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Summary 

Efficient experimental designs offer the potential to reduce confidence intervals for 

parameters of interest in choice models, or to reduce required sample sizes. C-

efficiency recognises the salience of willingness to pay estimates rather than utility 

function parameters. This study reports on a choice model application that 

incorporated updated statistical designs based on initial responses in order to 

maximise C-efficiency. The revised design delivered significant improvements. 

Keywords: experimental design, choice experiment, efficiency  

 

 

1. Introduction 
 

Combinations of attributes at different levels create sets of alternatives within a 

choice experiment. The construction of each alternative and the combinations of 

alternatives in each choice event is the experimental design. Inappropriate 

experimental designs may result in unidentifiable choice models or produce biased 

parameter estimates (Louviere et al., 2000). Inefficient experimental designs fail to 

capture the fullest extent of information from survey participants, resulting in 

parameter estimate variances larger than potentially achievable with any given 

sample size. D-efficiency has been the most common approach to measuring 

efficiency of experimental designs (Ferrini and Scarpa, 2007). D-efficient designs 

minimise the D-error, which is an aggregate measure constructed from the variances 

and covariances of the estimated utility function parameters. Scarpa and Rose (2008) 

define the D-error as: 

D-error = [Det(Ω(β, xsj)]
1/K 

 Ω is the asymptotic variance-covariance matrix for the design variables (xsj), with 

utility function coefficient vector β, where s indexes the alternative and j indexes the 

choice task. K is the number of coefficients estimated. Identification of a D-efficient 

design entails selection of xsj which minimises the D-error for expected β. 



Alternatively, A-efficiency minimises the trace of the asymptotic variance-

covariance matrix, which minimises aggregate parameter variances, but may produce 

very large covariances (Scarpa and Rose, 2008).  

Often choice experiments are conducted to identify behaviours or to estimate 

willingness to pay (WTP). The importance of choice predictions, rather than the 

utility function per se, has been recognised by Kessels et al. (2006) who proposed G-

optimality and V-optimality based on minimisation of maximum and average choice 

prediction variances. Similarly, Kanninen (1993) developed designs to minimise the 

variance in WTP estimates in contingent valuation studies. Recently, Scarpa and 

Rose (2008) have used design strategies to minimise variance in WTP (C-efficiency) 

in hypothetical choice experiment simulations which illustrated the potential 

advantages of designing for C-efficiency, rather than approaches based on D-

efficiency and other efficiency criteria.  

Efficient designs rely upon prior knowledge of the coefficient vector. Such 

knowledge can come from theory, information obtained from stakeholders during 

study design and pre-testing, or from sequential data collection. The sequential data 

collection approach uses information obtained in early applications to update the 

experimental design using either coefficient vector point estimates or by Bayesian 

updating to account for uncertainty in the coefficient vector. This study empirically 

estimates C-efficiency gains based on point estimates of the coefficient vector (CP 

efficiency, Scarpa and Rose, 2008). The next section describes the methods used. 

Results are presented in section three. The paper concludes with a discussion of the 

results and suggestions for further research. 

 

 

2. Methods 

Utility function coefficients and elements of the asymptotic variance covariance 

matrix can be used to derive confidence intervals for WTP and the sample size 

required at any desired level of accuracy for any particular WTP value. If α and β are 

utility function coefficients for attribute i and cost respectively, mean WTP for 

attribute i is: 

WTPi = -α/β   

Following Scarpa and Rose (2008) the variance of mean WTP may be estimated as: 

Var(WTPi) ≈ [Var(α) + α 2/β2 Var(β) – 2 α/β Cov(α,β)]/β2 

Where Var(α), Var(β) and Cov(α,β) are elements of the variance-covariance matrix 

for one replicate of the experimental design. The sample size necessary for mean 

WTPi to be significantly different from zero at the γ% significance level is then: 



 Ni  = tγ/2
2
 Var(WTPi)/WTPi

2  

= tγ/2
2[Var(α)/α2 + Var(β)/β2– 2Cov(α,β)/(αβ)] 

 

The CP-efficient design strategy minimises maximum Ni for the environmental 

attributes of interest. 

