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Summary. This chapter deals with nonparametric estimation of the risk neutral
density. We present three different approaches which do not require parametric func-
tional assumptions on the underlying asset price dynamics nor on the distributional
form of the risk neutral density. The first estimator is a kernel smoother of the second
derivative of call prices, while the second procedure applies kernel type smoothing
in the implied volatility domain. In the conceptually different third approach we as-
sume the existence of a stochastic discount factor (pricing kernel) which establishes
the risk neutral density conditional on the physical measure of the underlying asset.
Via direct series type estimation of the pricing kernel we can derive an estimate of
the risk neutral density by solving a constrained optimization problem. The meth-
ods are compared using European call option prices. The focus of the presentation
is on practical aspects such as appropriate choice of smoothing parameters in order
to facilitate the application of the techniques.
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1 Introduction

Most of our economic understanding of investment under uncertainty is based
on pure Arrow-Debreu Securities (Arrow 1964, Debreu, 1959), which pay one
unit of currency at the end of a period if a state of nature is realized and zero
otherwise. Their theoretical state-contingent prices are the starting point for
pricing any security in an economic equilibrium under uncertainty. In a con-
tinuum of states, the prices of the Arrow-Debreu securities are characterized
by the state-price density, which yields one dollar if the final state is in the
interval [z, x+dx] when starting from any point 2. While one way to justify ex-
istence and form of a state-price density is from preference-based equilibrium
models (Lucas, 1978), we focus here on the reasoning from arbitrage-based
models (Merton, 1973). In these models the state-price density is called risk
neutral density (RND) under the assumption that the underlying market is
dynamically complete, which we will adopt in the following. The RND also
uniquely characterizes the equivalent martingale measure under which all as-
set prices discounted at the risk-free rate are martingales.

Under the above stated assumption, the price of a European call is ob-
tained by discounting the expected payoff, where the expectation is taken
with respect to the risk neutral measure

C(X7 T, rt,‘rvat,‘rast) = eirt’TT‘/ (ST - X)+Q(5T|T, rt,T76t,T7St) dST (1)
0

Here S; is the underlying asset price at time ¢, X the strike price, 7 the time
to maturity, T' = t + 7 the expiration date, r;, the deterministic risk free
interest rate for that maturity T, d;, corresponding dividend yield of the
asset, q(St|7,7¢,7,0t.7,5t) is the conditional risk neutral density. We assume
that these state variables contain all essential information needed for estima-
tion of C' and ¢ while quantities such as stochastic market volatility, trading
volumes, ask-bid spreads are negligible. We write ¢(St) instead of ¢(St|-) to
keep notation simple. The risk neutral density can be derived from (1) as

o%2C
a(Sr) = { } . @)
T 0X2 [ .

The relation is due to Breeden and Litzenberger (1978) and is the start-
ing point for two possible estimation strategies: first, estimate a continuous
twice-differentiable call function in all its arguments from traded options by
smoothing in the call price or secondly, by smoothing in the implied volatil-
ity space. In addition to these standard approaches we also introduce a third
indirect way via estimation of the empirical pricing kernel. Assuming that all
the variables other than X are fixed, the price of the European call option
with strike price X expiring in 7 years under the historical measure p is given
by
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q(St)
p(ST)

R /OOO(ST — X) " m(Sr)p(Sr)dSe, (3)

C(X)=eT"" /OOO(ST -X)t p(ST)dST

where p is the subjective density of the stock price at the expiration of the
option, at time T and m is the so called pricing kernel characterizing the
change of measure from ¢ to p.

In standard option pricing models such as Merton (1976), Heston (1993)
or Bates (1996), estimation of the risk neutral density crucially depends on
underlying model assumptions such as the underlying asset price dynamics
and the statistical family of distributions that the risk neutral density is as-
sumed to belong to. Consumption based asset pricing models prespecify the
preference of the representative agent and condition therefore the shape of the
pricing kernel (Lucas, 1978 and Rubinstein, 1976). Recent empirical findings,
however, question the validity of these popular specifications which drive the
overall result (Campbell, Lo and McKinlay, 1997). Nonparametric estimation
offers an alternative by avoiding possibly biased parametric restrictions and
therefore reducing the respective misspecification risk. Since nonparametric
estimation techniques require larger sample sizes for the same accuracy as
a parametric estimation procedure, increasing availability of large data sets
as intraday traded option prices have raised their feasibility. On the other
hand, due to their flexibility, many existing nonparametric risk neutral den-
sity estimation techniques are afflicted by irregularities such as data sparsity
in the tails, negative probabilities and integrability to one. We will address
these problems by appropriate choices of bandwidths and kernels, suggesting
semiparametric techniques or imposing relevant constraints.

We use kernel based methods (local polynomial regression) in each of the
first two cases. These methods are flexible and yield point estimates as opposed
to series expansion, sieve methods or splines. Though shape constraints such
as convexity or monotonicity of the call price are hard to incorporate directly
in the estimation step. Therefore in particular in small samples they are not
satisfied leading to problems with economic theory. Thus in the estimation
via EPK in Section 3 we use series approximation for directly controlling
constraints in the estimation.

The rest of the chapter is organized as follows: section 2 describes kernel
based regression methods for direct estimation of the RND from the call prices
function, section 3 introduces the concept of pricing kernel and explains the
indirect method of estimating RND, section 4 concludes. Throughout the
chapter empirical studies using EUREX DAX Index based European option
data illustrate the methods, comparing their performance.
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2 Estimation of RND based on the second derivative

The standard approach for a nonparametric estimator for the risk neutral
density is by estimating the second derivative of the call price with respect to
the strike X. Then an estimate for g is obtained by discounting according to
(2). Therefore in the following we focus on estimation of the second derivative
of a regression function.

