
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

COMISEF WORKING PAPERS SERIES

WPS-031 30/03/2010

Calibrating the

Nelson–Siegel–Svensson

model

M. Gilli

Stefan Große

E. Schumann

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6456628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Calibrating the Nelson–Siegel–Svensson model

Manfred Gilli∗, Stefan Große† and Enrico Schumann∗

March 30, 2010

Abstract

The Nelson–Siegel–Svensson model is widely-used for modelling the yield curve, yet

many authors have reported ‘numerical difficulties’ when calibrating the model. We ar-

gue that the problem is twofold: firstly, the optimisation problem is not convex and has

multiple local optima. Hence standard methods that are readily available in statistical

packages are not appropriate. We implement and test an optimisation heuristic, Differ-

ential Evolution, and show that it is capable of reliably solving the model. Secondly, we

also stress that in certain ranges of the parameters, the model is badly conditioned, thus

estimated parameters are unstable given small perturbations of the data. We discuss to

what extent these difficulties affect applications of the model.

1 Introduction

The model of Nelson and Siegel (1987) and its extension by Svensson (1994) are widely

used by central banks and other market participants as a model for the term structure of

interest rates (Gimenoa and Nave, 2009; BIS, 2005). Academic studies have provided evi-

dence that the model can also be a valuable tool for forecasting the term structure, see for

instance Diebold and Li (2006). Model calibration, ie, obtaining parameter values such that

model yields accord with market yields, is difficult; many authors have reported ‘numerical

difficulties’ when working with the model (for instance, Bolder and Stréliski, 1999; Gurkay-

nak et al., 2006; De Pooter, 2007) . In this paper we analyse the calibration of the model

in more detail. We argue that the problem is twofold: firstly, the optimisation problem

is not convex and has multiple local optima. Hence methods that are readily available in

statistical packages – in particular methods based on derivatives of the objective function –

are not appropriate to obtain parameter values. We implement and test an optimisation

heuristic, Differential Evolution, to obtain parameters. We find that Differential Evolution

gives solutions that fit the data very well. Secondly, we also stress that in certain ranges

of the parameters, the model is badly conditioned, thus estimated parameters are unstable

given small perturbations of the data. We discuss to what extent these difficulties affect

applications of the model.

∗University of Geneva, Switzerland. †NordLB, Hanover, Germany. Corresponding author: enrico.schumann
AT unige.ch. M. Gilli and E. Schumann gratefully acknowledge financial support from the eu Commission
through mrtn-ct-2006-034270 comisef.

1

The paper is structured as follows: Section 2 introduces the Nelson–Siegel and Nelson–

Siegel–Svensson models and presents an estimation experiment. Section 3 explains the

collinearity problem; Section 4 compares results for alternative estimation techniques. Sec-

tion 5 concludes.

2 Models and estimation

We look into the two main variants of the model, namely the original formulation of Nelson

and Siegel (1987), and the extension of Svensson (1994). De Pooter (2007) gives an overview

of other variants.

Nelson and Siegel (1987) suggested to model the yield curve at a point in time as follows:

let y(τ) be the zero rate for maturity τ, then

y(τ) = β1 + β2

[

1 − exp(−τ/λ)
τ/λ

]

+ β3

[

1 − exp(−τ/λ)
τ/λ

− exp(−τ/λ)

]

. (1)

Thus, for given a given cross-section of yields, we need to estimate four parameters: β1, β2,

β3, and λ. For m observed yields with different maturities τ1, . . . , τm , we have m equations.

There is a simple strategy to obtain parameters for this model: fix a λ, and then estimate

the β-values with Least Squares (Nelson and Siegel, 1987, p. 478); see also below. We do

not assume that the model’s parameters are constant, but they can change over time. To

simplify notation, we do not add subscripts for the time period.

In the Nelson–Siegel (ns) model, the yield y for a particular maturity is hence the sum

of several components. β1 is independent of time to maturity, and so it is often interpreted

as the long-run yield level. β2 is weighted by a function of time to maturity. This function

is unity for τ = 0 and exponentially decays to zero as τ grows, hence the influence of

β2 is only felt at the short end of the curve. β3 is also weighted by a function of τ, but

this function is zero for τ = 0, increases, and then decreases back to zero as τ grows. It

thus adds a hump to the curve. The parameter λ affects the weight functions for β2 and

β3; in particular does it determine the position of the hump. An example is shown in

Figures 1 to 3. The parameters of the model thus have, to some extent, a direct (observable)

interpretation, which brings about the constraints

β1 > 0 , β1 + β2 > 0 .

We also need to have λ > 0.

The Nelson–Siegel–Svensson (nss) model adds a second hump term (see Figure 3) to

the ns model. Let again y(τ) be the zero rate for maturity τ, then

y(τ) = β1 + β2

[

1 − exp(−τ/λ1)
τ/λ1

]

+ (2)

β3

[

1 − exp(−τ/λ1)
τ/λ1

− exp(−τ/λ1)

]

+ β4

[

1 − exp(−τ/λ2)
τ/λ2

− exp(−τ/λ2)

]

.