This study assessed the benefits of design updating using a two stage choice 

experiment undertaken for estimation of values of environmental attributes 

dependent on introduced wasp (Vespula germanica, V. vulgaris) management at 

Lake Rotoiti (Kerr and Sharp, 2008). The Lake Rotoiti area is subject to high wasp 

populations that thrive in the beech forest because of the prevalence of honeydew 

(Ultracoelostoma spp.), which is an important source of carbohydrate for wasps. 

Wasps affect recreational experiences and native wildlife. Peak wasp biomass is 

highly significant, sometimes exceeding the combined biomass of birds, rodents and 

mustelids (Thomas et al., 1990). Biological control and aerial poisoning of 

introduced wasps has been ineffective to date — the only method available for 

significantly reducing wasp populations is manual ground application of poison in 

bait stations, which is both expensive and time-consuming (Beggs et al., 1998; 

Beggs et al., 2002; Harris and Rees, 2000). 

The benefits of Lake Rotoiti wasp control were investigated using a choice 

experiment that varied the outcomes of wasp control activities. Attributes included in 

the study were the probability of recreationists being stung by wasps on a typical 

summer or autumn day (5%, 10%, 20%, 50%), the abundance of native bird and 

insect populations (very low, low, high), and cost. Bird and insect populations were 

dummy-coded, with low as the base. Cost attribute levels were initially set at $0, 

$50, $100 and $150, but were changed during the study as more information became 

available on attribute values. Data were collected in two group meetings held in 

Christchurch City four nights apart in July 2008 and in meetings held on two 

consecutive nights in Nelson. In each location, both groups were drawn from the 

same local primary school community population. The first Nelson application 

occurred concurrently with the second Christchurch application and utilised the stage 

2 Christchurch experimental design. 

The choice experiment entailed twenty unlabelled choice sets that were presented to 

all participants. Each choice set consisted of a base alternative (20% probability of 

being stung, low populations of native birds and native insects, zero cost) and two 

alternatives to the base. The initial design was developed based on researcher 

assumptions about WTP developed through focus group and pre-testing procedures. 

Attribute levels were randomly allocated in a balanced design over the two non-base 

alternatives. A more efficient design was developed by searching over random 

rearrangements of the attribute levels, constrained to retain balance. The objective of 



the search (conducted over 1 million iterations) was to minimise the sample size 

required to ensure every estimate of mean WTP was significant at the 5% level.  

In the first stage of data collection the efficient random design was applied to groups 

of 31 people (Christchurch) and 49 people (Nelson). A multinomial logit model was 

estimated for these first groups. The second stage of data collection utilised a revised 

design entailing changes in the experimental design. The cost attribute vector was 

changed between the two Christchurch stages, but was unaltered at Nelson. Second 

stage data collection used an identical format to the first stage and obtained data 

from 43 (Christchurch) and 42 (Nelson) different individuals to those engaged in 

stage one, but drawn from the same population. Maddala et al. (2003) tested design 

efficiency by comparison of 95% confidence intervals. A related approach is 

employed here with the comparison of standard errors for each of the mean WTP 

estimates at each stage of the survey. In order to remove sample size effects from 

comparisons of efficiency, sample sizes were equalised by randomly drawing 

individuals from respondents in the stage with the most participants. 

The experimental approach entailed drawing two small samples from a large 

population. Comparison of results from the two samples is therefore potentially 

confounded by the possibility of underlying taste differences between the two 

samples. Direct comparison of models derived for the two samples is not possible 

because of potential scale differences. The Swait-Louviere test (Swait & Louviere, 

1993) was used to identify optimal relative scale and to test for differences in 

preferences for the two samples.  

 

3. Results 

Estimated MNL models for Christchurch are reported in Table 1. All environmental 

attribute coefficients are highly significant and of the expected signs. The Swait-

Louviere test indicated that pooling of the two datasets is appropriate. The optimal 

relative scale parameter is not significantly different from one and the scaled pooled 

model does not improve upon the naïvely pooled model. The similarity of the MNL 

models for stages one and two are further illustrated in Figure 1, which compares 

utility function coefficients for the two models. Potential differences in scale 

preclude direct comparison of these coefficients, but the points will fall on a straight 

line for identical preference structures (Viney et al., 2005). Given uncertainty about 

the true location of each of the points in Figure 1 there is no reason to suspect that 

the two survey populations have different values for these environmental attributes. 

