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Abstract

We propose a multivariate nonlinear econometric time series model, which can
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model is a multivariate censored latent effects autoregression. The key feature of this
model is that nonlinearity appears as separate innovation-like variables. Common
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have an effect on Canadian unemployment, and not the other way around, and also
that there is no common nonlinearity across the unemployment variables.
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1 Introduction

It is now widely accepted that nonlinear time series models can capture cyclical fluctu-

ations in economic time series variables. There are by now many such models, see for

example the surveys in Granger and Teräsvirta (1993) and Franses and van Dijk (2001),

among others. Examples of popular models are the (smooth) threshold autoregressions,

Markov switching models, and artificial neural networks.

In many instances the nonlinear models are considered for univariate time series. This

may be due to the potentially large number of parameters involved in straightforward

multivariate versions of the above models. It may therefore be relevant to examine if

two or more time series have common nonlinear features. An additional and economic

motivation for this examination is that this could give insights as to whether two or more

time series display common cyclical fluctuations.

Testing for common nonlinearity is often not an easy exercise. The main reason for

this is that most nonlinear econometric time series models incorporate the nonlinearity in

the parameters. For example, the smooth transition autoregression basically assumes that

the autoregressive parameters are varying over time, see Granger and Teräsvirta (1993),

among others. Hence, when one aims to examine common nonlinearity, in a sense one has

to look for common varying parameters. Anderson and Vahid (1998) propose a method

to do so, but the resulting method is based on linear regression models, which only to

some extent approximate the original nonlinear model.

In this paper we propose to circumvent the above noted problems by considering

a new nonlinear time series model, which basically assumes that nonlinearity can be

summarized by an additional innovation-type variable. The univariate version of this,

so-called, censored latent effects autoregression [CLEAR], is put forward in Franses and

Paap (2002). In words, this model consists of an autoregression with two error terms. The

first error term is a standard white noise process, while the second error term only once

in a while gets non-zero values, depending on the outcome of a censored regression model.

In Franses and Paap (2002) the CLEAR model is applied to US unemployment, where
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unexpected large positive increases are explained by a censored regression with a single

leading indicator variable. Once the right-hand side of this censored regression exceeds

a stochastic threshold level, a positive innovation is added to the autoregressive model.

Together, the CLEAR model can capture the nonlinear features in US unemployment

very well, while the number of parameters is rather small. As the nonlinear feature enters

the model through a variable, the CLEAR model seems well suited for investigating

common linearity. Indeed, when a linear combination of two or more variables cancels

these additional variables, one has encountered common nonlinearity.

The outline of our paper is as follows. In Section 2 we outline the basics of the

univariate CLEAR model and a suitable representation of its multivariate version. In

Section 3, we briefly discuss unconditional inference. In Section 4, we treat parameter

estimation, which can be done by Maximum Likelihood, and we deal with conditional

inference. In Section 5, we illustrate our model for US and Canadian unemployment. We

find that US innovation variables have an effect on Canadian unemployment, and not the

other way around, and also that there is no common nonlinearity across the unemployment

variables. In Section 6, we conclude with some remarks.

2 CLEAR models

In this section we discuss various features of the univariate CLEAR model, and a suitable

representation of its multivariate extension.

2.1 A Univariate CLEAR model

Franses and Paap (2002) propose a censored latent effects autoregressive [CLEAR] model

to describe the salient features of US unemployment. A univariate CLEAR model of order

p for a univariate time series {yt}T
t=1 is given by

yt =

p∑
i=1

αiyt−i + x′tγ + vt + εt, (1)

where εt ∼ NID(0, σ2
ε), yp−1, . . . , y1 are fixed, and where xt is a (k × 1) vector of exoge-

nous variables including an intercept. The variable vt is added as an extra innovation

3



which helps to describe the sharp rise in unemployment, which is usually associated with

recessions. Therefore, vt is imposed to be a censored variable modelled by

vt =

{
x′tβ + ut if x′tβ + ut ≥ 0
0 if x′tβ + ut < 0

(2)

with ut ∼ NID(0, σ2
u) and where β and γ are (k× 1) parameter vectors. The disturbances

εt and ut are assumed to be uncorrelated, although various extensions are possible. Also

applications other than unemployment may require other versions of (2).