Call the d-dimensional vector of covariates Z which comprises all estima-
tion relevant variables of (X, 7,7 7,0 7, S¢) from (1) and denote call prices as
response Y. From paired observations Y; and Z; = (Zik)gzl, fori=1,...,n
we want to estimate the following general, possibly nonlinear relationship

where C(+) : R? — R is a smooth function in all d dimensions and ¢; is i.i.d.
with E[g;|Z;] =0

Kernel based methods are local techniques for estimating the function C
at any point z in its domain; they use a weighted average of the Y;-s to yield

fitted values via .
(z) = > wi(z)Y; (5)
i=1

where the weights w;(z) assigned to each point of fit z decline for increasing
distance |Z; —z| and 1 3" | w;(z) = 1. Kernel regression methods use kernel
functions to construct weights. A univariate kernel is a smooth, symmetric
real-valued squared integrable function K(u) : R — R which integrates to
one. We can think of a standard kernel function as a probability density with
potentially compact support. Examples of such K are presented in Table 1.

Table 1. Kernel functions K (u)

Uniform 1I(Jul < 1)

Triangle (1T—=JuhI(lu] <1)
Epanechnikov 3(1—u?) (\u| <1)
Quartic (Biweight) 2 (1 — u®)* I(Ju| < 1)
Triweight g—( u?)3I(jul < 1)
Gaussian F exp(—2u?)
Cosine T cos(Fu) I(Jul < 1)

Furthermore, there exist more general types of kernel functions, so called
higher order kernels, which can be used for bias refinements in the estimation,
see Subsection 2.1. The order of a kernel v > 0 is defined as the first nonzero
moment of the kernel, that is
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/ulK(u)duzO7 I=1,.,v-1 (6)
/u“K(u)du =Ky #0

and k,, < 0o. Solving the system of equations (6) for kernel functions integrat-
ing to unity for a fixed v , yields a v-th order kernel. The larger v, however,
the more ”wiggly” the resulting kernel becomes - covering more and more
negative areas. Here we mostly consider standard second order kernels, which
are nonnegative functions.

Set Kj,(u) = + K (%) for all u € R where h is the bandwidth, the smooth-
ing parameter. In a d-dimensional space, for each pair z and Z; the multivari-
ate kernel function K(z — Z;) : RY — R must analogously fulfil

_ 1
 det(H)

where H = diag(h) is the diagonal matrix of bandwidths & = [h1, ..., hq]. The
matrix H can in general also contain off-diagonal elements - but in practice
such generality is not needed. Define the multidimensional kernel Ky (z — Z;)
as a product of univariate kernels

d 2 — Lik
ate- 7~ T (2520,
k=1 k

For expositional simplicity we let hy = --- = hy = h. Details on how to
choose the optimal bandwidths are addressed in the next section.
The simplest case of choosing w; in (5) is to use Nadaraya-Watson weights

Ku(z —Z;) K{H ' (z - Z;)}

- ICh(Z — Zl)
Y1 Kn(z = Zy)

These are a special constant case of general local polynomial weights de-
rived below. Besides other choices of weights such as in the k-nearest neighbour
or the Gasser-Miiller estimator are possible. Estimators of the second deriva-
tive of a function are constructed by twice differentiating the estimator of the
function. In this case these estimators, however, have inferior statistical prop-
erties and are therefore not included here. References are e.g. Hardle at al.
(2004) and Fan and Gijbels (1996). We focus on local polynomial estimation
which directly yields estimates of derivatives. The idea of local polynomial
regression is based on Taylor expansion approximating an unknown function
C at a point z. In order to keep notation simple we will first illustrate the
method for the univariate case. The multivariate case is systematically the
same and will be sketched afterwards.

Locally any sufficiently smooth function C' can be approximated by a poly-
nomial of degree p

w;(z)
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P o0 (s _
cz) =3 @ -y + oz - oy (7)
j=o F

=82 — 2) + O{(Zi — 2"}
§=0

with ¢ = 1,...,n. Therefore by minimizing a locally weighted least squares

regression
2

minzn: Y; — Z Bi(2)(z — Z) b Kn(z — Zy). (8)
B
i=1 j=0

the solution (y(z) provides an estimator of C' at point z, while j !Bj(z), with
j = 1,...,p are the estimated derivatives at that point. Closed forms for
B(2) = (Bo(z),. .. ,ﬁp(z)) can be obtained by solving (8) via equating the
corresponding system of first order conditions to zero. As we are interested in
an estimator for the second derivative of a function, we should choose p > 2.
As will be outlined in the subsection below, for good statistical properties
without requiring too much smoothness p = 3 will be a suitable choice.