Here we need to estimate six parameters: β1, β2, β3, β4, λ1 and λ2. The constraints remain

2

0 5 10
0

2

4

component

y
ie

ld
 i

n
 %

0 5 10
0

2

4

resulting yield curve

Figure 1: Level. The left panel shows y(τ) = β1 = 3. The right panel shows the corre-
sponding yield curve, in this case also y(τ) = β1 = 3. The influence of β1 is constant for all
τ.

0 5 10

−2

0

2
component

y
ie

ld
 i

n
 %

0 5 10
0

2

4

resulting yield curve

Figure 2: Short-end shift. The left panel shows y(τ) = β2

[

1 − exp(−τ/λ)
τ/λ

]

for β2 = −2.

The right panel shows the yield curve resulting from the effects of β1 and β2, ie, y(τ) =

β1 + β2

[

1 − exp(−τ/λ)
τ/λ

]

for β1 = 3, β2 = −2. The short-end is shifted down by 2%, but

then curve grows back to the long-run level of 3%.

0 5 10
−2

0

2

component

y
ie

ld
 i

n
 %

0 5 10
0

2

4

resulting yield curve

Figure 3: Hump. The left panel shows β3

[

1 − exp(−τ/λ)
τ/λ

− exp(−τ/λ)

]

for β3 = 6. The

right panel shows the yield curve resulting from all three components. In all panels, λ is 2.

3

the same, but we also have λ1,2 > 0. Like for ns, we could fix the λ-values – ie, use a grid

of different values –, and then run a Least Squares algorithm to obtain parameter estimates,

even though we cannot handle inequality constraints with a standard Least Squares solver.

More generally, the parameters of the models can be estimated by minimising the dif-

ference between the model rates y, and observed rates yM where the superscript stands for

‘market’. An optimisation problem can be stated as

min
β,λ

∑
(

y − yM
)2

(3)

subject to the constraints given above. (If the model were correctly specified, the parameters

would have a clear economic interpretation, and constraints should not be necessary. Prac-

tically, they should be included, since we are not guaranteed to obtain reasonable values

from a numeric procedure.)

There are many variants of this objective function: we could use absolute values instead

of squares, or a more robust function of scale. Likewise, we could use bond prices instead

of rates, and so on. (If we use the Least-Squares-with-fixed-λ-values strategy, this auto-

matically sets our objective function.) This paper deals with the numerical aspects of the

calibration, the decision on which specification to use should rather follow from empirical

tests which are beyond the scope of this study, so we work with specification (3). Below we

will apply an optimisation method that is capable of estimating all parameters in one step

for different variants of the objective function, and under different constraints.

An estimation example

On each business day Germany’s central bank,

0 5 10
0

2

4

y
ie

ld
 i

n
 %

time to maturity in years

Figure 4: nss yield curve for German gov-

ernment bond yields, as of 15 September

2009.

the Bundesbank, fits an nss model to the yields

of German government bonds (Deutsche Bun-

desbank, 1997). On 15 September 2009, the

fitted curve looked like the one in Figure 4.

The corresponding nss parameters were

β1 = 2.05, β2 = −1.82, β3 = −2.03,

β4 = 8.25, λ1 = 0.87, λ2 = 14.38 .

Inserting these parameters and various matu-

rities into Equation (2), we obtain the data in

Table 1. For convenience, we write yields and model parameters in terms of percentage

points, so for instance five percent are written as 5.0 instead of 0.05. In practice, parameter

estimates are often computed by running a standard optimisation technique, like a steep-

est descent (or more generally methods based on the derivatives of the objective function)

or direct search. So next we try to fit the nss model with such methods; in principle we

should be able to back out the parameters exactly. We try to find nss parameters that

solve problem (3) for the ‘market data’ from Table 1. We use the function nlminb from R’s

stats package; this function is also used in the termstrc package (Ferstl and Hayden, 2009).

4

maturity in years 1/4 1/2 1 2 3 4 5 6

spot rate (in %) 0.30 0.40 0.68 1.27 1.78 2.20 2.53 2.80

maturity in years 7 8 9 10 15 20 25 30

spot rate (in %) 3.03 3.23 3.40 3.54 4.04 4.28 4.38 4.38

Table 1: nss yields on 15 September 2009.

We run the algorithm 500 times; for each restart we randomly choose a different starting

value. We set box constraints as follows: 0 < β1 < 15, −15 < β2 < 30, −30 < β3 < 30,

−30 < β4 < 30, 0 < λ1 < 30, 0 < λ2 < 30 ; the choice of these values should become

apparent from Figure 6. The starting values are randomly drawn from these ranges. His-

tograms of parameter estimates are shown in Figure 5. We repeated the procedure with

other algorithms like Matlab’s fminsearch, which implements a Nelder–Mead direct search,

and fminunc; we always obtained similar results.

The estimated parameter values are mostly quite different from their true counterparts.

They do not even seem centred around the true values (indicated by the vertical lines).

