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Abstract

We extend the ‘citizen candidate’ model of party formation to allow
for aggregate uncertainty over the distribution of preferences. We dis-
cuss and characterize the equilibrium set in this framework and show
that two-party equilibria have ‘extremist’ parties, i.e. the party win-
ning under a left-wing (right-wing) distribution is to the left (right) of
the median of that distribution.

1 Introduction

The impact of electoral systems on the number of parties has long been
a hotly debated topic in political science. The central hypothesis is the
so-called Duverger’s Law: A plurality electoral system (also called first-
past-the-post) produces a two-party political system. Apart from anecdotal
evidence, some empirical studies (see e.g. Wright and Riker [19]) have shown
that the first-past-the-post system tends to reduce the number of candidates
or parties contesting the election. Comprehensive comparative studies on
the impact of electoral systems on the number of parties are contained in
Lijphart [10] and Shugart and Taagepera [15].

The most convincing theoretical explanations of the Duverger’s Law are
produced in models with strategic voting (Palfrey [13], Feddersen, Sened
and Wright [7], Feddersen [6] and Fey [8]). The logic is straightforward.
A strategic voter should cast her vote to maximize the impact on the final
selection of the candidate, so a voter should sort out the two candidates who
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have the highest probability of winning and vote for the one she likes more.
In a Nash equilibrium of the voting game only two candidates obtain votes.

The assumption of strategic voting however is difficult to accept in large
elections, where the probability that a given vote is pivotal is essentially
zero. With sincere voting an argument for the Duverger’s law can still be
made, but it has to rely on the strategic behavior of candidates (or parties)
deciding whether or not to contest an election. The role of parties was in
fact highlighted by Duverger [4], who claimed that

The brutal finality of a majority vote on a single ballot forces
parties with similar tendencies to regroup their forces at the risk
of being overwhelmingly defeated.

When the attention shifts from voter to parties the question of what moti-
vates parties becomes important. One possibility which has been explored
is that candidates only care about winning and adopt the platform giving
the highest probability of victory (the standard Hotelling model). With a
fixed number of parties these models produce ‘median voter’ kind of results1.
However Osborne [11] points out that the result is not robust to the possi-
bility of entry. He shows that when there are n > 2 potential candidates, for
almost all distributions on the political preferences of voters a Nash equilib-
rium in pure strategies fails to exist. To sum up, models in which candidates
only care about winning are unable to produce interesting insights on the
long-run political configuration that an electoral system is able to produce.

It is therefore natural to explore models in which candidates have policy
preferences, as well as an appetite for power. Osborne and Slivinski [12]
(henceforth, OS) and Besley and Coate [1] (henceforth, BC) have proposed
the citizen candidate model to analyze the entry problem2. In the ‘citizen
candidate model’ each voter can decide to become a candidate. Each citizen
is endowed with an ideal point over the policy space, and implements the
policy corresponding to that ideal point in case of victory. Once a citizen
has become a candidate, her political preferences become perfectly known
to the players. Thus, citizens can decide whether or not to run, but once
they decide to run they cannot choose the political platform. BC assume
strategic voting behavior and a finite set of voters, while OS assume sincere
voting and a continuum of voters.

1Duggan [3] surveys models with a fixed number of parties.
2An earlier proponent of such models has been Wittman ([16],[17], [18]). His analysis

is restricted to the case of two parties, and it cannot therefore handle the possibility of
entry.
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Since we are interested in large elections, we will use the OS model as a
building block. We introduce two important modifications. First, we want
to give to the parties some flexibility in selecting their platforms. In the
traditional citizen candidate model the policy implemented by a winning
candidate must be identical to her ideal point. When a two-party equi-
librium exists, candidates have different political positions and they both
receive 50% of the vote, so that each wins with probability 1

2 . This kind
of equilibria has the unsatisfactory feature that very slight movements in
the political position of a party can insure victory with probability 1. It is
hard to believe that existing parties, no matter how ideologically commit-
ted, would give up such an opportunity for electoral profit. We therefore
explore a model in which parties care about the policy implemented but
are also able to perform very slight movements in the platform selected if
this is electorally convenient. Formally, if a candidate has ideal point x we
assume that the party can choose the platform in the interval (x− δ, x+ δ),
and study equilibria that survive as δ goes to zero. We show that if such
a refinement is imposed then the only equilibrium of the OS model is with
a single party entering at the median. Thus, there are no equilibria with
multiple parties.