The effects of the exogenous variables on yt are given by γ when vt = 0, while γ + β

represent the effects of the exogenous variables when vt ≥ 0. Hence, the CLEAR model is

a nonlinear model as it allows for a time-varying effect of the explanatory variables. The

nonlinear part of the model concerns the variable vt. As (2) implies that only positive

values of vt are added to the error term, the above CLEAR(p) model contains an explicit

description of what might be viewed as an exogenous positive innovation outlier generating

mechanism. The variable vt is zero unless x′tβ exceeds a stochastic threshold level −ut,

where ut is a normal random variable. When the threshold is exceeded, vt takes a positive

value.

Franses and Paap (2002) successfully describe the US unemployment rate using for xt

a lagged value of a single leading indicator variable. In their application it turns out that

the γ may be restricted to be zero, but that the censored variable vt cannot be removed

from the model. Graphs of the estimates of vt show that the innovation outlier generating

variable closely follows the cyclical pattern in US unemployment.

2.2 A Multivariate CLEAR model

The univariate CLEAR model (1) and (2) can be generalized to a multivariate CLEAR.

For example, a bivariate CLEAR(p) for the vector time series (y1t, y2t)
′, t = 1, . . . , T may

be represented by
(

y1t

y2t

)
=

p∑
i=1

Ai

(
y1t−i

y2t−i

)
+

(
x′1tγ11 x′2tγ12

x′1tγ21 x′2tγ22

)
+

(
1 δ12

δ21 1

)(
v1t

v2t

)
+

(
ε1t

ε2t

)
, (3)

where εt = (ε1t, ε2t)
′ ∼ NID(0, Σε) with Σε a (2 × 2) covariance matrix, and where Ai,

i = 1, . . . , p, are (2×2) parameter matrices containing the autoregressive parameters. The
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xit variables are (ki × 1) vectors of exogenous stationary variables including an intercept.

The two innovation outlier mechanisms are modelled by

vit =

{
x′itβi + uit if x′i,tβi + ui,t ≥ 0
0 if x′i,tβi + ui,t < 0,

(4)

where uit ∼ NID(0, σ2
ui

) for i = 1, 2, and where βi, γii, γi1, γ2i, are (ki × 1) parameter

vectors. The δ12 and δ21 parameters model the cross-effect of the vit variables on the series

yt, and therefore we can impose that E[u1tu2t] = 0. Note that this bivariate model would

be suitable for modeling unemployment series again. Other applications of the model may

require other variations of (4).

Common Large Innovations

The key feature of our bivariate CLEAR model, which makes it distinct from alternative

multivariate nonlinear models, advocated in for example Philips (1991), Krolzig (1997),

Diebold and Rudebusch (1996) and Kim and Nelson (1998), is that we introduce nonlin-

earity in y1t and y2t through an innovation-type variable. When this variable is absent,

the model is linear. This feature makes it well-suited for studying common nonlinearity.

There are several interesting restricted versions of (3) and (4), which somehow concern

common properties across the two time series y1t and y2t. An extreme case is that y1t and

y2t have absolutely no common nonlinear features at time t. This implies that the δ12 and

δ21 parameters are zero.

It may also be the case that only one of the δ parameters equals zero. Then, one of

the series is not affected by the innovation-type variable of the other series. It may even

be the case that the series have a common outlier generating mechanism. This occurs

if a linear combination of y1t and y2t is a linear process, while the individual series are

nonlinear. From (3) it is easy to see that the process y2t − δ21y1t with δ21 6= 0 is a linear

process if v2t = δ21v1t. The model (3) then simplifies to
(

y1t

y2t

)
=

p∑
i=1

Ai

(
y1t−i

y2t−i

)
+

(
x′1tγ11 x′2tγ12

x′1tγ21 x′2tγ22

)
+

(
1

δ21

)
v1t +

(
ε1t

ε2t

)
, (5)

where v1t is defined as in (4). Note that also the δ12 disappears from the model. This

model assumes a common factor, and it can be viewed to correspond with the common
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trend analysis in Stock and Watson (1988). A shock v1t affects both series at the same

time but the size of the shock may be different due to the δ21 parameter. A special case

amounts to δ21 = 1, where the difference between y1t and y2t is a linear process. In this

case the size of the shock is also equal. Note that model (5) with (4) is nested in the

general model (3) with (4).

