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Summary. This paper describes a method for solving the cyclic crew rostering
problem (CCRP). This is the problem of cyclically ordering a set of duties for a
number of crew members, such that several complex constraints are satisfied and
such that the quality of the obtained roster is as high as possible. The described
method was tested on a number of instances of NS, the largest operator of passenger
trains in the Netherlands. These instances involve the generation of rosters for groups
of train drivers or conductors of NS. The tests show that high quality solutions
for practical instances of the CCRP can be generated in an acceptable amount of
computing time. Finally, we describe an experiment where we constructed rosters
in an automatic way for a group of conductors. They preferred our - generated -
rosters over their own manually constructed rosters.

1 Introduction

The assignment of work to individual crew members is a complex task for each
public transport company. Traditionally, this process is split into two steps.
In the first step, duties are constructed where a duty is the work for one crew
member on a single day. These duties have to fulfill a lot of requirements.
For instance, there is an upper bound on the length of each duty and there
should be a break in each duty. This process is called crew scheduling. In the
next step, rosters are created where sequences of duties are constructed. These
sequences are assigned to the individual crew members. This problem is called
crew rostering.

Rostering can be done in several ways: (i) a roster for individual crew mem-
bers can be created where crew specific characteristics (e.g. their vacations)
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can also be taken into account, (ii) a bid line can be constructed where indi-
vidual crew members can bid for, or (iii) a cyclic roster can be constructed.
The first two rostering approaches are mainly used in the airline industry (see
[6] for an overview). However, many European public transport companies,
including NS, use the concept of cyclic rosters. In the remainder of the paper,
we refer to a cyclic roster if we use the word roster.

The remainder of this paper is organized as follows. The concept of cyclic
rosters is explained in more detail in Section 2. In Section 3, we discuss the
current crew planning process at NS. The rostering problem is solved in two
steps: (i) the allocation of the duties among the different groups of crew
members, and (ii) the actual construction of the rosters for each group. The
focus in this paper is on the second step. However, in Section 4, we briefly
discuss a straightforward solution approach for the allocation of the duties to
the groups. In Section 5, we provide a mathematical formulation for the cyclic
crew rostering problem. This formulation is solved with a standard commercial
solver. Computational results that show the suitability of this approach are
provided in this section as well. To test the approach in practice, we did
an experiment for conductors in the crew base Utrecht of NS Reizigers. The
results of this experiment are described in Section 6. Finally, we end this paper
with some concluding remarks.

2 The cyclic crew rostering problem

In the cyclic crew rostering problem (CCRP), rosters are created for a group
of crew members, where crew members are in the same group if they have the
same characteristics (e.g. drivers, full-time employees, same route knowledge).
For such a group, one roster is constructed with a length in weeks equal to the
number of crew members in the group. If a roster is of size k, then k indicates
the number of weeks and the number of crew members in the roster.

Schematically, a roster can then be seen as a set of rows and columns,
where the columns correspond to the different days of the week, and the rows
correspond to the different weeks. Table 4 gives an example of a roster for 20
weeks which is to be carried out by 20 crew members. Crew member 1 starts
in week 1 with the duties in the first row of the roster, while crew member
2 starts in the first week with the duties in the second row. These duties are
carried out by crew member 1 in the second week. The remaining part of the
roster can be explained similarly. Notice hereby that the duties in the first
row follow after the duties in the last row.

There are many rules indicating whether a roster is feasible or not. Those
rules deal with the rest periods between two duties, the rest periods in a week,
the number of weekend days off, the number of night duties, etc.

Only a few papers have studied the CCRP. For example, [2] developed a
heuristic based on a mixed integer programming formulation to determine a
roster with a minimum number of weeks such that each duty is done once
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every day. A recent paper [7] deals with the CCRP at the London Under-
ground, which is a complex problem considering all kinds of hard practical
constraints. The authors decompose the problem into two stages, where in the
first stage a pattern of rest-days and duty types is created for each depot, and
afterwards the individual duties are assigned to this pattern. The first phase
is the most complex part, which is further decomposed into three steps. The
most complicated step is to find the “optimal” rest-day pattern for each depot.
This problem is solved as a mixed integer program. The second phase can be
formulated straightforwardly and solved as an assignment problem with side
constraints.