We seem not to be the only ones to have problems with the estimation: Figure 6 shows

the daily estimates of parameters supplied by the Bundesbank. These data can be ob-

tained from http://www.bundesbank.de/statistik/statistik_zinsen.php ; the relevant

series are wt3201, wt3202, wt3203, and wt3205 for the β estimates; and wt3204, wt3206

for the λ. The estimates vary widely from one day to the next, with parameters often at

their boundaries (apparently, the Bundesbank used box constraints, which is why we chose

constraints in the same fashion). Given that some of the parameters have economic mean-

ing, such wild variations seem strange. Consider for instance the path of β1, the long-run

level of interest. From one day to the next, estimates jump by several percentage points.

So we have difficulties in recovering the parameters, but what if our aim had been to

fit yield curves? Figure 7 shows the maximum absolute differences between the estimated

and the true yield curve for our 500 runs. The yield fit is much better than the parameter

fit; most errors are of a magnitude of about 10 basis points. But again, by construction, a

perfect fit would have been possible; and in some cases there remain substantial deviations.

In particular, and not visible from the histogram, we sometimes have estimates that are way

off the true parameters, with a maximum error in the yield curve of sometimes more than

one percentage point. In our runs, the maximum absolute error had been 1.8%.

To sum up this example: nss works well to interpolate observed yields; but when es-

timating the model with a standard optimisation method, several restarts with different

starting values are imperative. Yet if our aim is to identify the parameters, for instance to

model their evolution over time (like in Diebold and Li, 2006), we need to be more careful

how we set up the optimisation problem.

There are two reasons for these estimation difficulties. Firstly, the objective function is

not convex and exhibits several local minima. This is particularly true for the nss model.

Figure 8 shows the value of the objective function (sum of squares) when we vary two

parameters (here β1 and λ2) while keeping the remaining parameters fixed. This is relevant

5

β1

0 5 10 15

0

50

100

150
β2

−10 0 10 20 30

0
50

100
150
200
250
300
350

β3

−30 −20 −10 0 10 20 30

0

50

100

150

200

β4

−30 −20 −10 0 10 20 30

0

50

100

150

λ1

0 5 10 15 20 25 30

0

50

100

150

200

250
λ2

0 5 10 15 20 25 30

0

50

100

150

200

Figure 5: Parameter estimates from a gradient search.

when we wish to obtain model yields close to observed yields; better methods may improve

the fit. We will refer to this as the optimisation problem. A second problem is collinearity, and

this stems from the model specification, not from an inappropriate optimisation method.

We will discuss both problems in the next two sections.

3 The collinearity problem

Both ns and nss can be interpreted as factor models (Diebold and Li, 2006): the β-coefficients

are the factor realisations; the factor loadings are the weight functions of these parameters.

For the ns-model the loadings for a maturity τ are thus given by

[

1
1 − exp(−τ/λ)

τ/λ

1 − exp(−τ/λ)
τ/λ

− exp(−τ/λ)

]′

. (4)

So by setting λ, we impose fixed factor loadings on a given maturity. The three factors

are then interpreted as level (β1), steepness (β2), and curvature (β3). Explaining the yield

curve through these three factors is empirically well-supported, see for instance Litterman

and Scheinkman (1991). We can also specify these factors in a model-free way: the level

6

β 1

2

4

6

8

β 2

−10

0

10

20

−30

−20

−10

0

10

20

30

β 3

1998 2002 2006 2010

β 4

−30

−20

−10

0

10

20

30

λ 1

0

5

10

15

20

25

30

0

5

10

15

20

25

30

λ 2

1998 2002 2006 2010

Figure 6: The Bundesbank’s daily estimates for nss parameters.

of yields could be the average yield, steepness can be measured by the yield difference

between long-dated and short-dated bonds. Diebold and Li (2006) for instance suggest to

define the level as the ten-year rate yM(10); steepness as the ten-year rate minus the three-

month rate yM(10)− yM(1/4); and curvature as 2yM(2)− yM(1/4)− yM(10). We can, for each

cross-section, compute these factors and observe their evolution over time. Empirically, the

three factors are found to be only mildly correlated. This is also corroborated by studies

that build on principal component analysis or assume zero correlations in factor analysis,

yet still arrive at these factors, like Litterman and Scheinkman (1991).

In the ns-case with m different maturities τ1, . . . , τm and with a fixed λ-value, we have

7

0.00 0.05 0.10 0.15 0.20

0

50

100

150

200

250

300

Figure 7: Maximum absolute deviations between model and true yield curves.

0

5

10

15

20

0

2

4

6

8
0

50

100

150

200

250

300

350

400

β
1

λ
2

su
m

sq
u
a
re

d
re

si
d
u
a
ls

β
1

λ 2

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

6

7

8

Figure 8: An example search space for the nss model.

m linear equations from which to estimate three parameters. So we need to solve





























1
1 − exp(−τ1/λ)

τ1/λ

1 − exp(−τ1/λ)
τ1/λ

− exp(−τ1/λ)

1
1 − exp(−τ2/λ)

τ2/λ

1 − exp(−τ2/λ)
τ2/λ

− exp(−τ2/λ)

1
1 − exp(−τ3/λ)

τ3/λ

1 − exp(−τ3/λ)
τ3/λ

− exp(−τ3/λ)

...
...