 

  



Table 1: MNL models, Christchurch 

 Assumed Stage 1 Stage 2 Naïvely 
Pooled 

Scaled 
Pooled 

Constant 0.15 -0.108 -0.186 -0.116 -0.140 
Stings -0.01 -0.0496*** -0.0519*** -0.0501*** -0.0530*** 
Very Low Birds -1.50 -2.082*** -1.698*** -1.920*** -2.044*** 
High Birds 1.00 1.073*** 0.835*** 0.947*** 1.012*** 
V Low Insects -0.50 -1.046*** -0.901*** -0.936*** -1.019*** 
High Insects 0.50 0.567*** 0.665*** 0.641*** 0.668*** 
Cost -0.01 -0.00678*** -0.00679*** -0.00671*** -0.00716*** 
Stage 2 relative scale    .876 

N  31 31 62 62 
-LL (restricted) 632.570 659.553 1296.854 1296.854 
-LL (unrestricted) 478.392 523.791 1005.654 1004.714    
McFadden’s R2  .244 .206 .225 .225 
* α < .10, ** α < .05, *** α < .01 
 

Figure 1: Comparison of utility function coefficients for stage one and stage two 

models, Christchurch 

 

 

The Christchurch design strategy is reported in Table 2. Using the analysts’ priors it 

was expected that the initial random design would have required a sample size of 38 

respondents to estimate each WTP measure with better than 95% confidence of 

being significantly different from zero (Table 2). Application of the search algorithm 

to improve this design resulted in an expected sample size (N=24) of only 63% of 

the original random sample in order to obtain WTP measures for all attributes 
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significant at the target level. This sample size proved to be overly pessimistic when 

evaluated against the MNL model coefficients estimated after stage one data 

collection, which indicated that a sample size of 21 respondents would have sufficed. 

 

Table 2: Design parameters, Christchurch 

Design 
Source of 

priors 
Applied Evaluation 

Evaluated 
against 

N 
C-

Efficiency 

Random Analysts  No a priori Priors 37.78 24% 

Efficient Analysts Stage 1 a priori Priors 23.82 38% 

Efficient Analysts Stage 1 ex post Stage 1 MNL 20.96 43% 

Efficient Stage 1 MNL Stage 2 a priori Stage 1 MNL 13.72 65% 

Efficient Stage 1 MNL Stage 2 ex post Stage 2 MNL 11.07 81% 

Efficient Stage 1 MNL Stage 2 ex post Pooled MNL 11.19 80% 

Efficient Pooled MNL No a priori Priors 8.95 100% 

 

The second stage Christchurch design was enhanced by changes in cost attribute 

levels. The near absence of native birds was valued more highly than prior 

expectations, resulting in WTP estimates outside the data range (Table 3). This result 

suggested potential benefits from extending the upper limit of the cost attribute. 

Design investigation entailed use of several different cost attribute vectors and the 

first stage multinomial logit model coefficient estimates. The result was adoption of 

a revised cost attribute vector ($0, $50, $150, $250) and a revised experimental 

design. Expectations were for a 53% increase in C-efficiency1 over the first stage 

experimental design (Table 2), reducing the expected sample size to 14 respondents. 

Again, this expectation was overly pessimistic - a sample of 11 would have attained 

the stated objective. The potential for further efficiency gains is highlighted by the 

final row in Table 2, which uses the naïvely pooled coefficient estimates as priors 

and predicts a possible further 25% gain in efficiency.  

The tests conducted above indicate that the two samples had similar preferences; 

consequently, comparison of standard errors provides valid measures of efficiency. 

Estimates of mean WTP and standard errors are presented in Table 3.  

  

                                                           
1
 = 100*[(20.96/13.72)-1] 



Table 3: Mean WTP (Standard error) 

 Assumed 
WTP 

$ 

Stage 1 
Christchurch 

$ 

Stage 2 
Christchurch 

$ 

Stage 1  
Nelson 

$ 

Stage 2  
Nelson 

$ 

Stings -1 -7.31  
(1.78) 

 

-7.65  
(1.18) 

 

-6.58  
(0.74) 

 

-6.60  
(0.71) 

 
Very Low 
Birds 

-150 -307  
(69) 

 

-250  
(43) 

 

-436  
(66) 

 

-389  
(51) 