Other interesting cases concern the occurrence of the shocks. An interesting bivariate

CLEAR model, which is slightly different from (3) to (4) imposes that shocks v1t and

v2t enter the vector autoregression simultaneously. This innovation outlier mechanism is

given by

(
v1t

v2t

)
=





(
x′1tβ1

x′2tβ2

)
+

(
u1t

u2t

)
if x′1tβ1 + u1t ≥ 0 ∧ x′2tβ2 + u2t ≥ 0

(
0
0

)
elsewhere.

(6)

In this specification it is not possible that v1t enters (3) while v2t does not and vice versa.

The size of the shocks may differ, of course, and therefore we do not label this model

as one with common nonlinearity but one might call it synchronous nonlinearity. Note

that this specification is not nested in (4), and hence it is not possible to use a standard

likelihood ratio test to compare the models. Although the synchronous specification (6)

seems to be a restricted version of (4), the maximum likelihood value of the model with (6)

does not have to be smaller than the specification with (4). To compare the two different

specifications, one can use tests for non-nested hypotheses, see for example Santos Silva

(2001) and Gourieroux and Monfort (1994) for a discussion.

It is of course possible to have synchronous innovation-type variables but no common

variables. In this case the model equals (3) with δ12 = δ21 = 0 and with (6). The positive

innovations occur at the same time but there is no relation between them. Although

the synchronous model (6) is not nested in the general model (3) and (4), the common

innovation outlier mechanism model (5) is nested within (3) and (6).

In the remainder of this paper we focus on estimation and inference for model speci-

fication (3) with (4) as the analysis of specification (3) with (6) can be done in a similar

way. In our empirical section below we will of course compare both models.
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3 Unconditional Inference

The vit variables in our bivariate CLEAR model are unobserved and hence we can only

make probability statements about their realizations. The probability that vit = 0 for

i = 1, 2 equals the probability that x′itβi + uit < 0, that is,

Pr[vit = 0|xit; θ] =

∫ −x′itβi

−∞

1

σui

φ(uit/σui
)duit = Φ

(−x′itβi

σui

)
= Φit, (7)

where θ summarizes the model parameters, and φ(·) and Φ(·) are the density function and

the cumulative density function of the standard normal distribution, respectively. The

probability that vit > 0 is of course given by (1−Φit). These probabilities can be used to

predict the presence of one or two innovation-type variables at time t.

To predict the size of these variables, one can use the expected value of vit. As the

vit variables are censored, their expectations are not simply given by x′itβi. The expected

value of the innovation-type variable vit follows from

E[vit|xit; θ] = x′itβi(1− Φit) + σui
φit, for i = 1, 2, (8)

with φit = φ(−x′itβi/σui
), where we have used the results on the moments of truncated

normal random variables, see Johnson and Kotz (1970, p. 81–83) and Gourieroux and

Monfort (1995, p. 483). The variance of the variable vit is equal to

V[vit|xit; θ] = σ2
ui

(1− Φit) + x′itβiE[vit|xit; θ]− E[vit|xit; θ]
2 (9)

for i = 1, 2, see Franses and Paap (2002) for details. Hence, the censored regressions

introduce heteroskedasticity in the model.

4 Inference

In this section we discuss maximum likelihood estimation of the model parameters and

conditional inference on the unobserved outlier mechanism.
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4.1 Maximum Likelihood Estimation

The model parameters of the bivariate CLEAR model (3) to (4) are summarized by

θ = (Ai, . . . , Ap, γ11, γ12, γ21, γ22, δ12, δ21, Σε, β1, β2, σ
2
u1

σ2
u2

). To estimate these parameters,

we use a maximum likelihood estimator. For notational convenience we write (3) in matrix

notation

Yt =

p∑
i=1

AiYt−i + ΓXt + DVt + εt, (10)

where Yt = (y1t, y2t)
′, Xt = (x′1t, x

′
2t)

′, and Vt = (v1t, v2t)
′. The matrices D and Γ contain

the δ and γ parameters.