Obviously, a model predicting that only one party enters is not very
satisfactory. We therefore introduce an additional modification allowing for
aggregate uncertainty over the distribution of voters. Uncertainty has been
recently introduced in the citizen candidate model by Riviere [14], Eguia [5]
and Fey [9]. The common theme in these models is that the exact outcome
of an election is subject to uncertainty, for example because there may be
computing errors or external factors may prevent some voters from going to
the polls. While there is always a candidate positioned at the median of the
voters’ preferences, an additional candidate close to the median may enter
in order to exploit ‘mistakes’. The prediction is therefore that equilibria
with multiple parties exist, but the parties tend to have similar platforms3.

We want to explore a different source of uncertainty, namely uncertainty
on the political preferences of the electorate. The idea can be described
as follows. The actual ‘mood’ of the electorate is not known at the time
a party announces its ideology and hence at that moment a party is never
sure how the elctorate would interpret its announced policy. However it
is common knowledge that the ‘political mood’ of the electorate can take

3There are other technical differences with our model. Riviere and Fey [9] assume a
finite number of ideological positions, rather than a continuum as we do. Riviere [14] and
Eguia [5] assume strategic voting.
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two forms, a ‘left-wing mood’ and a ‘right-wing mood’. The two ‘moods’
can be represented by two different distributions on a unidimensional policy
space, with the left-wing distribution having a median mL lower that the
median mR of the right wing distribution; the left-wing mood appears with
probability θ and the right-wing mood with probability (1− θ).

Under some regularity conditions, two-party equilibria exist in this model.
In these equilibria the left-wing party wins when the political mood is left-
wing and loses otherwise. Usually the winners win decisively, with a sizeable
majority. This is in sharp contrast to the standard OS model, where in a
two-party equilibrium the two parties get 50% of the vote.

In terms of characterization, the most interesting result is that the two
parties are ‘extremist’. By this we mean that the left-wing party is to the left
of mL while the right-wing party is to the right of mR. This appears to be
in accordance with the common observation that party activists tend to be
ideologically more extreme than party voters. The logic is straightforward.
Suppose that a left-wing party is positioned at mL. A new party can enter
at mL − δ, and for δ small the new party will obtain almost 50% under the
left-wing distribution. Since the rest of the vote will be split between the
two incumbant parties, the entrant wins the election when the mood is left-
wing. Notice that this can be done without changing the outcome under the
right-wing distribution, since in that case the right-win party wins anyway.
Entry can only be prevented if the two parties are somewhat extremist, so
that entry on the wings does not give too high a share of the vote to the
entrant. Of course the parties cannot be too extremist, since otherwise entry
at the center may become profitable.

There are various papers that obtain parties with divergent platforms.
For example, Bernhardt, Duggan and Squintani [2] show that office-seeking
parties with private information on the location of the median voter choose
different policy points4. However, to our knowledge, the rationale for differ-
entiation proposed in this paper is new.