In d-dimensional case, expansion (7) will include mixed terms which must
be appropriately ordered. Then the interpretation of the coefficients is similar:
Bo(z) is the estimator of C' at point z, while j!5;(z) = j! [3j1(2),- - , Bju(2)]
with p = 1,...,N; is INj-dimensional vector of j-th order derivatives of C
evaluated at point z. It is obvious that Ny =1 (f is the local constant) and
N; = d (B is the vector of partial derivatives) but for j > 2 the expansion
contains cross order derivatives and the general formula for N; is

o (d+j—-1\ _(d+j-1)
Nﬂ( i1 ) G-t

For example, when j = 2 we have Ny = d(d + 1)/2 distinct derivatives and,
V) (C(z) = 205(z) is the estimate of
8%2C(z)

023
8%C(z)

V(Q)C(Z) _ 621.822

8%C(z)
Bz;‘;

For the estimation of the RND we are interested in the second derivative
of the call price with respect to the strike price X. In our notation with
z = (X, 7,7 7,07, ) this is 202;. Thus

2
021

j rr B 2%,
q(ST) = 26 t,‘rﬁ21 (ST7z_1) =e t,T { (Z) }
X=8p

with z_1 = (7,77, 04,7, S1).
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2.1 Statistical Properties

Assume for simplicity that C is univariate and has continuous derivatives
of total order (p + 1). The probability density function fz of (Z1,...,Z,) is
continuous and (p + 1) times continuously differentiable (fz > 0) and also
K (u) is a bounded second order kernel having compact support. Let c
denote the estimator of C') based on a p-th order local polynomial fit (j < p).
The results below are standard and can be found for instance in Li and Racine
(2007).

Theorem 1. When p — j is odd, the bias is

wPt(2)

E [C'(j)(z)] —CU(z2) = WPt ey, {(P‘H)!

} +o(hP~Hh . (9)

When p — j is even, the bias is

w(p+2)(z) ,
(27‘1‘2)'}/” 2K (u)du (10)
W@+ (Z)f(l)(z) }

fZ)(p+1)!

E {@m(z)} _ o)) = hpﬂ'”@m,{
+ hp7j+203,j,p {
where w(z) = {C’(z) — C(z)} f(2). In either case

Var (C0)(2)) = {047;;2‘3’1(12)} + o {(nh*+) ")}, (11)

The exact form of the constants c, jp fora =1,2,3,4 can be found in Ruppert
and Wand (1994).

For illustration consider the special case p = 0 and j = 0 - local constant
estimation of a function. The bias is

e CW(2)f{(2)
2{o<n@+2ﬁ%3 oK) (12)

with p2(K) = [u?K(u) du. For p =1 and j = 0 - local linear estimation of a
function - the bias becomes

h2

5 {C® @)} na(x). (13)
Observe in general from (9) and (10) that the bias for p — j even con-

)
tains an additional design dependent term with factor ! Ji‘z (iz)) as opposed to

the odd case. Sign and size of this quantity, however, depend on the shape of
the underlying estimated function and the shape of fz. In particular at the
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boundary of the support of Z small values of f7 inflate the entire term. There-
fore odd values of p — j are preferable avoiding such boundary bias problems
and pertaining the same variance. In our case, we are interested in the second
derivative. We therefore choose the design adaptive order p = 3 and not p = 2
according to Theorem 1.

With higher order kernels (6) of order v and corresponding higher smooth-
ness assumptions the bias in Theorem 1 can be further reduced to be of order
hY for fixed p and j with v > p — j + 2 without changing the rate in the
variance. In practice the order v, however, cannot be chosen too large as with
increasing v the estimates have robustness problems in finite samples due to
negative weights associated with the kernels (Miiller, 1988).

Observe from Theorem 1 that kernel estimation of a derivative is harder
than of the function itself. While the variance in the function estimation de-
creases with O(1/(nh)) the corresponding rate in the second derivative is only
Op(1/(nh®)) which is much slower. Therefore the finite sample performance
of second derivatives lacks the precision of the fit achieved for the function.

Rates of convergence can be judged according to the MSE. Assuming that
p—j is odd, it is

ap . 2
MSE(z, h, j) = E [cm(z) —CW(z) (14)
= O{p2P=3+) 4 (pp@ )71y
— ——

ias2
bias var

For constructing confidence intervals of the nonparametric estimates use
the following normality result

Theorem 2. Under some additional moment assumptions it is for p — j odd
VaRFFH{CO)(2) - O ()} = N(O, V) (15)
with V; as in Theorem 1.

For a precise statement of the standard moment conditions see Li and
Racine (2007). Analogous results to Theorem 1 and 2 hold for d-dimensional
functions. The only remarkable systematic difference is that the dimension of
the regressors enters in the rate of the variance which is then Op{(nh?/+4)=1}.
Likewise the rate in the CLT also deteriorates with d and is nh?/+9. This
phenomenon is known in the literature as the curse of dimensionality cap-
turing the fact that finite sample performance of nonparametric estimators
decreases with an increasing number of regressors. Therefore in practice ap-
propriate semiparametric dimension reduction techniques are used. They keep
high modeling flexibility but yield better finite sample properties in regression
settings with more than three regressors. See Subsection 2.3 for details.
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2.2 Selection of smoothing parameter

Most important for good nonparametric estimation results is an appropriate
choice of bandwidth. Other parameters like the selection of a suitable kernel
K only have little influence on the final result in practice. This is because
kernel functions can be rescaled such that the difference between two kernel
estimates using two different kernels is almost negligible (Marron and Nolan,
1988). For the choice of order p of the employed local polynomial estimator it
is sufficient to follow the logic outlined above.