3 Crew planning at NS

In Figure 1, we give a schematic overview of the crew planning process for
drivers and conductors at NS. Other crew members (at ticketing offices, the
call center, mechanics, etc.) fall outside the scope of this paper. The crew
scheduling problem (CSP) is the problem of assigning tasks to anonymous
duties. These tasks are given by the timetable and by the rolling stock schedule
(see [5] for a discussion on all planning problems at NS). A duty is the work
for one crew member from a specific crew base on a certain day. After the
construction of the duties, the rosters are constructed. As mentioned before,
the concept of cyclic rostering is used. Since each duty belongs to a certain
crew base, the CCRP should be solved for each crew base separately. To
increase the influence of the crew members on the final rosters, the rosters
are constructed locally at the different crew bases themselves. An important
aspect for the crew members is a fair division of the popular and the unpopular
parts of the work.

Before we focus on the rostering process, we first discuss the crew schedul-
ing process in more detail. At NS, the crew scheduling process has been split in
two stages. First, the crew schedules for the annual plan are constructed. This
plan deals with a generic Monday, Tuesday and so on. This generic annual
plan is modified about 6 times a year. In the CSP that is solved for generating
the generic annual plan, some rostering aspects are also taken into account.
For instance, the average duty length over all duties on a certain crew base
should not exceed 8 hours. The reason is that, if this time is exceeded, then
it is impossible to construct rosters where the average working time per week
is less than 36 hours (in principle each full-time crew member works 9 days
in two weeks). Moreover, it is important that to obtain a fair division of the
work for the different crew members, the work should be fairly spread over
the different bases. The latter constraints are typical for the Dutch situation
and are known as “Sharing Sweet & Sour” rules. They aim at allocating the
popular and the unpopular work as fairly as possible among the different crew
bases. For instance, some routes are more popular than others and Intercity
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Fig. 1. Crew planning process at NS

trains are preferred over regional trains. For a detailed description of these
rules, we refer to [1].

The crew schedules for the specific days, e.g. Friday December 2, 2005,
are based on the schedules for the corresponding generic day (in the example
the schedules for Friday). However, for the specific days, the above mentioned
complex rules do not need to be taken into account (see [4]). On the other
hand, the rosters are not changed anymore for the specific days. Therefore,
modifications in the generic crew schedules for adapting them to the specific
days should fit in the rosters. This limits the possibilities in the CSP for the
specific days. Only if the CSP cannot be solved otherwise, the rosters may be
modified. As a consequence, the crew members know their required attendance
at work already long time in advance.

The most important rostering problem is to be solved each year at the
beginning of a new timetable year: then the basic rosters are constructed
completely from scratch. During the year, the rosters are only slightly mod-
ified, as was described above. The latter is less complex than constructing a
roster completely from scratch.

The basic rosters are constructed in two steps. First, the duties are allo-
cated to the different groups such that the popular and the unpopular work
is fairly divided among the groups. Moreover, requirements have to be taken
into account to guarantee that a feasible roster can be constructed for each
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group afterwards. Examples are the average working time per group and the
percentage of night duties per group.

In the largest Dutch crew base Utrecht, this step is currently solved as
a kind of auction. Each group sends one representative to this auction and
every representative tries to get as much popular work as possible for his
group. Moreover, the different representatives check if the other groups do not
get too much popular work. This is also checked by an independent person.
After the duties have been allocated, each representative constructs a roster
for his own group, thereby taking into account the labor rules following from
the law and the collective labor agreements. This is a complex puzzle, which
has to be solved manually. Usually, the representatives stop when they have
found a feasible roster. When they cannot find one, they accept this (note
that this does not necessarily mean that a feasible roster does not exist!), or
they exchange duties with other groups.

4 Allocating the duties to groups

As was described in Section 3, the duties are first allocated to the different
groups as fairly as possible. This can be seen as an assignment problem where
duties should be assigned to different groups. The basic requirements are that
each duty should be assigned to exactly one group, and that each group should
not have more duties than the number that could be assigned to that group on
each individual day. Moreover, some restrictions should be taken into account
such that each group has a large probability of being able to construct a
feasible roster afterwards (see Section 5).

To allocate the work as fairly as possible to the groups, one could apply
two strategies. The first one is that constraints are added which deal with
the minimum (maximum) amount of (un)popular work. Alternatively, one
could take as objective that the deviation from the average of popular and
unpopular work should be as small as possible for each group. We choose for
a combination of these two strategies.