The rest of the paper is organized as follows. In section 2 we discuss the
standard citizen candidate model and show that only one-party equilibria
survive if parties are allowed to change slightly their platforms. Section
3 introduces aggregate uncertainty on political preferences and discusses
two-party equilibria. Equilibria with more than two parties are discussed
in section 4, and section 5 contains the conclusions. All proofs are in the

4Ex post platform differentiation of course appears when the equilibrium is in mixed
strategies, even if the players use identical strategies. In this paper we focus on pure
strategy equilibria.
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appendix

2 The Citizen Candidate Model

The OS model has a continuum of voters, distributed according to some
strictly increasing and continuous c.d.f. F over the real line, which is also
the policy space. Each voter has an ideal policy point, corresponding to her
index. In particular, a voter with index i obtains a utility −|x − i| when
policy x is implemented. Any citizen can become a candidate, paying a fixed
cost c, and a winning candidate implements the policy corresponding to her
ideal point. Furthermore, the winning agent obtains an ‘ego rent’ b. Entry
decision occurs simultaneously, and whenever a citizen becomes a candidate
it is common knowledge that, in case of victory, she will implement her
preferred policy. The ideal point of each candidate is perfectly observable,
and each citizen votes ‘sincerely’, that is for the candidate with the closest
ideal point.

We are interested in the special case b = c = 0. Essentially the idea
is that we want to study the long-run equilibrium configuration of political
systems, looking in particular at the ideological positions that are likely to
emerge. The cost and benefits of entry are important in situations in which a
given citizen has to mount anew a campaign to win an election. We are more
interested in the emergence of political parties as a long-run phenomenon. In
this sense, we can assume that for each ideological position there are many
citizens who actually like being politically engaged and therefore have a very
small cost of entry. ‘Ego rents’ and costs are important in determining who
exactly will be the party candidates, but not in determining the political
positions of the parties. Thus, in the long run the existence of a party will
be determined more by the viability of its ideological platform than by any
cost of entry or benefit for particular politicians. At any rate, in order to
rule out equilibria in which irrelevant entry5 occurs, we will assume that
citizens have a lexicographic preference for not entering so that whenever a
citizen is indifferent, she chooses not to contest. Finally, if no party runs
the elections, then each citizen earns −∞.

Following OS’s notation, let F be the distribution of ideal points and m
its median. Without loss of generality we will normalize the total mass of
voters to unity. Notice that if there are two parties, one located at m − ε
and the other at m+ ε, and a third party enters at s ∈ (m− ,m+ ) then

5By this we mean the entry by parties whose presence does not change the outcome of
the election.
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the party located at m−ε obtains a share F £12 (m− ε+ s)
¤
of the vote and

the party located at m+ ε obtains a share 1−F
£
1
2 (m+ ε+ s)

¤
. We define

s (ε, F ) as the position by an entrant that minimizes the highest share of the
vote obtained by one of the existing parties. Clearly, this occurs when the
share of the vote of the two parties is equal, that is s (ε, F ) is defined as:

F

·
1

2
(m− + s ( , F ))

¸
= 1− F

·
1

2
(m+ + s ( , F ))

¸
We collect here some results of the OS model that we are particularly inter-
ested in.

Proposition 1 Assume b = c = 0 and citizens have lexicographic preference
for not entering. Then:

1. There is always an equilibrium in which a single candidate enters. In
all such equilibria, this candidate is the median voter.

2. An equilibrium in which two parties win with positive probabilities ex-
ists only if s ( , F ) = m for some > 0.

The basic intuition can be explained as follows. For the one-party equilib-
rium, it is clear that if the voter with i = m enters no other candidate can
enter successfully. Thus, having a single party positioned at m is always an
equilibrium. No other equilibrium with a single party can exist because it
would be profitable for the voter located at m to enter.