To derive the likelihood function, we first consider the conditional pdf of Yt given its

past Y t−1 = {Yt−1, . . . , Y1}, Xt, and given Vt. This function is given by

f(Yt|Y t−1, Xt, Vt; θ) =
1

2π
|Σε|− 1

2

exp(−1

2
(Yt −

p∑
i=1

AiYt−i −XtΓ−DVt)
′Σ−1

ε (Yt −
p∑

i=1

AiYt−i −XtΓ−DVt)). (11)

To obtain the pdf of Yt conditional on Y t−1 but unconditional on Vt, we have to integrate

over the unknown error processes uit in the censored regressions. The pdf of Yt can be

decomposed in four parts corresponding to whether the vit terms are zero or not

f(Yt|Y t−1, Xt; θ) = g00 + g01 + g10 + g11, (12)

where

g00 = Pr[v1t = 0|x1t; θ] Pr[v2t = 0|x2t; θ]f(Yt|Y t−1, Xt, Vt; θ)|v1t=0,v2t=0

g01 = Pr[v1t = 0|x1t; θ]

∫ ∞

−x′2tβ2

φ(u2t/σu2)

σu2

f(Yt|Y t−1, Xt, Vt; θ)|v1t=0,v2t=x′2tβ2+u2t
du2t

g10 = Pr[v2t = 0|x2t; θ]

∫ ∞

−x′1tβ1

φ(u1t/σu1)

σu1

f(Yt|Y t−1, Xt, Vt; θ)|v1t=x′1tβ1+u1t,v2t=0 du1t

g11 =

∫ ∞

−x′1tβ1

∫ ∞

−x′2tβ2

φ(u1t/σu1)

σu1

φ(u2t/σu2)

σu2

f(Yt|Y t−1, Xt, Vt; θ)|v1t=x′1tβ1+u1t,v2t=x′2tβ2+u2t
du1tdu2t.

(13)

The log likelihood function is now simply the sum of the log of the unconditional pdfs,

that is,

L(Y T |XT ; θ) =
T∑

t=1

ln f(Yt|Y t−1, Xt; θ). (14)
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This log likelihood can be maximized using standard numerical optimization algorithms

like Newton-Raphson. In this paper we opt for the BHHH algorithm of Berndt et al.

(1974). To ensure that the covariance matrix Σε is positive definite we write Σε as Q′Q

where Q is a matrix with one of the off-diagonals equal to zero.

4.2 Conditional Inference

In Section 3 we already discussed inference on the unobserved variables in the model.

This inference is unconditional on the value of Yt and can therefore be used in forecast

exercises. In this section, we consider probabilistic inference conditional on the observed

values of the time series Yt. First, we consider the conditional probabilities that the

elements of the unobserved vector Vt equal zero. For instance, the conditional probability

that v1t = v2t = 0 given Yt and xt equals

Pr[v1t = 0 ∧ v2t = 0|Yt, Xt; θ] =

Pr[v1t = 0|x1t; θ] Pr[v2t = 0|x2t; θ]f(Yt|Y t−1, Xt, Vt; θ)|v1t=0,v2t=0

f(Yt|Y t−1, Xt; θ)
. (15)

The other conditional probabilities are simply

Pr[v1t = 0 ∧ v2t > 0|Yt, Xt; θ] =
g01

f(Yt|Y t−1, Xt; θ)

Pr[v1t > 0 ∧ v2t = 0|Yt, Xt; θ] =
g10

f(Yt|Y t−1, Xt; θ)

Pr[v1t > 0 ∧ v2t > 0|Yt, Xt; θ] =
g11

f(Yt|Y t−1, Xt; θ)
.

(16)

Hence, the marginal probabilities that v1t = 0 and v2t = 0 given Yt and Xt equal

Pr[v1t = 0|Yt, Xt; θ] = Pr[v1t = 0 ∧ v2t = 0|Yt, Xt; θ] + Pr[v1t = 0 ∧ v2t > 0|Yt, Xt; θ]

Pr[v2t = 0|Yt, Xt; θ] = Pr[v1t = 0 ∧ v2t = 0|Yt, Xt; θ] + Pr[v1t > 0 ∧ v2t = 0|Yt, Xt; θ].