The description above can be formulated in a straightforward way as a
mixed-integer program (MIP) with 0/1 decision variables indicating whether a
duty should be assigned to a group or not. We solve this MIP with the standard
commercial solver Cplex 9.1, where we put the emphasis on finding good
feasible solutions quickly. Moreover, we use Cplex’s local branching heuristic
in every fifth node of the branch-and-bound tree. In this way, we could easily
find a fair division in a reasonable time. In Section 6, we provide some detailed
results for an experiment in the crew base Utrecht.
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5 Constructing the rosters

5.1 Introduction

When the duties have been allocated to the different groups, each group has
to construct its own feasible roster. Here, one should take into account all
kinds of constraints following from the labor rules and the collective labor
agreements.

Next to duties and days off, certain other types of days should be sched-
uled. These are the so-called WTV, CO and RES days. A WTV day is in
principle a day off for a crew member. However, a crew member can decide to
sell this day off and go to work. For the rostering process this means that it
should be possible to schedule a duty on a WTV day. A CO day is an extra
day off that crew members get when they have worked a certain amount of
time in the weekend, early in the morning or in the night. If an individual
crew member does not reach a certain level of CO time (e.g. due to illness),
he should work on this day. A RES day is a day where a crew member should
be available for work in order to replace other crew members that are ill or
are on vacation. In the following, a roster day represents either a duty, a day
off, a WTV day, a CO day, or a RES day.

Below, we give some examples of rules that have to be taken into account
in the CCRP. For an extensive overview, we refer to [3].

• The rest time between two duties is at least 12 hours if the first duty
finishes before 2:00 AM, otherwise it is 14 hours.

• The maximum working time per week is 45 hours. For a period of 13
consecutive weeks, the average working time per week is at most 40 hours.

• A day off is a period of at least 30 hours between two duties.
• At least once in the three weeks, there is a so-called Red Weekend. This

is a rest period of at least 60 hours, starting not later than Saturday at
midnight and ending not earlier than Monday 4:00 AM.

• In a full-time roster of length n, there should be planned 2n days off and
n/2 WTV-days.

• There are at most 10 duties per 4 weeks, and 32 per 13 weeks, which cover
a part of the period between midnight and 6:00 AM.

The quality of a roster is determined by the order of the roster days and
the variety in the duties. Some examples are:

• A series of duties after each other with the same type is preferred, where
a type is either an early, late or night duty.

• Two or more adjacent days off (or CO-days) are preferred.
• WTV-days are preferably spread over the different days in the week and

are preferably scheduled once in the two weeks.
• Similar duties should be spread over the roster. A lot of variety in the work

with respect to trajectories, rolling stock types, etc. is preferred.
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5.2 Split-up of the solution process

Since the CCRP is a hard problem to solve, we split it into two phases. In
the first phase, we create a pattern where we assign to each day in the roster
an early, late or night duty, a day off, a WTV day, a CO day, or a RES day.
In the second phase, we assign the specific duties to the places in the roster.
Note that this split is rather similar to the split that is described in [7].

Both phases can be formulated as an assignment problem with additional
constraints. The objective is to minimize the total sum of the penalties, which
are determined by undesirable combinations of duties, days off, etc. The details
are provided in the following sections.

5.3 Notation

In the following, T denotes the set of days in the roster, where |T | = 7k for a
roster of size k. Since the roster is cyclic, day |T |+1 is the same day as day 1.
We define I as the set of roster days. Note that in the first phase the specific
duties are not considered, therefore only the following roster days exists: early,
late and night duties, days off, and CO, WTV and RES days. All possible
combinations of different types of roster days and different weekdays (i.e.
Monday, Tuesday, etc.) are denoted by the set M , where for each combination
m the number of roster days is denoted as bm. For some type of roster days
(e.g. WTV days), there is no split to the different weekdays a priori, in other
words it still has to be decided in the CCRP. In that case, bm gives the total
number of these roster days and only one constraint for this type of roster
days is added.

Finally, we define two types of decision variables. The assignment variable
wit is equal to 1 if roster day i is assigned to day t and 0 otherwise. Note
that we only define these variables for feasible assignments, i.e. a roster day
containing a Monday duty can only be assigned to a Monday. Therefore, we
define the set TP as all possible combinations of assignments of roster day i to
day t. The second type of decision variables deals with undesirable patterns of
adjacent roster days. These patterns are penalized in the objective function.
For each possible pattern p that starts on day t, we define a binary variable
ypt, which is 1 if this pattern starts there and 0 otherwise. Its corresponding
penalty is denoted by cpt. Note that the value of this penalty can be different
on different days of the week.