0.03

o
o
]

MASE, biasz, var

0.01

Fig. 1. MASE (simple line), squared bias (dashed line) and variance part (dotted
line) for simulated data, weights w(z) = I(z € [0.05,0.95])

An optimal bandwidth should minimize both bias and variance of the es-
timator. Though according to Theorem 1 there is a tradeoff between these
quantities as smaller bandwidths would reduce the bias but inflate the vari-
ance. Therefore selecting h by minimizing MSE(z, h, j) (14) balances bias and
variance (see Figure 1 for an illustration in averages). However, such a choice
depends on the location z. For a global choice use an integrated criterion like
the weighted intergrated mean square error (WIMSE)
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WIMSE(h, j) = / MSE(z, h, j)(z)dz = / E[CY)(z) — CY)(2)]?)(z)dz

(16)
where 1(2z) is a nonnegative weight function which ensures that WIMSE is well
defined. Instead of an integrated criterion also an averaged criterion like the
mean average squared error (MASE) can be used which replaces integration
with summation in (16). When using a second order kernel straightforward
calculations yield

—1/(2p+d+2) 4
. {cn for p — j odd (17)

¢n~V/@ptd+4) for p— j even

for the optimal bandwidth A* in a multivariate setting. In our case of interest
for p=3,7=2and d = 1itis h* = n~'/9. As for larger j also p must be
enlarged, the optimal bandwidth for estimating the j-th derivative decreases
in j. Note, however, that h* is not feasible in practice because the constants
¢,¢ in(17) contain unknown quantities such as higher derivatives of C' and
the regressors density fz as we can see from (9),(10) and (11).

A way to operationalize these are plug-in methods. They replace unknown
quantities by pilot estimates and then calculate h* via (17). The rule-of-thumb
additionally uses normality assumptions in the distribution of the regres-
sors and for the kernel to calculate exact constants. For p = 7 = 0 it is
hie ~ spn~ Y444 for b = (hy,..., hg) with s, the standard deviation of
observations of covariate Zj. It is an easy and fast way to obtain a rough esti-
mate and can be used for pilot estimates in plug-in procedures. Nevertheless,
a bandwidth choice based on these procedures yields only an asymptotically
optimal selection as the employed criteria are asymptotic ones.

In small samples, however, there are better choices which can be made
by data driven cross-validation methods. In general, these procedures yield
precise finite sample results, but do not have closed form solutions. Therefore
computation intensive numerical methods must be used in order to obtain
hcoy. This can amount to a feasibility issue in particular for time series. We
present a least squares cross-validation for local cubic estimation as our inter-
est is in estimating the second derivative of C'. Here select hoy as minimizer
of the sum of squared errors between obtained local cubic fit and observed
response.

CV(h) = Z Z {Yi- G (20~ C (2)(Z; - 7:) (18)
i=1 j#i

18P @, -7} M)

where 0 < M(Z;) <
for n large. and (@L i éf%l)_i, C}%Q)_ ) denote the local cubic regression estimate

i

1 is a weight function that ensures existence of the limit
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obtained without using the i-th observation (Z;, C;). This way we ensure that
the observations used for calculating 6,;,_ ;(-) are independent of Z;. It can
be shown that asymptotically hcy converges to the corresponding theoretical
bandwidth obtained from (17). This design driven choice of bandwidth is
completely free of functional form assumptions and therefore most appealing
in finite samples at the expense of potentially long computation time.

2.3 Dimension reduction techniques

While flexible, a high-dimension kernel regression requires large data samples
for precise results in terms of confidence intervals. Ait-Sahalia and Lo (1998),
for example, use a one year option data to empirically derive the call function
based on five-dimensional kernel regression. Quite generally, larger samples
make for smaller variances. Conversely, small samples make the bias-variance
tradeoff even more acute. For a given bias, the variance of the model response
is larger than for a model built from a larger sample. This is referred to as
the ”curse of dimensionality” (see Section 2.1. for theoretical details). Hence,
there is a need to keep the dimension or equivalently the number of regressors
low.

There has been lot of effort in developing methods which reduce the com-
plexity of high dimensional regression problems resulting in better feasibility.
In particular, the reduction of dimensionality is achieved by putting some
structure on the model by e.g. imposing a parametric model. The resulting
models are so-called semiparametric models, among which the additive mod-
els are the most feasible methods considered in practice. The basic idea of
additive models is to take advantage of the fact that a regression surface may
be of a simpler structure, that is a function of only certain linear combinations
of the coordinates of the predictor variables such that high dimensional sur-
face collapses down to one-dimensional surface. We refer to Mammen, Linton
and Nielsen (1999) and Linton and Nielsen (1995) for detailed methods in this
case. Here, however, we will focus on suitable parametric assumptions tailored
to financial modeling.

One way is to use no-arbitrage arguments and collapse S;, r: . and d; -
into the forward price F; = Sye("==%.)7 in order to express the call pricing
function as

C(St) X7 T, Tt,T, 5t,7’) = C(Ft,T7 X) T, rt,T)

Alternatively use the non-arbitrage relation to estimate dividends and ex-
press the function in terms of the discounted stock price, that is either by
S0 = S, xe 0t =G, — Divy ; where Div, ; is the present value of the divi-
dends to be paid before the expiration.

C(Sta Xv T,Tt,1, 6t,7’) = O(S?a Xv T, Tt,T)
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A further reduction of the number of regressors is achieved by assuming
that the call option function is homogeneous of degree one in S; and X so
that

C(St? K) T, rt,T7 6t,7‘) = XC(St/K) T, rt,T7 5t,T)'

Combining the assumptions of the last two equations, the call price func-
tion can be further reduced to a function of three variables: moneyness

M, = 3+, maturity 7 and risk free interest rate: r; .. Notice that by smooth-
ing Wlth respect to moneyness, rather than to the dividend adjusted index
level we implicitly assume the theoretical option function is homogeneous of
degree one with respect to the index and strike price. The basic Black-Scholes
formula is an example of such a function, and as shown by Merton (1973) and
discussed in Ingersoll (1987), a call price is homogeneous of degree one in the
asset price and strike price if the asset’s return distribution is independent of
the level of the underlying index.