Regarding two-party equilibria, first notice that there is no two-party
equilibrium with both parties on one side of the median, as in this case the
median voter could enter and win the election outright. Thus, all two-party
equilibria have one party on the right and one party on the left, say xL
and xR. Both parties must win with positive probability, since otherwise
the loser would exit, which implies xL+xR

2 = m. In other words, we can find
ε > 0 such that xL = m−ε and xR = m+ε. No voter positioned to the right
of xR or to the left of xL will want to enter, since this gives victory for sure
to the more distant party. Entry in the interval (m− ε,m+ ε) may occur
for two reasons. The first is the obvious one: when ε is large, so that the two
parties are ‘extremists’ then entry at the center ensures victory. This puts
an upper bound on ε. The second reason, highlighted by OS, is subtler. A
citizen may decide to create a party even if she knows it will lose for sure,
because it will subtract most of the votes to the party she dislike most. If,
for example, s (ε, F ) > m a citizen in (m, s (ε, F )) can enter and subtract
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more votes from the left-wing party than to the right-wing party. A similar
reasoning applies if s (ε, F ) < m. Thus, to avoid entry it is necessary that
s (ε, F ) = m.

2.1 Robust Equilibria in the Citizen Candidate Model

The existence of two-party equilibria seems to be a natural and desirable
property of a game theoretic model of the first-past-the-post system. When
b = c = 0 the OS model produces this kind of equilibria only for distributions
symmetric around the median6. The equilibria however have the disturbing
feature that any candidate can obtain victory for sure with a minimal change
in position. Slightly moving to the right ensures victory with probability 1
(rather than 0.5) for xL; similarly xR can win with probability 1 moving
slightly to the left.

While it is true that parties or candidates usually have a reputation and
are perceived by the electorate to be located at some point in the policy
space, we think that the extreme assumption that a candidate can do noth-
ing to change such perceptions is unrealistic and obscures some important
elements of the strategic situation faced by potential candidates in an elec-
tion. It is not hard to think of real life mechanisms that may be used to
‘marginally correct’ the perception of the electorate. For example, a presi-
dential candidate who is thought to be too far to the left can choose a more
moderate candidate for vice-president. Similarly, a party which is thought to
be too extreme may decide to choose more moderate candidates or present a
more moderate manifesto. We want to explore a model in which parties have
a reputation for ideological preferences but are able to marginally correct
the perception that the electorate has of the party.

Formally, assume that a candidate with ideal point x can enter at any
point x0 ∈ (x− δ, x+ δ), where δ is small. Let X (δ) =

n
xδ1, x

δ
2, . . . , x

δ
kδ

o
be a political equilibrium for a given δ. We are interested in limδ−→0X (δ),
i.e. we are interested in equilibria that are robust to the possibility of small
changes in the party position. Looking at the equilibrium set for δ −→ 0
means that the assumption that parties are able to modify marginally their
platform is used essentially as an equilibrium selection device; in our analysis
the parties end up entering exactly at the preferred policy point and the

6Osborne and Slivinski show that when c > 0 a necessary condition for the existence
of a two-party equilibrium is c ≥ |s (ε, F )−m|. Thus, even if we allow the cost to be
positive it remains true that the distribution cannot be ‘too asymmetric’ if we want to
ensure that a two-party equilibrium exists.
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possibility of choosing a policy different from the preferred one is never
exploited.

The following proposition provides a full characterization of equilibria of
such equilibria.

Proposition 2 Consider the citizen candidate model with b = c = 0 and
lexicographic preference for not entering, and assume that a candidate posi-
tioned at x can choose the platform in the interval (x− δ, x+ δ). There is
a unique pure strategy Nash equilibrium that survives for each δ > 0. In the
equilibrium only the citizen located at the median enters.

The proposition implies that this version of citizen-candidate model is highly
unsatisfactory when we allow candidates some possibility of choosing their
platform. In the next section we show that by introducing uncertainty on the
aggregate distribution of preferences we get more interesting and realistic
predictions.

3 Aggregate Uncertainty

In this section we consider a model in which candidates decide to enter in
the political competition and decide their platform before some aggregate
uncertainty about the state of political opinion is resolved. This is meant
to capture the idea that building a party and making its platform known
is a lengthy process, so that parties have to make their decisions when the
exact shape of political opinion is not known. It could also be the case that
having exact information regarding political opinions of an electorate is not
achievable.