5.4 Mathematical formulation

In both phases, the mathematical formulation reads as follows, where the
horizontal dots indicate constraints that are added and explained later on:
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min
∑
p∈P

∑
t∈T

cptypt, (1)

∑
i:(i,t)∈TP

wit = 1, ∀t ∈ T, (2)

∑
(i,t)∈TPm

wit = bm, ∀m ∈ M, (3)

...

y1,t ≥
∑

i:earlyduty,
(i,t)∈T P

wit +
∑

j:nightduty,
(j,t+1)∈T P

wj,t+1 − 1,∀t ∈ T, (4)

...

wit ∈ {0, 1}, ∀(i, t) ∈ TP, (5)
ypt ∈ {0, 1}, ∀p ∈ P, t ∈ T. (6)

The objective (1) is to minimize the total sum of the penalties assigned
to the different undesirable patterns. Constraints (2) and (3) assure that each
day has exactly one roster day assigned to it and that each roster day occurs
on a particular weekday exactly the right number of times, respectively. An
example of an undesirable pattern is a night duty after an early duty. The
corresponding set of constraints (4) says that if there is an early duty on day t
and a night duty on day t+1, then the corresponding y-variable to this pattern
y1,t should be equal to 1. In that case, we count the corresponding penalty
in the objective. Since the roster is cyclic, the first day is the successor of the
last day. In a similar way, all undesirable patterns can be defined. Moreover,
all labor rules can be added in a similar way. We discuss some examples in
the next subsection.

5.5 Labor rules constraints

In the beginning of this section, we gave a few examples of labor rules. We
will now show for these examples how we take them into account.

The first example deals with the rest time between two duties. Since in the
first phase we do not take the specific duties into account, we cannot take this
rule directly into account. However, we know that, if we do not take it into
account at all, it is likely that we cannot find a feasible solution in the second
phase. Therefore, we do not allow some combinations in the first phase that
give a large probability of a too short rest time. Alternatively, we could allow
them but against a high penalty. In other words, we could translate this rule
in both phases into a rule, which says that duty i could not be followed by
duty j on the next day, or in mathematical terms:

wit + wj,t+1 ≤ 1. (7)

The maximum working time per week (13 weeks) is the second example.
This rule is taken into account in the second phase. By defining ai as the
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working time of roster day i, A as the maximum working time, and s as the
number of days in this period, we can formulate this as

t+s∑
n=t

∑
i:(i,n)∈TP

aiwin ≤ A ∀Mondays t. (8)

The next example deals with the fact that a day off should cover at least
30 hours. In other words, it tells something about the time between two duties
on days t and t + 2 with a day off in between. The following constraints are
added to the second phase:

wht +
∑

dayoffi:
(i,t+1)∈T P

wi,t+1 + wj,t+2 ≤ 2 ∀t ∈ T, (9)

where the start time of duty j is less than 30 hours after the end time of duty
h and (h, t), (j, t + 2) ∈ TP .

The so-called “Red Weekend” is an example, which results in constraints
in the first and second phase. In both phases, we add the constraints:∑

p∈RW

yp,t + yp,t+7 + yp,t+14 ≥ 1 ∀Fridays t, (10)

where the set RW defines all patterns containing a Red Weekend. The dif-
ference between the first and second phase is in the definition of RW . In the
second phase, we take the end time of the duty on Friday and the start time
of the duty on Monday into account as well.

The number of days off and WTV days are taken into account directly in
the basic model in the first phase. We do not add extra constraints here.

Our last example deals with the duties which cover a part of the period
between midnight and 6:00 AM4. These duties form the set ZN . We define
s as the period length in days in which at most Z these duties are allowed.
This can be modelled as:

t+s∑
n=t

∑
i∈ZN:

(i,n)∈T P

win ≤ Z ∀Mondays t. (11)

This constraint is taken into account in the second phase only.