...

1
1 − exp(−τm/λ)

τm/λ

1 − exp(−τm/λ)
τm/λ

− exp(−τm/λ)



































β1

β2

β3






=























yM(τ1)

yM(τ2)

yM(τ3)
...
...

yM(τm)























(5)

for β. We can interpret the nss-model analogously, just now we have to fix two parameters,

λ1 and λ2. Then we have a fourth loading

[

. . .
1 − exp(−τi/λ2)

τi/λ2

− exp(−τi/λ2)

]′

, (6)

ie, a fourth regressor, and can proceed as before. This system of equations is overidentified

for the practical case m > 3 (or m > 4 for nss), so we need to minimise a norm of the

8

residuals. With Least Squares, we use the 2-norm.

A well-known result from numerical analysis is that the size of the minimised residual is

not necessarily influenced by the conditioning of the equations. This also holds if we do not

fix the λ-values, and thus have to solve non-linear equations. Even for badly-conditioned

problems, we may obtain small residuals (ie, a good fit), but we cannot accurately compute

the parameters any more. In other words, many different parameter values give similarly-

good fits.

This is the problem here. For many values of λ, the factor loadings are highly correlated,

and hence Equations (5) are badly conditioned; we have an identification problem. (Note

that we use the word ‘badly-conditioned’ in a loose sense here. Numerically, the problem

can usually be solved. But economic interpretation should stop well before a problem

cannot be numerically solved any more.) The most obvious case occurs in the nss model if

λ1 and λ2 are roughly equal: then β3 and β4 will have the same factor loading, we have two

perfectly collinear regressors. This extreme case was noticed before, for instance in Xiao

(2001) or De Pooter (2007). But the correlation becomes a problem well before the λ-values

are equal, and it is a problem in the simpler ns model, too.

In the ns model, for many values of the λ-parameter, the correlation between the second

and the third loading is high, thus the attribution of a particular yield curve shape to the

specific factor becomes difficult. Figure 9 shows the correlation between the factor loadings

for different values of λ. We see that the correlation is 1 at a λ of zero, and rapidly decays to

0 5 10 15 20 25
−1

0

1

co
rr

el
at

io
n

Figure 9: ns: Correlations between factor loadings of β2 and β3 for different λ.

-1 as λ grows. Outside a range from 0.1 to 4 or so, an optimisation procedure can easily trade

off changes in one variable against changes in the other. This is troublesome for numeric

procedures since they then lack a clear indication into which direction to move. We obtain

the same results for the nss-model. Figure 10 shows the correlation between the second and

the third, the second and the fourth, and the third and the fourth factor loading, respectively.

Again, we see that for λ-values greater than about 5 or so, the correlation rapidly reaches

either 1 or -1. The correlations here were computed for maturities up to 10 years. The

collinearity is mitigated when we include long-term yields, but only somewhat: even when

we have, for instance, yields for maturities up to 20 years, correlation is below −0.9 for

λ > 6 in the ns-model. So we have the expect large estimation errors; estimation results

will be sensitive to small changes in the data.

If we only want to obtain a tractable approximation to the current yield curve, for in-

stance for pricing purposes, we need not care much. True, many different parameter values

give similar fits; but we are not interested in the parameters, only in interpolation. How

9

0

10

20

0

10

20

−1

0

1

0

10

20

0

10

20

−1

0

1

0

10

20

0

10

20

−1

0

1

Figure 10: nss: Correlations between factor loadings for different λ.

about forecasting? Correlated regressors are not necessarily a problem in forecasting. We

are often not interested in disentangling the effects of two single factors as long as we can

assess their combined effect. The problem changes if we want to predict the regression

coefficients themselves. Diebold and Li (2006) for instance use the ns-model to forecast

interest rates. They first fix λ at 1.4, and then estimate the β-values by Least Squares as

explained above. That is, for each cross-section of yields, they run a regression, and so

obtain a time series of β-values. They then model the β-values as ar(1)-processes, and use

these to predict future β-values and hence yield curves. Note that according to our analysis

above, their λ value is well-chosen, as it implies only a weak negative correlation between

the factor loadings.

To demonstrate the effects of high correlation, we replicate some of the results of Diebold

and Li (2006). Their data set comprises monthly zero rates for maturities 1/12, 3/12, 6/12, 9/12,

1, 2, . . . , 10 years. Altogether, there are 372 yield curves, from January 1970 to December

2000. These data are available from http://www.ssc.upenn.edu/~fdiebold/YieldCurve.

html. We first set the value of λ to 1.4 as in Diebold and Li (2006). (We measure time to

maturity in years. Diebold and Li (2006) use months and also define the model slightly

differently; their stated λ is 0.0609, which translates into 1/(12 · 0.0609) ≃ 1.4 in our for-

mulation.) Then we run regressions to obtain β time series; these are shown in Figure 11.