We model aggregate uncertainty by assuming that there are two possible
distributions of political opinion FL and FR, where FL denotes the ‘left-
wing’ distribution and FR the ‘right-wing’ distribution. Both functions are
strictly increasing and continuous and we denote with mi the median of
distribution F i and assume mL < mR. The actual distribution is FL with
probability θ ∈ (0, 1) and FR with probability 1 − θ. This framework is
common knowledge and decisions about entry have to be taken before the
realization of the true state of nature. The preferences of citizens are as
in the previous section. In particular, we assume that the utility of each
citizen does not depend on the state of nature but only on her ideal point,
the policy chosen and the decision to run.

A political configuration is a collection X = {x1, . . . , xh} of parties run-
ning for election, with x1 < x2 < . . . < xh. Given a political configuration
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and a distribution of political opinion F q, q ∈ {L,R}, the share of the vote
going to party xi is:

vq (xi) = F q

µ
xi + xi+1

2

¶
− F q

µ
xi + xi−1

2

¶
where we use the convention F q

³
xh+xh+1

2

´
= 1 and F q

¡
x1+x0
2

¢
= 0. For a

given distribution F q the set of winners is defined as

W (F q,X) = {xi ∈ X |∀xj 6= xi v
q (xi) ≥ vq (xj)}

Let nq (X) be the cardinality of W (F q,X) when the political configuration
is X. At last, for a given political configuration X, for each xi ∈ X we build
the the following notations and events:

X−xi ≡ {x1, . . . , xi−1, xi+1, . . . , xh} ,

X
¡
x0i
¢ ≡ X−xi ∪ x0i,

X+xj ≡ X ∪ xj
X−xi corresponds to the political configuration that would result should xi
decide to drop out of the electoral race. X (x0i) is the political configuration
that would result should xi decide to change political platform from xi to x0i.
Finally, X+xj is the political configuration which results when a new party
with platform xj enters. Given a political configuration X, the expected
utility of a citizen with ideal point x is:

U (x,X) = −
X

q∈{L,R}
θq

 1

nq (X)

X
xj∈W (F q ,X)

|xj − x|


This leads us to introduce the following equilibrium notion.

Definition 1 A political equilibrium is a political configuration X that
satisfies the following properties:

No Entry For each x /∈ X, U (x,X) ≥ U (x,X+x).

No Exit For each xi ∈ X, U (xi,X) > U (xi,X
−xi).

Robustness For each xi ∈ X, there exists δ > 0 such that U (xi,X) ≥
U (xi,X (x

0
i)) for each x0i ∈ (xi − δ, xi + δ).
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In words, a political equilibrium is a situation in which no citizen wants
to create a new party and each existing party prefers to maintain the cur-
rent platform rather than either disbanding or changing its position slightly.
Notice that we use a strict inequality for the No Exit condition, thus incor-
porating the requirement that a candidate prefers to stay out of the race
when the expected utility of running is equal to the expected utility of not
running.

3.1 Characterization of Political Equilibria

To prove existence of a political equilibrium we will have to add regularity
conditions on the environment. Before dealing with existence, however,
we can obtain results about the characteristics that a political equilibrium
should have. Our first proposition provides some general results.

Proposition 3 If a configuration X = {x1, . . . , xh} is a political equilibrium
then:

1. there are at least two parties, i.e. h ≥ 2, and all parties are located at
different positions;

2. x1 wins with positive probability under one distribution for which xh
loses with probability 1 while xh wins with positive probaility under the
other distribution for which x1 loses with probability 1.

The proposition is intuitive, but it shows how different political equilibria
are when aggregate uncertainty is introduce in the citizen-candidate model.
One party equilibria are ruled out, since at least one of the medians will
not be occupied thus making entry profitable. Extreme parties must win
because otherwise they are better off not entering, letting their votes to go
to the closest party.

The next proposition characterizes two-party equilibria and shows that
the parties must be ‘extremists’.