5.6 Computational results

We have made some experiments for the crew base Utrecht of NS Reizigers,
which contains 12 groups of train drivers. Some characteristics of the groups
are given in Table 1. These data correspond to the year 2005.
4 All night duties cover a part of this period. However, some early and late duties

cover a part of this period as well.
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group size average working time specifics

A 12 36 hours no night duties

B 20 36 hours no night duties

C 20 36 hours no night duties

D 20 36 hours all types

E 20 36 hours all types

O1 20 36 hours only early duties

O2 10 36 hours only early duties

L1 20 36 hours no early duties

L2 12 36 hours no early duties

DO 10 32 hours only early duties

DR 12 32 hours all types

DL 12 32 hours no early duties

Table 1. Driver groups of the crew base Utrecht

We have developed and tested our model on 7 of these groups. The com-
putational results for the first phase are given in Table 2. As can been seen
in the table, for all cases a good solution is found quite quickly. However,
proving that the solution is optimal is hard. For the smaller groups (less than
20 weeks) an optimal solution can be found within half an hour. This is only
proven for group DO. After some time the solution found is not improved
anymore and only the lower bound is increasing. This indicates that Cplex
is trying to prove that there is no better solution. Next to that, one can ar-
gue that a larger group will have more penalties because they have a larger
probability on penalized patterns. Groups without late duties will have fewer
penalties than groups with such duties. Group DO is the smallest group and
has no late duties. Following the reasoning above, we assume that the value
of the optimal solution of group DO is a lower bound for the other groups.

To improve the computing time, we have added a redundant constraint:∑
p∈P

∑
t∈T

cptypt ≤ αk (12)

for an appropriate choice of α. This gives an upper bound on the objective
function, which depends on the size of the roster as well as on the penalties
for the undesirable patterns. When the number of patterns or penalties is
increased, it might be necessary to increase α as well.

For the second phase, the results are given in Table 3. For almost all
groups an optimal solution can be found within a reasonable amount of time.
An exception is group B, where no optimal solution is found after more than
20 hours of computing time. Adding constraint (12) gives much better results
for group B. After 7 minutes a solution with objective 231.6 and lower bound
67.8 is found and after two hours for the same solution the lower bound has
increased to 100. This shows that adding the constraint can lead to finding
better results in shorter computing time.
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group computation time objective value lower bound

A 1 min 37,3 0

10 min 34 0,43

1 hour 34 2,6

B 23 min 80,8 6,2

45 min 58,9 6,6

2 hours 58,9 7,5

D 48 min 99,9 6,2

6 hours 82,6 6,9

11 hours 68,9 7,5

16 hours 68,9 7,5

O2 direct 42,6 0

16 min 27,4 3,7

1 hour 27,4 6,6

L2 3 min 58 0

30 min 37,1 0,5

1 hour 37,1 1,3

DO direct 32,5 2,5

1 min 12,4 4,1

17,5 hours 12,4 (optimal) –

DR 1 min 37,3 2,3

20 min 16,5 4,9

1 hour 16,5 7

Table 2. Results first phase

As an example of the solutions found we present the obtained roster for
group D in Table 4. This roster is a full-time roster for 20 weeks (crew mem-
bers) and contains all types of duties. Early, late and night duties are denoted
by E, L and N, respectively. A day off is denoted by R. The solution for
the first phase is found after 11 hours with an objective value of 68.9 and a
lower bound of 7.5. For the second phase, the optimal solution is found after
3 hours with an objective value of 217.5. Only the results of the first phase
are presented in the table.

First we give some remarks about the results of the first phase. Within the
roster the WTV days are nicely spread over the weekdays and the weeks and
are all followed by a rest day. Ten times there is a single day off, but in most
of the cases days off are clustered. Three times, a night duty is scheduled after
a late duty, and once a night duty is scheduled after an early duty. These are
undesirable combinations. However, in general the sequencing of the duties
is quite attractive. The next remarks are related to the results of the second
phase. This roster contains only two weeks with an average working time
above 36 hours. The roster contains two duties with a post time of 13 hours,
seven with a post time of 14 hours, 15 with a post time of 15 hours and 57
duties with a post time of more than 16 hours. Most of the routes occur in
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group computation time objective value lower bound

A 2,5 min 209 68

1,7 hours 93,6 90,5

8,8 hours 93,6 (optimal) –

B 30 min 752,3 76,2

4 hours 583,7 84,3

20 hours 583,7 90

D 8 min 871,1 149

10 min 245,5 170

3,2 hours 217,5 (optimal) –

O2 2 min 56 39

3 min 48 40

7 hours 48 (optimal) –

L2 2 min 33 12,8

17 min 27 (optimal) –

DO 2 min 150 32,9

3,6 hours 73 68

11 hours 73 (optimal) –

DR 1,5 min 129,3 (optimal) –

Table 3. Results second phase

every week in less than 3 duties (which spreads the routes equally over the
weeks). Also the nice trains have been spread over the weeks fairly.