We have slightly rescaled the series to make them correspond to Figure 7 in Diebold and

Li (2006, p. 350): for β2 we switch the sign, β3 is multiplied by 0.3. We would like to re-

mark here that it was a pleasing experience to be able to really replicate these results from

Diebold’s and Li’s paper.

Next, we run regressions with λ at 10. Figure 9 suggest that then the weight functions

of β2 and β3 will be strongly negatively correlated, ie, we cannot accurately estimate β2 and

β3 any more. Figure 12 shows the obtained time series in black lines. Note that the y-scales

have changed; the grey lines are the time series that were depicted in Figure 11. We see that

the series are much more volatile, and thus are very likely more difficult to model. We can

also see that the β-series look very similar; the correlation between β2 and β3 is 0.98, very

different from the empirically low correlation between the factors. Correlation between the

regressors affects the sampling correlation of the coefficients (not just their variances). In

a linear regression model like (5), the correlation between parameter estimates is inversely

10

4

6

8

10

12

14

1970 1975 1980 1985 1990 1995 2000

−4

−2

0

2

4

6

1970 1975 1980 1985 1990 1995 2000

−1

0

1

2

1970 1975 1980 1985 1990 1995 2000

Figure 11: Time series of β1, -β2, and 0.3β3. The rescaling corresponds to Diebold and Li
(2006, p. 350, Figure 7). λ is set to 1.4.

related to the correlation between the regressors. If the regressors are negatively correlated

(as they are for a λ of 10), the estimated β-values will be positively correlated. The constant

β1 is also affected since it is closely connected to β2. (β1 represents the level-factor, β2 the

difference between the curve’s short end and the level. When β1 increases, β2 needs to

increase as well to fit the short maturities.) So in sum, if we aim to meaningfully estimate

parameters for the ns or the nss model, we need to restrict the λ-values to ranges where

practical identification is still possible. For both the ns and the nss-case, this means a λ up

to about 4 or 5; for the nss-model we should make sure that the λ-values do not become

too similar. The exact correlations for a particular case can readily be calculated by fixing

the maturities with which to work, inserting them into Equations 5, and computing the

correlations between the columns.

11

−40

−20

0

20

40

1970 1975 1980 1985 1990 1995 2000

−40

−20

0

20

1970 1975 1980 1985 1990 1995 2000

−10

0

10

20

1970 1975 1980 1985 1990 1995 2000

Figure 12: Time series of β1, -β2, and 0.3β3. The rescaling corresponds to Diebold and Li
(2006, p. 350, Figure 7). λ is set to 10. The grey lines are the time series from Figure 11.

4 The optimisation problem

In this section, we will deal with the optimisation problem, so our aim will be to solve

model (3). The problem is not convex, so we will use appropriate procedures: optimisation

heuristics (Gilli and Winker, 2009). More specifically, we will apply Differential Evolution

(de; Storn and Price, 1997). We will not discuss the algorithm in detail here; the implemen-

tation follows the pseudocode given in Gilli and Schumann (2010 (in press). R-code is given

in the appendix and can be downloaded from http://comisef.eu . We parameterise de as

follows: F is 0.5, CR is 0.99. We use a population of 200 solutions and stop the algorithm

after 600 generations. (For a discussion of the meaning of these parameters, see Gilli and

Schumann, 2010 (in press.) To handle constraints in de, we include a penalty function that

adds a scalar (proportional to the violation of a given constraint) to a solution. We include

12

the following restrictions:

0 ≤ β1 ≤ 15, −15 ≤ β2 ≤ 30, −30 ≤ β3 ≤ 30, −30 ≤ β4 ≤ 30,

0 ≤ λ1 ≤ 2.5, 2.5 ≤ λ2 ≤ 5.5 .

The chosen values for λ1 and λ2 should result in acceptable correlations. The computing

time for a run of de in R .. on an Intel p8700 (single core) at 2.53GHz with 2GB ram is

less than 10 seconds.

The Experiment

We use again the data set from Diebold and Li (2006), monthly zero rates for maturities
1/12 to 10 years; see the previous section. We have 372 cross-sections of yields. For each

cross-section, we fit an nss model by running ten times a gradient-based search (nlminb

from R’s stats package), and de. The starting values for nlminb are drawn randomly from

the allowed ranges of the parameters; in the same way we set up the initial population of

de.