These dimension reduction techniques may be used both in direct estima-
tion of RND from the call prices and indirectly via implied volatility. In the
empirical study in the next subsection we will use only one regressor.

2.4 Application

We use tick data on the DAX index based European options prices matur-
ing in one month (21 trading days), provided by EUREX for 20040121. The
transformed data according to a methodology by Fengler (2005) contain date
stamp, implied volatility, type of the option, maturity, strike price, option
price, interest rate, intraday future price, average dividend rate.

The index stock price varies within one day and one needs to identify the
price at which a certain transaction has taken place. Intraday DAX index
prices are available on EUREX. Several authors (E.g. Jackwerth 2000) report
that the change of the index price is stale and for every pair option/strike we
use instead the prices of futures contracts closest to the time of the registered
trade.

Original strike prices are given on an equidistant grid and in order to ac-
count for movements in the intraday price we use the following transformation
rr =% where X; and Fj are paired observations and S; is the median
mtraday stock price, 7 . is the one month interest rate (linearly interpolated
EURIBOR rates, for the desired maturity) and d; , the average dividend. Con-
ditional on these values we estimate ¢ and interpret it as an average curve for
the estimation date.

We use only at-the-money and out-of-the-money call options and in-the-
money puts translated in call prices by using the put call parity

Cy — = Sie” O, — Xe o7
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This guarantees that unreliable observations (high volatility) will be re-
moved from our estimation samples. Since, as mentioned before, the intraday
stock price varies, we use its median to compute the risk neutral density. For
this price, we verify if our observations satisfy the arbitrage condition and
delete for our sample those who do not satisfy it

Sy > C; > max(S; — X;e ™77 0).

Finally, if we have different call price observations observations for the
same strike price we take their median at that point. In this way we ensure
that we have a one to one relationship between every call and strike price.

x 10°

RND

3500

Sy

Fig. 2. §(Sr) by local polynomial smoother for the optimally chosen bandwidth
h = 114.34 by cross-validation (simple line) and oversmoothing bandwidths h =
227.59 (dashed line) and h = 434.49 (dotted line)

Smoothing in call option space

As described in Section 2.1 local polynomial method allows us to compute
the second derivative of the call price directly, in a single step. We use local
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polynomial smoothing of degree three and a quartic kernel. In the first step
we rescale the call price by dividing it by S; and we smooth in this direc-
tion. We use cross-validation to choose the optimal bandwidth; however, this
bandwidth yields a wiggly estimator and we decide to increase further the
bandwidth. Smoothing comes at the expense of higher bias as we can see in
Figure 2.

Smoothing in implied volatility space

In practice, the smoothing is mainly done in the implied volatility span be-
cause call prices are a more volatile function of the underlying asset price. In
the present context, implied volatility is the volatility that yields a theoretical
value for the option equal to the observed market price of that option, when
using the Black-Scholes pricing model. We then estimate a smooth function
6 and recover the call price by a bijective function evaluated at some fixed
values of the regressors and variable o

O(St7 X7 T, rt,7'7 Jt,T) = CBS('; &(Stv X7 T, Tt,Tv 51‘,,7’))
= e T8 D(y + o/T) — e T T X B(y)

where @ is the distribution function of the standard normal distribution and

log(%) +(b— %02)7
y= P~ :

In this chapter we use a method based on Rookley (1997) who shows how
to improve the efficiency of the estimator by estimating o and its first two
derivatives by local polynomial regression and plugging them into a modified
version of the Black-Scholes formula. Below we describe the method for fixed
maturity of one month.

For each pair (C;, X;) we define the rescaled call option ¢; = C;/S; in terms
of moneyness M; = S;/X; so that starting from the Black-Scholes formula for
the call price we can write

e " P(dy)
M;
iy — log(M;) + {ris + 20(M;)?*} 7
o(M;)V'T
d2 = d1 —O'(Mi )\ﬁ

c; = c{My;0(M;)} = &(dr) —

For simplification we drop the indices. The risk neutral density can be
expressed in terms of rescaled call price
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L 020 9%
1) =5z = 5%
with
?c  d’c (M’ , de M
0K? ~ dM? (X> dM X2
and

d%c d%d, dd; \?
ez ~ Py {dM2 —d (dM)

e Tp(dy) [ dPdy 2 ddy 4, (44
M dM? M dM dM

27" P(dy)

IVE
where ¢ is the probability density function of the standard normal distri-
bution. The results depend further on the following quantities, where o (M),
o'(M), ¢ (M) are smooth functions in moneyness direction

d’d; 1 a’(M)
dM? — Mo(M)yT { o(M) }
_log(M) +rT

S

{20, log (M) +rr 1 }
oM Mo(M) V7

d?d, 1 1 o (M)
e (M)ﬁ{ o) }
— o"(M) 77 log(M)—i—rT}
2 o(M)2/T

+a’(M){20’(M)1Og(M)+TT 1 }

d(MPVT  Mo(M)* 7

In order to estimate o(M) and its associated first and second derivatives
with respect to moneyness we use univariate local polynomial kernel regression
of degree three and quartic kernel. The optimal bandwidth has been computed
using cross-validation criteria (18) for the implied volatility. By increasing the
bandwidth in Figure 3 we observe that oversmoothing improves the tails while
having little effects on the values of § situated in the middle of the distribution.
It follows that smoothing in implied volatility yields a more robust estimator
to the changes in the bandwidth. It is because the implied volatility is less
sensitive to the changes in strike price than the call price.
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Fig. 3. §(St) by Rookley method with oversmoothing bandwidth h = 372.42

Problems and refinements

In applications the support of strike prices is mostly compact and thus
bounded. As shown in Section 2.1. the quality of estimates in regions close to
the boundary might be low due to small values of the regressors’ density when
using even order polynomials. By using a polynomial of order 3, estimation is
design adaptive for the second derivative avoiding this problem.