 
High  
Birds 

100 158  
(37) 

 

123  
(27) 

 

147  
(20) 

 

160  
(20) 

 
Very Low 
Insects 

-50 -154  
(42) 

 

-133  
(28) 

 

-204  
(25) 

 

-223  
(26) 

 
High  
Insects 

50 84  
(34) 

98  
(30) 

130  
(21) 

140  
(22) 

 

Experimental design for the first application of the choice experiment was 

undertaken using the WTP values assumed by the researchers (Table 3). Each of the 

money values assumed by the researchers is less than the corresponding mean WTP 

measures estimated from survey responses. Consequently, there should be efficiency 

gains from design updating based on survey data.  

Mean WTP estimates for stages one and two are not significantly different. It is 

notable that each of the standard errors for Christchurch improves at stage two, 

ranging from a 10% smaller standard error for high numbers of insects to a 38% 

reduction in standard error for very low bird numbers. These results are indicative of 

a more efficient design and narrower confidence intervals for each estimate of mean 

WTP. Efficiency gains at Nelson are minor, with only the standard error on “Very 

Low Birds” improving at stage 2. 

 

4. Discussion & Conclusions 

The sequential data collection employed here led to two improvements in design of 

the choice experiment. Firstly, the initial Christchurch application identified the 

order of magnitude of monetary values associated with the environmental attributes 

of interest. It became apparent that the cost-attribute vector did not contain 

sufficiently high values. C-efficiency criteria were used to search for the most 

efficient experimental design across a range of potential cost-attribute vectors. This 

procedure led to selection of a revised cost-attribute vector, and a new experimental 

design based on the new cost vector and the stage one estimates of utility function 



coefficients. The substantial improvements in standard errors observed for the stage 

two estimates of WTP illustrate the benefits of this design updating procedure. 

Prior knowledge was used to make assumptions about WTP and the related utility 

function coefficients. While these estimates were incorrect, each dollar value prior 

being too small, their relatively close correspondence implies that C-efficiency gains 

are likely to be relatively minor in this case compared with situations in which prior 

information is unreliable, or non-existent. However, there were still significant gains 

from redesign, further underlining the potential benefits of the procedure. 

Having achieved substantial efficiency gains from a single design update, the 

question arises as to whether additional updating would be beneficial. That question 

is easily answered by using coefficient estimates from a pooled model using all of 

the information obtained to date to optimise the design. The final row of Table 1 

indicates that there may be a further efficiency gain for Christchurch in the order of 

25% by doing so. If a substantial proportion of the sample remains to be collected 

such gains would be worth pursuing. 

Better prior information reduces the potential gains from sequential design updating. 

This survey was applied in Nelson City concurrently with second stage data 

collection in Christchurch. The second stage Christchurch design was used for stage 

one at Nelson City. Because Nelson WTP values were very similar to Christchurch 

WTP values, improvements at stage two in Nelson were not dramatic. Only one 

standard error decreased significantly, the others remaining unchanged. It is notable 

that while standard errors changed little, changes in estimates of mean WTP resulted 

in improved t-scores for all Nelson WTP estimates, ranging between 4% and 14%. In 

each case the lowest t-score for stage one was for high numbers of insects. The t-

scores for the WTP estimate for this attribute increased by 30% and 6% in 

Christchurch and Nelson respectively. 

Observed differences in respondent preferences have led to more widespread use of 

models that accommodate heterogeneity, including nested logit, latent class and 

mixed logit models. Bliemer et al. (2009) investigated the relationship between 

model mis-specification and experimental design. Using multinomial logit and 

nested logit models they showed that designing for one type of model could lead to 

efficiency losses when another type of model was estimated. The optimisation of 

designs that assume respondent homogeneity may lead to reduced efficiency of 

latent class models as the design that caters for the non-existent “typical respondent” 

becomes less relevant for each of the non-typical groups of respondents. There is no 

reason why an updating process for latent class, or any other type of model, cannot 

be undertaken. However, it does highlight the importance of identifying the correct 

model form a priori. That can, of course, happen once initial data have been 

collected if there are sufficient responses to differentiate between model form. 