For each cross-section of yields (ie, each month) we have ten solutions obtained from

nlminb, and ten from de. For each solution, we compute the root-mean-squared (rms) error

in percentage points, ie,

√

√

√

√

1

m

m

∑
i=1

(

yM(τi)− y(τi)

)2

. (7)

Since the problem is not convex, we should not expect to obtain the same error for different

restarts, not even – or rather, in particular not – for nlminb, given that we use different

starting values for each restart. Thus, for each month for which we calibrate the model, we

normally have ten different solutions for a given method. We compute the worst of these

solutions in terms of fit as given by Equation (7), the best solution, and the median. We

plot the results in Figures 13 and 14. The grey bars show the range from minimum error to

maximum error for a given month; the vertical ticks indicate the median fit. An example:

for May 1984, gradient search’s best solution resulted in a rms error of 5.3 basis points (bp),

its worst solution had an error of 26.5 bp, the median error was 13.6 bp. Thus we get:

0 0.15 0.3 0.45 0.6

As a third column (‘△ of medians’), we plot the difference between the median solution for

de, and the median solution for gradient search. If this quantity is negative, de returned

better solutions; if it is positive, gradient search gave better results. We see from Figures 13

and 14 that with very few exceptions, de had better median solutions.

If we just compare the average error for gradient search and de, we find them not too

different. The median-median rms error is 5.4 bp for de, compared with 8.1 bp for gradient

search. (‘median-median’ means: for each month, we have ten results for each method,

of which we compute the median; then we take median over all these median values, ie,

13

we average over all months.) This underlines the point made in Section 2 that we can

find acceptable fits even with a gradient-based method, even though it is actually not an

appropriate method. We stress again, however, that several restarts are required.

But the impression that Figures 13 and 14 give is that while repeated runs of de also

result in different solutions, these solutions are much more stable than for nlminb. The

median range over all months for de is exactly zero, the mean range is 0.2 bp; in 97% of all

cases was the range for de smaller than one basis point! In contrast, gradient search has a

median range of 6.1 bp (mean range 8.1 bp); a range smaller than one basis point was only

achieved in 8% of cases.

Given that de found solutions at least as good and mostly better than gradient search,

and more reliably so, and that computation time is not prohibitive, we conclude that for

this particular problem, de is more appropriate than a traditional optimisation technique

based on the gradient.

5 Conclusion

In this paper we have analysed the calibration of the Nelson–Siegel and Nelson–Siegel–

Svensson model. Both models are widely used, yet it is rarely discussed that fitting the

models to market rates often causes problems. We have shown that these difficulties can

possibly be reduced by using alternative optimisation techniques. Differential Evolution,

which we tested, gave results that were reliably better than those obtained by a traditional

method based on the derivatives of the objective function. But these improvements concern

the fit, that is, the discrepancy between market rates and model rates. We also showed that

parameter identification is only possible when specific parameters are restricted to certain

ranges; unconstrained optimisation runs the risk of moving into parameter ranges where

single parameters cannot be accurately computed any more.

14

0 0.15 0.3 0.45 0.6 0 0.15 0.3 0.45 0.6 -0.15 0 0.15

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

Gradient search. Differential Evolution. △ of medians.

Figure 13: Errors distributions and differences in median solutions.

15

0 0.15 0.3 0.45 0.6 0 0.15 0.3 0.45 0.6 -0.15 0 0.15

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

Gradient search. Differential Evolution. △ of medians.

Figure 14: Errors distributions and differences in median solutions.

16

References

BIS. Zero-Coupon Yield Curves: Technical Documentation. BIS Papers 25, Bank for Inter-

national Settlements, 2005.

David Bolder and David Stréliski. Yield Curve Modelling at the Bank of Canada. Bank of

Canada Technical Report, 84, 1999.

Michiel De Pooter. Examining the Nelson–Siegel Class of Term Structure Models. Tinbergen

Institute Discussion Paper 2007-043/4, 2007.

Deutsche Bundesbank. Schätzung von Zinsstrukturkurven. Monatsbericht, Oktober 1997.

Francis X. Diebold and Canlin Li. Forecasting the Term Structure of Government Bond

Yields. Journal of Econometrics, 130(2):337–364, 2006.

Robert Ferstl and Josef Hayden. termstrc: Zero-coupon Yield Curve Estimation. 2009. URL

http://CRAN.R-project.org/package=termstrc. R package version 1.1.1.

Manfred Gilli and Enrico Schumann. Robust Regression with Optimisation Heuristics. In

Anthony Brabazon, Michael O’Neill, and Dietmar Maringer, editors, Natural Computing

in Computational Finance, volume 3. Springer, 2010 (in press).

Manfred Gilli and Peter Winker. Heuristic optimization methods in econometrics. In

David A. Belsley and Erricos Kontoghiorghes, editors, Handbook of Computational Econo-

metrics. Wiley, 2009.

Ricardo Gimenoa and Juan M. Nave. A Genetic Algorithm Estimation of the Term Structure

of Interest Rates. Computational Statistics & Data Analysis, 53:2236–2250, 2009.

Refet S. Gurkaynak, Brian Sack, and Jonathan H. Wright. The U.S. Treasury Yield Curve:

1961 to the Present. Federal Reserve Board Finance and Economics Discussion Series, 2006-28,

2006.

Robert Litterman and José Scheinkman. Common Factors Affecting Bond Returns. Journal

of Fixed Income, 1(1):54–61, 1991.