Furthermore, associated with the boundary, option data is characterized
by scarce observations close to the bounds. In general, nonparametric tech-
niques do not perform well in regions with sparse data and other methods are
required. Parametrization of the tails using Pareto type distributions might
be advantageous leaving however the question of how to join the two regions
in order to assure that the resulting distribution integrates to one. Alterna-
tively, Rookley (1997) proposes to further parametrize these distributions by
matching them with an Edgeworth expansion type density

U(S1) = 5 B(Z){1+B(2° = 32) +1(Z" ~ 62° +3)
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for Z7 = %, where o and o are the conditional mean and standard
deviation of log(Sr) implied by the risk neutral measure, and 8 and v are
coefficients related to the higher moments of log(St).

According to economic theory, a nonparametric estimate of the call price
function C' must satisfy certain high-level conditions: It should be (1) positive,
(2) decreasing in X, (3) convex, and (4) its second derivative should exist, be
nonnegative and integrable. Given that the first derivative of C' with respect
to X is the (negative) discounted cumulative density function of ¢ conditions
(2) and condition (3) can be summarized by the following inequality

< 8C(St7X, 7, 7’t,775t,7)
- 0X

767%;

<0.

Convexity requires

82C(St, X, T, ’/’t,T, 5t,7’)
02X

Nonparametric kernel estimates may violate these constraints, unless we
deal with large samples of observations. Imposing constraints like monotonic-
ity or convexity directly in the estimation leads to nontrivial optimization
problems in topological cones. If it is crucial for the outcome to fulfill the
shape restrictions in small samples, it is recommended use series type estima-
tion methods which easily allow to incorporate them directly in the estimation.
In general, these constrains must be applied directly to the call price, because
theoretical properties of the implied volatility are not well known. For further
references see Ait-Sahalia (2003). This will be illustrated in the next section.

> 0.

3 Estimation of the RND via empirical pricing kernel

In the previous section, we studied nonparametric kernel methods for esti-
mating g as the discounted second derivative of the call price function and
discussed the problems associated with kernel type estimators in this setting.
Now, we propose a new approach, based on series expansion of the pricing
kernel.

In financial mathematics the relationship between the physical measure p
and RND g of a financial asset can be represented via the pricing kernel m.
Also called stochastic discount factor, the pricing kernel is the quotient of the
Arrow security prices and the objective probability measure and summarizes
information related to asset pricing. Based on this relation

q(St) = m(ST)p(St). (19)

From a behavioral economics perspective m describes risk preferences of a
representative agent in an exchange economy. In many applications, the em-
pirical pricing kernel is the object of interest. In most of the studies Ait-Sahalia
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and Lo (2000), Brown and Jackwerth (2004), Grith et al. (2009) it has been
estimated as a ratio of two estimated densities: ¢ computed as the second
derivative of a smooth call function (as described in Section 2) and p based
on historical returns. This approach leads to difficulties in deriving the statis-
tical properties of the estimator. In particular, the sample sizes for estimating
p and ¢ may differ substantially: p uses daily observations, whereas ¢ is based
on intraday high-frequency observations. On the other hand, methods for es-
timating p are in general much simpler and more stable compared to those
for ¢ for which typically nonparametric kernel estimation of a second deriva-
tive is required. Direct estimation of the pricing kernel can be seen as an
improvement in this sense.

For estimating ¢, however, a series approach is additionally appealing,
as high-level shape constraints are straightforward to incorporate in finite
samples. Recall that for kernel type estimators this is not the case, see the
end of Subsection 2.4.

We introduce the series expansion for the pricing kernel in (3). With an
estimate of the physical measure from historical data and the pricing kernel
m from option prices, these indirectly imply an estimate of ¢ via (19). In
statistical theory and also in practice, this indirect way of estimating ¢ is
much more stable than using series methods directly for ¢ in (1). In particular,
in (19) large values of St are downweighted by integrating over the physical
measure, while they enter undamped in (1) leading to unreliable results.

3.1 Direct estimation of pricing kernel via series methods

As for ¢, there are several factors which drive the form of the pricing kernel.
Here, however, we focus on the projection of the pricing kernel on the set of
available payoff functions m*, which allows us to represent m in terms of St
only. In practice this is a reasonable assumption. Thus we require that m and
m™* are close in the following sense

[ — |2 = / m(a) —m* (z) Pz < ¢ (20)

with e small. Further we assume that m* has a Fourier series expansion
(o)
m*(Sr) = ag(Sr), (21)
1=1

where {ay};2, are Fourier coefficients and {g;},~, is a fixed collection of basis
functions. The functions g; are taken as orthonormal with respect to a par-
ticular norm. Such a representation is possible if the function is absolutely
integrable.

Based on (21), we can construct an estimator for m* and thus m. If a finite
number L of basis functions is sufficient for a good approximation of m then
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9,0

x

Fig. 4. First five terms of the Laguerre polynomials

L
m(St) =Y g (Sr). (22)
=1

Estimates &; for the coefficients «; could be obtained by least squares for fixed
basis functions g; if a direct response was observable. Clearly the choice of L
controls the quality of the estimate. The larger L, the better the fit but the
higher the computing cost and less robust the result. See Subsection 2.2 for a
sophisticated way of selecting the smoothing parameter.