(17)

These conditional probabilities indicate whether it is likely that a positive shock affects

(one of) the series at time t. They can be used to give a business cycle chronology, see

Franses and Paap (2002) for an example.
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An estimate of the magnitude of the shock at time t follows from the conditional

expectation of vt given Yt and xt, that is,

E[v1t|Y t, Xt; θ] = E[v1t|v1t = 0, Y t, Xt; θ] Pr[v1t = 0|Y t, Xt; θ]

+ E[v1t|v1t > 0, Y t, Xt; θ] Pr[v1t > 0|Y t, Xt; θ]

= E[v1t|v1t > 0 ∧ v2t = 0, Y t, Xt; θ] Pr[v1t > 0 ∧ v2t = 0|Y t, Xt; θ]

+ E[v1t|v1t > 0 ∧ v2t > 0, Y t, Xt; θ] Pr[v1t > 0 ∧ v2t > 0|Y t, Xt; θ],

(18)

and

E[v2t|Y t, Xt; θ] = E[v2t|v1t = 0 ∧ v2t > 0, Y t, Xt] Pr[v1t = 0 ∧ v2t > 0|Y t, Xt; θ]

+ E[v2t|v1t > 0 ∧ v2t > 0, Y t, Xt; θ] Pr[v1t > 0 ∧ v2t > 0|Y t, Xt; θ]. (19)

A typical element in the expression for these conditional expectations is for instance

E[v1t|v1t > 0 ∧ v2t > 0, Y t, Xt; θ] Pr[v1t > 0 ∧ v2t > 0|Y t, Xt; θ]

= [f(Yt|Y t−1, Xt; θ)]
−1

∫ ∞

−x′1tβ1

∫ ∞

−x′2tβ2

(x′1tβ1 + u1t)
φ(u1t/σu1)

σu1

φ(u2t/σu2)

σu2

f(Yt|Y t−1, Xt, Vt; θ)|v1t=x′1tβ1+u1t,v2t=x′2tβ2+u2t
du1tdu2t (20)

and can be evaluated using the simplification in (28) in the Appendix below and the

results in Rosenbaum (1961) or Maddala (1983, p. 368) concerning the expectation of a

truncated bivariate normal random variable. The same holds for the other expectations

in (18) and (19).

Residuals

Finally, to analyze the fit of the model, one may consider residuals. Residuals are defined

as the difference between Yt and the expectation of Yt given Y t−1 and Xt evaluated in the

parameter estimates. This expectation equals

E[Yt|Xt; θ̂] =

p∑
i=1

ÂiYt−i + XtΓ̂ + D̂E[Vt|Xt; θ̂], (21)

where the unconditional expectation of Vt is given in (8) for i = 1, 2. Note that the result

in (9) implies that the residuals are heteroskedastic.
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Figure 1: The logarithm of US and Canadian civilian
unemployment rate, 1961.01–1999.12

5 Unemployment in the US and Canada

To illustrate our bivariate CLEAR model, we consider an application to seasonally ad-

justed monthly observed civilian unemployment rates of the United States [US] and

Canada, 1961.01–1999.12. The results in Franses and Paap (2002) suggest that a univari-

ate CLEAR is suitable for describing the US series, and hence our choice for a multivariate

illustration. Figure 1 shows a graph of the natural log of both unemployment rate series.

For both series we notice short periods characterized by large increases in unemployment,

which are usually associated with recessions, and longer periods with a slow decline in

the unemployment rate, which might match with expansions. The recessionary periods

in both series seem to occur roughly in the same periods, except for the period between

1975 and 1980.

To describe both series, we consider the bivariate CLEAR model (3) and (4) for

i = 1, 2. We examine whether the large increases in unemployment can be captured by

two censored latent variables v1t and v2t. Following Franses and Paap (2002), we use, as

explanatory variables for the censored latent effects, the lagged values of leading indicator
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Figure 2: The US leading indicator US (XLI-2) and the
bi-annual growth percentages of the Canadian compos-
ite leading indicator, 1961.01–1999.12

variables. Their results suggest that for the US the experimental leading indicator XLI-2t

of Stock and Watson (1993) is suitable. For the Canadian series, we use the composite

leading indicator series of Canada denoted by CLIt, which is obtained from Datastream.

This CLIt series display exponential growth and has to be transformed to become approx-

imately stationary. Based on our experience in Franses and Paap (2002), we opt for the

bi-annual growth rate of CLIt denoted as ∆6 log CLIt. Figure 2 displays the two leading

indicator series, which clearly bear resemblance.

To estimate our bivariate CLEAR model, we need the order p and appropriate lags of

the leading indicator variables. To determine this lag structure, we consider a VARX(p)

model which is equal to (3) with v1t = v2t = 0. We allow for lag orders up to 12 and

we consider for each lag order the appropriate lag structure of the indicator variables.