Charles R. Nelson and Andrew F. Siegel. Parsimonious Modeling of Yield Curves. Journal

of Business, 60(4):473–489, 1987.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2008. URL http://www.R-project.org.

ISBN 3-900051-07-0.

Rainer M. Storn and Kenneth V. Price. Differential Evolution – a Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization,

11(4):341–359, 1997.

Lars E.O. Svensson. Estimating and Interpreting Forward Interest Rates: Sweden 1992–1994.

IMF Working Paper 94/114, 1994.

17

Jerry Yi Xiao. Term Structure Estimation for U.S. Corporate Bond Yields. RiskMetrics Journal,

2(1):19–34, 2001.

18

A R-code: Example

To use the example, first run the script de.r (source("de.r")).

1 # --

2 # example 1: NS

3 # --

4

5 # set up yield curve (in this example: artificial data), and plot it

6 mats <- c(1 ,3 ,6 ,9 ,12 ,15,18 ,21 ,24 ,30,36,48 ,60 ,72,84,96 ,108 ,120)/12

7 betaTRUE <- c(6,3,8,1); yM <- NS(betaTRUE ,mats)

8 plot(mats ,yM,xlab="maturities in years",ylab="yields in %")

9

10 # collect all data in dataList

11 dataList <- list(yM = yM, mats = mats , model = NS)

12

13 # set parameters for de

14 de <- list(

15 min = c(0,-15,-30,0),

16 max = c(15, 30, 30 ,10),

17 d = 4,

18 nP = 200,

19 nG = 600,

20 ww = 0.1,

21 F = 0.50,

22 CR = 0.99,

23 R = 0.00 # random term (added to change)

24)

25

26 system.time(sol <- DE(de = de ,dataList = dataList ,OF = OF))

27 # maximum error

28 max(abs(dataList$model(sol$beta ,mats)-dataList$model(betaTRUE ,mats)))

29 # value of objective function

30 sqrt(sol$OFvalue)

31 lines(mats ,dataList$model(sol$beta ,mats), col="blue")

32

33 s0 <- de$min + (de$max - de$min) * runif(de$d)

34 system.time(sol2 <- nlminb(s0 ,OF ,data=dataList ,lower = de$min , upper = de$max , control

= list(eval.max=50000 ,iter.max=50000)))

35 # maximum error

36 max(abs(dataList$model(sol2$par ,mats)-dataList$model(betaTRUE ,mats)))

37 # value of objective function

38 sqrt(sol2$objective)

39 lines(mats ,dataList$model(sol2$par ,mats), col="green", lty=2)

40

41 legend(x = "bottom", legend = c("true yields","DE","nlminb"),

42 col = c("black","blue","green"),

43 pch = c(1,NA ,NA), lty=c(0,1,2))

44

45

46

47

48 # --

49 # example 2: NSS

50 # --

51

52 # set up yield curve (in this example: artificial data), and plot it

53 mats <- c(1 ,3 ,6 ,9 ,12 ,15,18 ,21 ,24 ,30,36,48 ,60 ,72,84,96 ,108 ,120)/12

54 betaTRUE <- c(5,-2,5,-5,1,3); yM <- NSS2(betaTRUE ,mats)

55 plot(mats ,yM,xlab="maturities in years",ylab="yields in %")

56

57 # collect all in dataList

19

58 dataList <- list(yM = yM, mats = mats , model = NSS2)

59

60 # set parameters for de

61 de <- list(

62 min = c(0,-15,-30,-30,0 ,2.5),

63 max = c(15, 30, 30, 30 ,2.5 ,5),

64 d = 6,

65 nP = 200,

66 nG = 600,

67 ww = 0.1,

68 F = 0.50,

69 CR = 0.99,

70 R = 0.00 # random term (added to change)

71)

72

73 system.time(sol <- DE(de = de ,dataList = dataList ,OF = OF))

74 # maximum error

75 max(abs(dataList$model(sol$beta ,mats)-dataList$model(betaTRUE ,mats)))

76 # value of objective function

77 sqrt(sol$OFvalue)

78 lines(mats ,dataList$model(sol$beta ,mats), col="blue")

79

80 s0 <- de$min + (de$max - de$min) * runif(de$d)

81 system.time(sol2 <- nlminb(s0 ,OF ,data=dataList ,lower = de$min , upper = de$max , control

= list(eval.max=50000 ,iter.max=50000)))

82 # maximum error

83 max(abs(dataList$model(sol2$par ,mats)-dataList$model(betaTRUE ,mats)))

84 # value of objective function

85 sqrt(sol2$objective)

86 lines(mats ,dataList$model(sol2$par ,mats), col="green", lty=2)

87

88 legend(x = "bottom", legend = c("true yields","DE","nlminb"),

89 col = c("black","blue","green"),

90 pch = c(1,NA,NA), lty=c(0,1,2))

