diagnostic tests for the raw data and the seasonally

adjusted data using X12-ARIMA and TRAMO/SEATS for the five DGPs. All tests are

performed with a 5% level of significance. For the ease of interpretation of Table 7, Table 8

displays the desired outcomes of the diagnostic tests after seasonal adjustment.

1All simulations were done in Ox 3.4 (Doornik, 1999). The actual seasonal adjustment was done

through calls to the original procedures of CENSUS X12-ARIMA and TRAMO/SEATS which are shipped

with EViews 5.
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Table 8: Null hypotheses of tests and favorable outcomes after seasonal adjustment

Test H0

Favorable

rejection frequency

HEGY (zero frequency, 1) presence of unit root unchanged

HEGY (seasonal frequency, −1, ±i) presence of seasonal unit root high

CH stationary seasonal process low

Seasonality in mean equal seasonal dummies low

Seasonal lag absence of correlation low

Periodicity in AR parameters absence of periodicity low

Seasonality in variance absence of seasonality low

DPG1

The first panel of Table 7 displays the simulation results of DGP1. Columns 4–6 show

the results of the HEGY tests. The rejection frequency of the test for the root at the zero

frequency is 5% for the unadjusted series as expected. For the seasonally adjusted series

they are about 5% and hence both seasonal adjustment methods do not seem to affect

the unit root in the series. The rejection frequencies for the roots −1 and ±i are about

10%. The slight size distortion is due to the fact that we select the lag-order of the test

regression using BIC to mimic reality. If we fix the lag-order at the true value the size

is 5%. Both seasonal adjustment methods remove the seasonal unit roots from the series

leading to 100% rejection frequencies. The CH test rejects constant seasonality in 89%

of the cases for the unadjusted series. After seasonal adjustment constant seasonality

(if present) cannot be rejected and hence this suggests that both seasonal adjustment

methods remove the seasonal unit roots in an adequate way. The seventh column shows

that the presence of different seasonal means is rejected after applying both seasonal

adjustment methods. X12-ARIMA seems to remove fourth order correlation from the

series in a better way than TRAMO/SEATS where in 97% of the cases a zero coefficient

for seasonal lag is rejected. The absence of periodicity in the AR parameters and the

absence of seasonality in the variance is rejected in about 5% of the cases for the adjusted

and unadjusted data. Note that there is a slight size distortion in the test for periodicity

for the raw series which is again due to the fact that we select the lag-order of the test

21



regression using BIC.

DPG2

The second panel of Table 7 displays the results for DGP2. Again we reject the presence of

the root 1 in about 5% of the cases for the unadjusted and adjusted data. The presence of

seasonal unit roots -1 and ±i is rejected in more than 88% of the cases for the unadjusted

series and always rejected after correction. The CH tests for constant seasonality is

rejected in 14% of the cases for the unadjusted series. The small size distortion is due

to the fact that we have a large MA component which is not completely captured by the

nonparametric estimate of the serial correlation in the series. After seasonal correction the

rejection frequency is zero. The pattern of the outcomes of the remaining tests corresponds

to the results for DGP1. However, the rejection frequency for a zero parameter at the

seasonal lag is now higher for the X12-ARIMA than for the TRAMO/SEATS corrected

series. Hence, TRAMO/SEATS performs slightly better.

DPG3

The HEGY procedure rejects the presence of seasonal unit roots in about 75% of the

cases as can be seen from the third panel of Table 7. This rejection frequency is 100%

for the adjusted series. The presence of the nonseasonal unit root is rejected in about 6%

of the cases for both the unadjusted and adjusted series. Constant seasonality is rejected

in 60% for the raw series and never rejected for the adjusted series. The outcomes of

the remaining tests correspond to the results for DGP2. Hence, the performance of both

seasonal adjustment methods is about the same.

DPG4

TRAMO/SEATS uses the airline model to remove seasonality from a series. Hence, we

expect that this correction should perform best for this DGP, see fourth panel of Table 7.

Remarkably, the presence of a unit root at the zero frequency is rejected in 12% of the cases

after applying TRAMO/SEATS, while X12-ARIMA reports a rejection frequency of about

5%. Seasonal unit roots are removed properly as the rejection frequencies after seasonal

adjustment are 100%. Note that we have a little size distortion for the seasonal unit roots

tests for the raw series which is again due to the fact that we select the lag order of the

test regression using BIC. The CH test rejects constant seasonality in 8% of the cases
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after applying TRAMO/SEATS, while X12-ARIMA never rejects constant seasonality.

The parameter belonging to the seasonal lag remains significant after seasonal correction

with X12-ARIMA. For TRAMO/SEATS, however, we reject in 78% of the cases. Hence,

TRAMO/SEATS seems to perform a little bit better. The outcomes of the remaining

test are as expected.

DPG5

The final panel of Table 7 displays the results for DGP5. The presence of a unit root is

rejected in about 38% of the cases for the adjusted and unadjusted series. This is due to

the fact that many of the parameter settings correspond to processes which are close to

unit root type behavior. Seasonal unit roots are rejected in about 80% of the cases for the

raw series and in 100% of the cases for the adjusted data. The CH test reports constant

seasonality after seasonal correction. A clear difference with the previous DGPs is that

the test for equal autoregressive parameters is rejected in more than 60% of the cases.

This holds for both the unadjusted and the adjusted series. Hence, both adjustment

filters do not remove this type of seasonality from the series. After seasonal adjustment

there also seems to be more seasonality in the variance. This is not a surprise as periodic

time series with constant variance of the error term, may have different variances across

the season, see, for example, Franses and Paap (2004, p. 31–33). Finally, although the

DGP5 is a second order autoregressive model, we reject in about 80% of the cases a zero

parameter at the seasonal lag. After seasonal adjustment this percentage is reduced for

both seasonal adjustment methods but TRAMO/SEATS performs better.

In sum, we conclude that both seasonal adjustment methods remove stochastic sea-

sonal patterns due to seasonal unit roots or stochastic trigonometric seasonality in an

adequate way. Rejection frequencies of seasonal unit roots are 100% after applying the

seasonal adjustment filters. The CH test for constant seasonality is never rejected after

applying the seasonal adjustment filter except for DGP4 where we reject constant season-

ality in 8% of the cases after applying TRAMO/SEATS. Both adjustment methods do

not seem to affect the presence of a unit root although for DGP4 there is a slight increase

in the rejection frequency after applying TRAMO/SEATS. Different means across the

seasons are fully captured by both methods. We detect significant correlation at the sea-

sonal lag after applying TRAMO/SEATS in fewer cases than after applying X12-ARIMA.

Applying TRAMO/SEATS also leads to less periodicity in the autoregressive parameters
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but the differences with X12-ARIMA are relatively small.

6 Concluding Remarks

In this chapter we have demonstrated that, when averaged over many realistic DGPs

and large samples, the CENSUS X12-ARIMA and TRAMO/SEATS methods seem to

perform about equally well. We acknowledge the possibility that for specific series the

adjusted series may well be different across methods, but on average our simulations do

not indicate a preference for either one of the two methods.

Hence, in the end, our results suggest that a preference for one of the methods

merely amounts to a matter of taste. We must say though that an advantage of the

TRAMO/SEATS method is that it easily allows for the construction of confidence bounds

around seasonally adjusted data, see Koopman and Franses (2002). This feature seems

to do justice to the fact that, after all, seasonally adjusted data are estimates which are

based on real data.
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