Proposition 4 Suppose that a two-party political equilibrium X = {xL, xR}
exists. Then:

1. xL wins with probability 1 when the distribution is FL and xR wins
with probability 1 when the distribution is FR.

2. If both parties get a strictly positive share of the vote when losing then
xL < mL and xR > mR.
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The proposition shows that two-party equilibria in the citizen-candidate
model with aggregate uncertainty have some natural properties. First, the
two parties both win with positive probability. Differently from the OS
model however this is not because they both get 50% of the vote. Rather,
what happens is that the left-wing party wins with a clear majority when
the ‘political mood’ is leftist and loses decisively otherwise. Second, the
parties tend to be somewhat extremist. When the left-wing mood prevails
then the policy implemented will be to the left of mL, i.e. to the left of
the ‘leftist median voter’, while the policy implemented under FR will be to
the right of mR. This centrifugal tendency is in stark contrast with models
without aggregate uncertainty or with aggregate uncertainty on the vote
count. Proposition 2 shows that, absent aggregate uncertainty, the citizen-
candidate model gives the same outcome as the classic Downsian model, i.e.
the implementation of the policy preferred by the median voter. Similarly,
when uncertainty is on the exact vote count as in Riviere [14], Eguia [5]
and Fey [9], the parties tend to concentrate around the expected median.
Aggregate uncertainty on the actual political preferences instead a stronger
form of divergence. Not only the policy implemented will move when the
median voter moves, but in fact it will shift further to the right or to the
left than the position of the median voter.

3.2 Existence of Two-party Equilibria

When does a two party equilibrium exist? Call xL the left-wing party and
xR the right-wing party, so that xL < xR. The key condition for {xL, xR}
to be a political equilibrium is that no other citizen can gain from entry.
Entry may occur either at the wings or at the center.

It is clear that the most dangerous entry at the wings is the one just to
the left of xL or just to the right of xR. If a new party is created at xL − ε
it may have the chance of winning the election when the distribution is FL,
while not changing the outcome when the distribution is FR (since in that
case xR would win anyway). Thus, we have to make sure that xL−ε does not
win when the distribution is FL for each ε > 0. This leads to the following
necessary condition for a pair {xL, xR} to be a two-party equilibrium:

FL (xL) ≤ max
½
1− FL

µ
xL + xR

2

¶
, FL

µ
xL + xR

2

¶
− FL (xL)

¾
(1)

where FL (xL) is the share of the vote of a party entering right to the
left of xL, FL

¡
xL+xR
2

¢ − FL (xL) is the share of xL vote after entry and
1− FL

¡
xL+xR
2

¢
is the share of xR vote (which is not affected by entry).
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A similar reasoning on the right side of the political spectrum yields the
necessary condition:

1− FR (xR) ≤ max
½
FR

µ
xL + xR

2

¶
, FR (xR)− FR

µ
xL + xR

2

¶¾
(2)

Consider now potential entry by citizens located at y ∈ (xL, xR). A third
party may enter either to win outright or to defeat the less favored between
xL and xR.

A new party entering at y ∈ (xL, xR) will collect a share of the vote
equal to F q

¡y+xR
2

¢− F q
¡y+xL

2

¢
when the distribution is F q. The share of

xL is F q
¡y+xL

2

¢
and the share of xR is 1− F q

¡y+xR
2

¢
. Let

vq (y;xL, xR) = F q

µ
y + xR
2

¶
−F q

µ
y + xL
2

¶
−max

½
1− F q

µ
y + xR
2

¶
, F q

µ
y + xL
2

¶¾
and define

ΦL (xL, xR) = max
y∈
h
xL,

xL+xR
2

i vL (y;xL, xR) .
If ΦL (xL, xR) > 0 then a citizen entering at some y ∈

¡
xL,

xL+xR
2

¢
can win

the election when the distribution is FL without changing unfavorably the
outcome7 when the distribution is FR. Thus, a necessary condition to avoid
entry at the center is