In financial applications the following polynomial basis functions are fre-
quently used: e.g. Laguerre, Legendre, Chebyshev polynomials, see Subsection
3.3. While asymptotically equivalent, in finite samples their form will influ-
ence the size of L. In general, one would prefer to have g; such that L small is
sufficient. For a formal criterion on how to select between different basis op-
tions see Li and Racine (2007). They assess different candidate basis functions
by comparing a C'V-type criterion for fixed L.

Though the form of m is only indirectly determined by relating observable
call prices Y; to strike prices X; for given T, 7 via (3). A response to observed
payoffs via the pricing kernel is not directly available in the data. But in
sample an estimate of m should fulfill
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L
Y,=e 77 (St — Z Gugi(ST)pe(S7T)dST + €4 (23)
0 =1

L oo
= Z a {eri‘;rl / (ST — Xi)Jrgl(ST)pt(ST)dST} +&;
=1 0
with error € such that E[g|X] = 0. Set

b = Gr(X0) = T / Y (Sr— X ta(Som(Sr)dSr. (24)

Then for known p and fixed basis functions and fixed L, the vector & =
(aq, ...,dL)T is obtained as

argmm Z { Z o (X } (25)

In practice, however, p is not known and can only be estimated. Therefore
instead of 4; in (24) we have only estimates 1/31 of the basis functions. There
are two possible ways for constructing them. First, regard 1 as an expectation
which can be estimated by sample averaging over J different payoffs at time
T for fixed 7 and given X

P = e T g Z S5 — X;)Tgi(S5)  with . (26)
s=1

How (S5.)7_; are obtained is explained in detail in the following subsection.
Or alternatively, replace p by an estimator, e.g. a kernel density estimator.
This gives

b = e / " (81 — X)) au(Sr)p(Sr)dSe (27)

Here some care is needed for the numerical integration to keep discretization
errors negligible. Furthermore, for an appropriate choice of bandwidth in p,
both approaches are asymptotically equivalent. In finite samples, however,
estimates for ¢ might differ, see Figure 5).

In total we obtain a feasible estimator of a based on a feasible version of
(25) as

a= W) vy, (28)

The elements of ﬁ(nxL) are given either by (26) or (27) and Y = (Y7,---,Y,,)".

Then an estimate of the pricing kernel at s is given by

m(s) = g"(s)" &, (29)
where gZ(s) = (g1(s),...,9.(s))". We see in figure () that the estimator or

m is less stable for different approximations of ;. Finally, the risk neutral
density is estimated as

q(s) = m(s)p(s)- (30)
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Fig. 5. §(Sr) by Laguerre basis expansion with L = 5 based on approximation
(26) (simple line) and (27) of ¥ (dashed line)

3.2 Estimation of the PDF of St

In the empirical study we use two different ways of obtaining DAX Index prices
at time T. And we look at the sensitivity of ¢ w.r.t. p. First, we extrapolate
possible realizations of St in the future from historical log-returns. Based on
a sample of historical DAX Index values we get

S5 = Sie™, for 75 =1og(Si—s/Si—(s41))-

Alternatively, we use a GARCH(1,1) specification for the log-returns to
account for slowly decaying autocorrelation in the data exhibiting persistence.
The model is specified as follows

log(st/stfl) =M+ U, Ut ~ f(070-:) (31)

In equation (31), the returns consist of a simple constant, plus an uncorrelated,
non-Gaussian disturbance. The conditional variance follows an ARMA(1,1)
type specification
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Fig. 6. m*(Sr) by Laguerre basis expansion with L = 5 based on approximation
(26) (simple line) and (27) of ¥ (dashed line)

(07)? = a1 + asry_; + as(o]_;)

(32)

2
We can estimate the parameters of the model (u,aq1,as,a3) and retrieve a
time series of stochastic volatilities {7 }7_;. The simulated index prices at
time T are obtained as in (3.2) above for

r
g
TT = T¢— r

Cop_s
where we use for the forecasted volatility o7, today’s volatility o;.
a kernel density estimator

Then the probability density p of St is estimated at each point St using

J

1 S5 — St
ph(Sr)=—» K|-—+1— 33
e = gy o xc () (33)
where K is a kernel function and the bandwidth is selected similarly to the
criteria introduced in Subsection 2.2. The two approaches are illustrated in
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Figure 7. We observe that they differ mainly in the tails for p which carries
over to ¢ via (30).

x 10°

RND, PDF

1
3500 4000 4500 5000

Fig. 7. ¢ by Laguerre basis expansion with L = 5 (red) and p based on log-returns
(simple line) and weighted log-returns (dashed line)

3.3 Choice of tuning parameters

The quality of the obtained series estimators (29) and (30) depends on a
suitable choice of the number L(n) — oo for n — oo for given basis functions.
Note that the role of L (or L/n) is similar to that played by the smoothing
parameter h for the kernel methods. There are three well-known procedures
for a data-driven optimal selection of L. The first one is Mallows’s Cf, as
proposed in Mallows (1973): Select Ljs such that it minimizes

Cp=n""! zj; {Y - ;aﬂ/}l(xi)} +202%(L/n)

where o2 is the variance of . One can estimate o2 by
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n
52 =n""> &
i=1

with & = Y; — 3, &t (X,).
A second option is selecting L according to generalized cross-validation
suggested by Craven and Wahba (1979). Choose Loy minimizing

. 2
n~ Y {Yi - Zlel dlwl(Xi)}
{1—(L/n)}? '
The last criterion is leave-one-out cross-validation according to Stone
(1974): Select Loy minimizing

cve =

n L 2
CVp=>_ {Y; - Zdlzdjl(Xi)}
i=1 =1
where d;i is the leave one estimate of a; obtained by removing (X;,Y;) from
the sample.