6 Results shadow planning train conductors

The conductors in the crew base Utrecht had some problems with the creation
of the rosters in the previous year. Therefore, the management asked us to
support the planning of the rosters for the year 2006. The idea was to generate
rosters parallel to the manual planning process and to evaluate the differences.

As mentioned above, the first step in the rostering process is to allocate
the duties to the different groups of conductors. The problem at hand con-
sisted of 14 groups with 3 general, 3 late, 3 early and 5 part time rosters.
Representatives of the different groups took 3 days to allocate the duties over
the different groups. The popular and unpopular work was allocated reason-
ably fairly to the different groups. However, there was one group with a lot
of unpopular work. By using the approach described in Section 4, we could
allocate the duties in such a way that almost all the popular and unpopular
work was allocated more or less fairly. The solution time to solve the opti-
mization problem was about 20 minutes, which is much less than the 3 days
needed by the representatives. Moreover, they modified their allocation when
they saw our solution, such that the group with a lot of unpopular work got
some other duties in order to increase the overall fairness of the allocation.
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Wk Mo Tu We Th Fr Sa Su

1 RES E R L WTV R R

2 E E E E E E R

3 R L WTV R R E E

4 E E E E E R R

5 L L WTV R L N N

6 N R R L L L L

7 WTV R L L RES R R

8 E E E E E R R

9 L WTV R R N N R

10 R L L RES CO E E

11 WTV R E E E R R

12 L N N R L L L

13 R R RES L L L L

14 CO L L L WTV R R

15 L L L L L R R

16 E WTV R R L L L

17 R RES E E E R R

18 L L L WTV R E L

19 L N N N CO R R

20 L L L WTV R E E

Table 4. Example roster group D

In the next step, the construction of the cyclic rosters, the main practical
problem was related to the second phase of our approach. In principle, the
groups use the same pattern for the rosters as in the previous year. In our
approach the patterns are created in the first phase, so this phase was less
important. Based on the patterns, an attractive solution for the second phase
was found within one hour for all groups, except for group C. In this case it
was not possible to find a feasible solution based on the given pattern. After
generating a new pattern, we were able to find a good roster for group C. For
the smaller or part time rosters we found an optimal solution almost instantly.
The larger cases took some hours to be solved to optimality.

Manually, the planners were not able to find a feasible solution for three
rosters within the available time. In these cases, we presented both the manual
roster and the roster generated by the model, where the first ones did not
obey all labor rules. The violated rules were related to the official national
regulations. However, these violations are not commonly known and hard
to detect. We did not tell the personnel which rosters were generated by
the model and which ones were generated manually. In all three cases the
personnel preferred the rosters generated by the model. As a result of this,
three of the rosters generated by the model have been implemented in practice.
This shows that our model is not only successful in creating valid rosters but
also creates attractive rosters.
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7 Conclusions

In this paper we described a model for solving the CCRP. The model was
tested on several instances involving groups of train drivers or conductors of
NS, the largest operator of passenger trains in the Netherlands. The results
were promising: rosters for the crew base Utrecht were generated in a fraction
of the time that was required by the manual rostering process. Moreover, the
rosters generated by the model satisfied all the relevant rules, which was not
the case for the manually generated rosters. Moreover, the rosters generated
by the model were preferred over the manually generated ones.

A next step in our research is to test the model also in the other crew bases
of NS, where the rostering process may be slightly different than in the crew
base Utrecht. Another next step is to add the model to the existing rostering
system of NS. If these steps have been accomplished, then the model can be
used at all crew bases of NS.

Summarizing, we have shown once more that the application of Operations
Research techniques for solving a practical problem may lead to a shorter
throughput time in the planning process, as well as to a higher quality of
the obtained results. In particular, since the results are appreciated by the
personnel, this will lead to more satisfied personnel. It can be expected that
more satisfied personnel will lead to a higher productivity of the personnel
and to a better punctuality of the railway services.
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