It turns out that for all values of p, XLI-2t−1 and ∆6 log CLIt−2 produce the smallest

determinant of the residual covariance matrix. Given this lag structure for the exogenous

variables, the subsequent BIC value indicates that an AR order of 2 is best.
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We estimate a bivariate CLEAR model of order 2, where Yt consist of log unemploy-

ment rate of the US and Canada, respectively. The ML parameter estimates, with White’s

(1980) heteroskedastic-consistent standard errors in parentheses, are found to be

Yt =




0.028
(0.001)
−0.014
(0.011)


 +




0.759 −0.064
(0.046) (0.050)
0.056 0.844

(0.057) (0.063)


 Yt−1 +




0.230 0.067
(0.045) (0.039)
−0.046 0.153
(0.057) (0.062)


 Yt−2

+




−0.329 −0.250
(0.072) (0.077)
−0.021 −0.142
(0.098) (0.086)




(
100× XLI-2t−1

∆6 log CLIt−2

)
+




1 0.364
(0.225)

0.767 1
(0.163)


 Vt + εt, (22)

with

Σε =
1

1000

(
0.588 0.115
0.115 0.491

)
, (23)

and

v1t = − 0.073
(0.014)

− 2.355
(0.443)

XLI-2t−1 × 100 + u1t, u1t ∼ NID(0, 0.0502)

v2t = − 0.005
(0.012)

− 0.706
(0.201)

∆6 log CLIt−2 + u2t, u2t ∼ NID(0, 0.0282).
(24)

The maximum log likelihood value of this model equals 2048.66.

To check whether the lag order selected by BIC is sufficient, we also estimate a model

of order 3. The maximum likelihood value of this model equals 2051.55 and the corre-

sponding LR statistic equals 5.78. This statistic is not significant when compared with the

95 percentile of a χ2(4) distribution and hence the lag order of 2 does not seem underspec-

ified. The LR statistic for the significance of the second order autoregressive parameters

equals 62.89 and hence the model cannot be simplified to a first order model.

As the order of the estimated bivariate CLEAR model seems satisfactory, we try to

analyze whether the estimated model can be simplified into a model with common aspects.

First, we test whether we may delete the leading indicator variables from the VAR part

(22), that is, we test whether the four γ parameters are zero. The LR statistic equals

−2× (2029.79− 2048.66) = 37.74, which is significant compared to the 95% percentile of

a χ2(4) distribution. Hence we cannot delete the two indicator variables from (22).
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To analyze the role of the innovation generating censored regression, we test whether

the Canadian shocks (v2t) have no effect on US unemployment. The LR test for δ12 = 0

equals −2 × (2047.06 − 2048.66) = 3.20 and hence this restriction seems valid. The LR

test for δ21 = 0 equals −2× (2039.99− 2048.66) = 17.34 and hence the innovation outlier

mechanism of the US seems to affect Canadian unemployment. The joint restriction

δ12 = δ21 = 0 is also rejected. In words, the cyclical pattern in Canadian unemployment

bears similarities with that in the US, but often not the other way around.

Fixing δ12 = 0, we may test for the presence of a common innovation outlier mechanism

which corresponds to v2t = 0. The LR statistic for β2 = 0 and σ2
u2

= 0 equals −2 ×
(2024.47−2047.06) = 45.18. As the total restriction contains a single one-sided alternative

(σ2
u2

= 0 versus σ2
u2

> 0) and two two-sided alternatives (β = 0 versus β 6= 0), this test

statistic is asymptotically 1
2
χ2(2) + 1

2
χ2(3) distributed, see Wolak (1989, p. 19–20). The

95% percentile of this mixture distribution is 7.80 and hence we reject the presence of a

common innovation outlier mechanism.

Finally, we consider a CLEAR model with a nonlinear synchronous cycle, that is,

(3) with (6). Remember that this model is not nested in the general bivariate CLEAR

specification estimated in (22) and (24) and hence a standard LR test does not apply.

The value of the maximum log likelihood value equals 2036.86 and it is smaller than for

the model (3) with (24). The nonlinear synchronous cycle representation is not preferred.