B R-code: Differential Evolution

1 # differential evolution

2 # enrico schumann , version 2010 -03 -27

3 # --

4

5

6

7 # --

8 # optimisation function

9 # --

10

11 DE <- function(de ,dataList ,OF)

12 {

13 # auxiliary functions

14 # --

15 # random numbers: like rand(m,n)/randn(m,n) in Matlab

16 mRU <- function(m,n){

17 return(array(runif(m*n), dim = c(m,n)))

18 }

19 mRN <- function(m,n){

20 return(array(rnorm(m*n), dim = c(m,n)))

21 }

22 shift <- function(x)

20

23 {

24 rr <- length(x)

25 return(c(x[rr],x[1:(rr -1)]))

26 }

27 # penalty

28 pen <- function(mP ,pso ,vF)

29 {

30 minV <- pso$min

31 maxV <- pso$max

32 ww <- pso$ww

33

34 # max constraint: if larger than maxV , element in A is positiv

35 A <- mP - as.vector(maxV)

36 A <- A + abs(A)

37

38 # max constraint: if smaller than minV , element in B is positiv

39 B <- as.vector(minV) - mP

40 B <- B + abs(B)

41

42 # beta 1 + beta2 > 0

43 C <- ww*((mP[1,]+mP[2,])-abs(mP[1,]+mP[2,]))

44 A <- ww * colSums(A + B)*vF - C

45 return(A)

46 }

47

48 # main algorithm

49 # --

50 # set up initial population

51 mP <- de$min + diag(de$max - de$min) %*% mRU(de$d,de$nP)

52 # include extremes

53 mP[,1:de$d] <- diag(de$max)

54 mP[,(de$d+1):(2*de$d)] <- diag(de$min)

55

56 # evaluate initial population

57 vF <- apply(mP ,2,OF,data = dataList)

58

59 # constraints

60 vP <- pen(mP ,de ,vF)

61 vF <- vF + vP

62

63 # keep track of OF

64 Fmat <- array(NaN ,c(denG,denP))

65

66 for (g in 1:de$nG){

67

68 # update population

69 vI <- sample(1:denP,denP)

70 R1 <- shift(vI)

71 R2 <- shift(R1)

72 R3 <- shift(R2)

73

74 # prelim. update

75 mPv = mP[,R1] + de$F * (mP[,R2] - mP[,R3])

76 if(de$R > 0){mPv <- mPv + de$R * mRN(ded,denP)}

77

78 mI <- mRU(ded,denP) > de$CR

79 mPv[mI] <- mP[mI]

80

81 # evaluate updated population

82 vFv <- apply(mPv ,2,OF,data = dataList)

83 # constraints

84 vPv <- pen(mPv ,de,vF)

21

85 vFv <- vFv + vPv

86 vFv[!(is.finite(vFv))] <- 1000000

87

88

89 # find improvements

90 logik <- vFv < vF

91 mP[,logik] <- mPv[,logik]

92 vF[logik] <- vFv[logik]

93 Fmat[g,] <- vF

94

95 } # g in 1:nG

96 sGbest <- min(vF)

97 sgbest <- which.min(vF)[1]

98

99 # return best solution

100 return(list(beta = mP[,sgbest], OFvalue = sGbest , popF = vF , Fmat = Fmat))

101 }

102

103

104

105 # --

106 # define functions

107 # --

108

109 # nelson --siegel

110 NS <- function(betaV ,mats)

111 {

112 # betaV = beta1 -3, lambda1

113 gam <- mats / betaV[4]

114 y = betaV[1] + betaV[2] * ((1 - exp(-gam)) / (gam)) + betaV[3] * (((1 - exp(-

gam)) / (gam)) - exp(-gam))

115 return(y)

116 }

117 # nelson --siegel --svensson 1

118 NSS <- function(betaV ,mats)

119 {

120 # betaV = beta1 -4, lambda1 -2

121 gam1 <- mats / betaV[5]

122 gam2 <- mats / betaV[6]

123 y <- betaV[1] + betaV[2] * ((1 - exp(-gam1)) / (gam1)) +

124 betaV[3] * (((1 - exp(-gam1)) / (gam1)) - exp(-gam1)) +

125 betaV[4] * (((1 - exp(-gam2)) / (gam2)) - exp(-gam2))

126 return(y)

127 }

128 # nelson --siegel --svensson 2 (a bit faster)

129 NSS2 <- function(betaV ,mats)

130 {

131 # betaV = beta1 -4, lambda1 -2

132 gam1 <- mats / betaV[5]

133 gam2 <- mats / betaV[6]

134 aux1 <- 1 - exp(-gam1)

135 aux2 <- 1 - exp(-gam2)

136 y <- betaV[1] + betaV[2] * (aux1 / gam1) +

137 betaV[3] * (aux1 / gam1 + aux1 - 1) +

138 betaV[4] * (aux2 / gam2 + aux2 - 1)

139 return(y)

140 }

141 # generic objective function

142 OF <- function(betaV ,data)

143 {

144 mats <- data$mats

145 yM <- data$yM

22

146 model <- data$model

147 y <- model(betaV ,mats)

148 aux <- y - yM

149 aux <- crossprod(aux)

150 return(aux)

151 }

23