An important research question arises around the matter of what proportion of the 

survey budget should be expended on initial sampling. On the one hand, sampling 

more people early on improves estimates of the coefficient vector, leading to the 

most efficient design for later application. It also provides information useful in 

determining the correct type of model to estimate – multinomial logit, nested logit, 

latent class or mixed logit. On the other hand, sampling fewer people initially 

permits more respondents to complete the updated design, allowing more 

opportunity to capitalise upon the benefits of improved experimental design. We 

leave this matter for later scrutiny. 

In conclusion, using prior information to improve experimental design is a relatively 

straightforward and inexpensive task, particularly now that commercial software 

(Ngene) is now available for the task. The advantages expounded in earlier 

theoretical studies were tested in a field application and were found to yield 

significant benefits. We commend sequential design updating as a method suitable 

for reducing the substantial data collection costs associated with choice experiments, 

particularly if there is little prior information on parameter values. We encourage 

further experimental applications of the process, but suggest the need for further 

research to determine the optimal split of sampling between different stages in data 

collection and to determine the optimal number of experimental design updates. 

 

Acknowledgements 

We are extremely grateful to John Rose whose software provided the foundation 

from which our own algorithm was developed with the assistance of Sharon Long. 

Riccardo Scarpa provided invaluable conceptual advice and helpful comments that 

have greatly improved the finished product. Errors remain ours. Funding for this 

research was provided by the New Zealand Foundation for Science Research and 

Technology through Nimmo-Bell Limited (PROJ-103230ECOS-NIMMO). 

 

References 

Beggs, J.R., Toft, R.J., Malham, J.P., Rees, J.S., Tilley, J.A.V., Moller, H. and 
Alspach, P. (1998). The difficulty of reducing introduced wasp (Vespula 
vulgaris) populations for conservation gains. New Zealand Journal of 
Ecology 22(1): 55-63. 

Beggs, J.R., Rees, J.S. and Harris, R.J. (2002). No evidence for establishment of 
the wasp parasitoid Sphecophaga vesparum burra (Cresson) (Hymenoptera: 
Ichneumonidae) at two sites in New Zealand. New Zealand Journal of 
Zoology 29: 205-211. 



Bliemer, M.C.J., Rose, J.M. and Hensher, D.A. (2009). Efficient stated choice 

experiments for estimating nested logit models. Transportation Research 

Part B 43: 19-35. 

Ferrini, S. and Scarpa, R. (2007). Designs with a priori information for nonmarket 

valuation with choice experiments: A Monte Carlo study. Journal of 

Environmental Economics and Management 53: 342-363. 

Harris, R.J. and Rees, J.S. (2000). Aerial poisoning of wasps. Science for 

Conservation 162. Department of Conservation, Wellington. 

Kanninen, B.J. (1993). Optimal experimental design for double-bounded 

dichotomous choice contingent valuation. Land Economics 69(2): 138-146. 

Kerr, G.N. and Sharp, B.M.H. (2008). Biodiversity Management: Lake Rotoiti 

Choice Modelling Study. Agribusiness and Economics Research Unit 

Research Report No.310, Lincoln University. 

Kessels, R., Goos, P. and Vandebroeck, R. (2006). A comparison of criteria to 

design efficient choice experiments. Journal of Marketing Research 43, 409-

419. 

Louviere, J.J., Hensher, D.A. and Swait, J.D. (2000). Stated choice methods: 

analysis and application. Cambridge University Press: Cambridge, U.K. 

Maddala, T., Phillips, K.A. and Johnson, F.R. (2003). An experiment on simplifying 

conjoint analysis designs for measuring preferences. Health Economics 12: 

1035-1047. 

Scarpa, R. and Rose, J. (2008). Design efficiency for choice modelling. Australian 

Journal of Agricultural and Resource Economics 52(3), 253-282. 

Swait, J. and Louviere, J. (1993). The role of the scale parameter in the estimation 

and comparison of multinomial logit models. Journal of Marketing Research 

30: 305-314. 

Thomas, C.D., Moller, H., Plunkett, G.M. and Harris, R.J. (1990). The prevalence of 

introduced Vespula vulgaris wasps in a New Zealand beech forest 

community. New Zealand Journal of Ecology 13:63-72. 

Viney, R., Savage, E. and Louviere, J. (2005). Empirical investigation of 

experimental design properties of discrete choice experiments in health care. 

Health Economics 14: 349-362. 