In sum, the test results suggest that there is no common outlier mechanism, but that

the outlier mechanism of Canada does not affect the US series. The parameter estimates

of the final model supported by our test results are

Yt =




0.024
(0.001)
−0.014
(0.014)


 +




0.769 −0.052
(0.046) (0.040)
0.058 0.857

(0.014) (0.069)


 Yt−1 +




0.220 0.056
(0.046) (0.039)
−0.048 0.141
(0.012) (0.069)


 Yt−2

+




−0.327 −0.306
(0.071) (0.054)
−0.028 −0.178
(0.124) (0.133)




(
100× XLI-2t−1

∆6 log CLIt−2

)
+




1 0

0.815 1
(0.239)


 Vt + εt, (25)
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Figure 3: Fit and residuals based on (21)

with

Σε =
1

1000

(
0.600 0.114
0.115 0.504

)
, (26)

and

v1t = − 0.064
(0.022)

− 2.278
(0.527)

XLI-2t−1 × 100 + u1t, u1t ∼ NID(0, 0.0472)

v2t = − 0.010
(0.020)

− 0.672
(0.221)

∆6 log CLIt−2 + u2t, u2t ∼ NID(0, 0.0322)
, (27)

where again heteroskedastic-consistent standard errors appear in parentheses.

In Figure 3 we display the fit and the estimated residuals of the final model. Evi-

dently, and even with not too many parameters, the multivariate CLEAR model provides
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Figure 4: Estimated conditional probabilities Pr[v1t ∧ v2t|Y t, Xt, θ̂]

an excellent fit. As there are no obvious large residuals around the sharp increases in

unemployment, the bivariate CLEAR model with the leading indicator variables seems to

predict the start of recessionary periods rather well.

In Figure 4, we depict the estimated conditional probabilities. The left upper graph

gives the probability that there are no positive innovations to both series, while the right

bottom graph concern the probability that both variables both have large and positive

innovations. These graphs show the familiar cyclical patterns around the oil crises and

the recession in the 90s. The left bottom graph suggests that additional to the large

shocks, the US only suffered from a few shocks which did not hit Canada, while the top
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Figure 5: E[v1t|Y t, Xt, θ̂] and E[v2t|Y t, Xt, θ̂]
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right graph shows that Canada display much more idiosyncratic variation.

Finally, Figure 5 gives the estimated conditional expectations of the innovations. The

top panel suggests that the increases in US unemployment were largest around the first

oil crisis and relatively minor during the Iraq invasion in Kuwait. For Canada we observe

rather different results, see the bottom panel of Figure 5, as here the second oil crisis

clearly generated the largest positive shocks to unemployment.

6 Concluding Remarks

In this paper we put forward a new multivariate nonlinear time series model, which has the

promising feature that it facilitates the analysis of common nonlinearity. This convenience

is due to the fact that the model includes nonlinearity as additional variables. When linear

combinations of these variables do not have such an innovation variable, these series share

their nonlinearity. The model actually described nonlinear data very well, as could be

seen from the illustration to US and Canadian unemployment. The illustration further

suggested that nonlinear features of the US economy get reflected through Canadian

unemployment, but not the other way around.

Even though the present paper only considered a bivariate illustration, it could already

be seen that the multivariate censored latent autoregression is rather parsimonious. This

seems a relevant feature when examining more than two time series. Furthermore, a

smaller amount of parameters may also increase forecasting accuracy. We leave both

issues for further research.
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A Appendix

To simplify the computation of the three integrals in the log likelihood we use the following

general result

u′Σ−1
u u + (Su− a)′Σ−1

ε (Su− a)

= u′Σ−1
u u′ + u′S ′Σ−1

ε Su− a′Σ−1
ε Su− u′S ′Σ−1

ε a + a′Σ−1
ε a

= u′(Σ−1
u + S ′Σ−1

ε S)u + a′Σ−1
ε Su− u′S ′Σ−1

ε a + a′Σ−1
ε a

= (u− b)′(Σ−1
u + S ′Σ−1

ε S)(u− b)− b′(Σ−1
u + S ′Σ−1

ε S)b + a′Σ−1
ε a

(28)

with b = (Σ−1
u +S ′Σ−1

ε S)−1S ′Σ−1
ε a. This result allows us to write the product of the three

normal pdfs in the three integrals which both depend on ut as the product of a normal pdf

which depends on ut and a remainder that does not depend on ut. Hence, each integral

can be expressed in terms of a CDF of a bivariate normal distribution.
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