Li (1987) showed that each of the above three criteria leads to an optimally
selected L in the sense that they all minimize the asymptotic weighted inte-
grated squared error (see (16)). In this sense the obtained L are asymptotically
equivalent.

3.4 Statistical properties

Series type estimators are designed to provide good approximations in an
L, sense, see (20). Therefore asymptotic properties as consistency and rates
of convergence should be derived from the asymptotic mean squared error.
The rate of convergence for the indirect estimator of ¢ via the pricing kernel
depends on the two smoothing parameters h and L.

| tasn) — atsryase = [ nisriase) - misnp(sr)ydsy
0 0
- / in(S2) (p(St) — p(Sr)}?dSr
+f " Ip(Sr) () — m(Sr)}?dSr
+ / T 2in(S2)(B(ST) — p(S2)}p(Sr) ((ST) — m(Sr)}dSr

It easily follows from the law of iterated expectations that the third term
equals zero. Consequently, the convergence of ¢(St) depends only on the first
two terms. Since sup(s) = Op(1) under Assumption 1 given below, the
order of convergence for the first term is dominated by {p(St) — p(St)}>.
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Assumption 1 Suppose that p is twice continuously differentiable, K is a
second order kernel and the bandwidth is chosen optimally as h = en~'/®, for
a known constant c.

Then the asymptotic mean squared error for the kernel density estimator is
11 () = ()13 = Op(n~*/?) (34)

This follows along the same logic as the results for local polynomials in Section
2.1. For further details see e.g. Hardle et al. (2004).
The order of convergence for the second term only depends on {m(St) —

m(St)}? since supp(s) < 1. The next assumption establishes consistency of
m(St).

Assumption 2 {X,,Y;} are iid. observations of (X,Y), Var(Y|X) is
bounded on S, the compact connected interval of support of X. Furthermore
p is bounded away from zero and m is v-times continuously differentiable on
S. Choose L such that L3/n — 0 as n — oo.

Under Assumption 2 it is
/ (7 (Sr) — m(Sr)}2dSr = Op(Ljn + L), (35)
0

This result is from Newey (1997) for fixed basis functions ;. With estimated
basis (1[)1)1 the result still goes through as the convergence of 1/3; to the true ¥;
is at parametric rate. The i.i.d. assumption is for simplicity of the exposition
only. It can be easily relaxed to mixing type of observations.

The theorem below puts (34) and (35) together for an asymptotic result
for q.

Theorem 3. Assume that Assumptions 1 and 2 hold. Then the integrated
square error (ISE) converges as

/0 TLd(SE) — a(S)Y2dSr = O £ Lin+ L) . (36)

3.5 Practical aspects for implementation

We illustrate the method using the data described in Subsection 2.4. We con-
sider the univariate regression of C' on the strike price X for fixed maturity
and fixed interest rate. We estimate ¢ using three different systems of orthog-
onal basis: Laguerre, Legendre and Chebyshev. We found that the fit of the
call price is almost identical for fixed L, while & varies obviously with the
series. This little sensitivity with respect to the choice of the basis function
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holds also for the empirical pricing kernel and the implied risk neutral density.
Based on the selection criteria for L from Section 3.3, we have chosen L = 5.

We exemplify the method with Laguerre polynomials. The first two terms are

gi(z) =1
gr)=1-=z

The other terms are given by the recurrence relation

gi41(x) = %{(21 —1-2)g1(x) = (- 1)gr2(x)} for 1=2,--- L.

Estimation results are displayed in Figure (5) through Figure (8).

X 10°

RND

3500 4000 4500 5000

ST

Fig. 8. ¢(St) by local polynomial regression with h = 227.59 in call space (black),
by Rookley method h = 372.42 in IV space (green), indirect estimation of the
pricing kernel as Laguerre basis expansion with L = 5 (green)
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4 Conclusions

We have studied three nonparametric approaches for estimating the risk neu-
tral density. They are based on fundamentally different techniques: two of
them use local features and the third one is based on global curve fitting. For
these approaches we have described the estimation methodology and their
performance in finite sample, in terms of robustness and stability. Statisti-
cal properties of all procedures have been derived and illustrated focusing on
practically most relevant aspects.

In terms of comparative performance, figure 8 shows estimates of ¢ using
the three methods we discussed in this article for suitable choices of tuning pa-
rameters. While all three nonparametric methods yield similar results, there
still are some peculiarities. As we have seen so far, kernel methods for the
estimation of ¢ in implied volatility space work much better than those which
smooth in the call price space. Local polynomial methods applied to call prices
yield estimates which are highly sensitive to the choice of the bandwidth. Fur-
thermore, extrapolation in the tails gives wiggly estimates unless we increase
the bandwidth considerably. This comes at a high price of increased bias. In
comparison to this, when we smooth in implied volatility space, the Rookley
method yields a more stable estimate with respect to the choice of bandwidth
and performs also better in the regions with sparse data. Estimation of risk
neutral density based on the pricing kernel yields relatively stable results in
small samples with respect to the choice of the basis function. The center
distribution exhibits little sensitivity to the choice of basis functions, whereas
the tails are highly sensitive due to scarcity of observations at the bound-
aries. This problem can be solved by imposing constraints on the estimator,
as explained in the end of Section 2. Generally, series type methods should be
preferred when performing constrained estimation.
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