ΦL (xL, xR) ≤ 0 (3)

Consider next a citizen at x ∈ ¡xL+xR2 , xR
¢
and define

ΦR (xL, xR) = max
y∈
h
xL+xR

2
,xR

i vR (y;xL, xR) .
If ΦR (xL, xR) > 0 then a citizen entering at some y ∈

¡
xL+xR
2 , xR

¢
can win

the election when the distribution is FR without changing unfavorably the
outcome when the distribution is FL. Thus, a necessary condition for no
entry to be profitable is

ΦR (xL, xR) ≤ 0 (4)

The 4 inequalities 1, 2, 3, 4 define a region of possible pairs (xL, xR) which
can be two-party equilibria.

We now make the regularity assumption that ensures the existence of
two-party equilibria.

7Without entry party xR wins under FR. With entry either xR keeps winning or the
winner is in the set {xL, y}. Since xL is closer to y than xR the outcome can only change
favorably for y.
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Assumption 1 (No large peaks) The distributions FL and FR can be
represented by strictly positive densities fL and fR. The densities have the
same support and for each i ∈ {L,R} we have f q (x) < 2fq (y) for each pair
x, y in the support.

Essentially, assumption 1 requires that there are no strong concentration
of voters at some points of the ideological spectrum. Large concentrations
of voters may jeopardize the existence of a two party equilibrium because
an entrant positioned at a large peak can capture a large share of the vote
under at least one distribution. On the other hand, if the preferences are
sufficiently dispersed then it becomes possible to position the two parties in
such a way that no new party can profitably enter.

The proof of existence will be constructive, i.e. we will show how to
compute a two-party equilibrium when Assumption 1 is satisfied.

Define

ΨL (x1, x2) = max

½
FL

µ
x1 + x2
2

¶
− FL (x1) , 1− FL

µ
x1 + x2
2

¶¾
−FL (x1)

(5)

ΨR (x1, x2) = max

½
F (x2)− FR

µ
x1 + x2
2

¶
, FR

µ
x1 + x2
2

¶¾
−(1− F (x2)) .

(6)
We can now prove the following result.

Proposition 5 Suppose that Assumption 1 holds. Then there exists a pair
(x∗1, x∗2) such that

ΨL (x∗1, x
∗
2) = Ψ

R (x∗1, x
∗
2) = 0

and X = {x∗1, x∗2} is a political equilibrium.
The Proposition offers a sufficient condition for the existence of a two-party
equilibrium. We now present two examples. The first shows that a two
party equilibrium may fail to exist. The second shows that a two party
equilibrium may exist even if assumption 1 is violated, thus showing that
the assumption is not necessary.

Example: Non-existence of a two party equilibrium. Consider a
sequence of distributions

©
FL
n

ª+∞
n=10

represented by the densities:

fLn (x) =



2 if x ∈ £0, 18¢
2
3 if x ∈ £18 , 12¢

1−2 1
n

2( 1n+
3
10)

if x ∈ £12 , 45 + 1
n

¢
1
n

1
5
− 1
n

if x ∈ £45 + 1
n , 1

¤
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with median mL
n =

1
2 for each n and a sequence of distributions

©
FR
n

ª+∞
n=10

represented by the densities

fRn (x) =

½ 1
n−1 if x ∈ £0, n−1n ¢
n− 1 if x ∈ £n−1n , 1

¤
.

We will show that for 1
n small enough there is no two party equilibrium,

since at any candidate pair there is profitable a profitable entry.
Assume that for each n there is a two party equilibrium {xnL, xnR}. Start

observing than for each n it must be xnR > 1− 1
n , since otherwise the citizen

located at 1 − 1
n could enter and win the election under FR

n , leaving at
the same time the outcome unchanged under FL

n . This in turn implies
limn−→+∞ xnR = 1.

Also, since the distribution are represented by strictly positive densities,
xnL < 1

2 = mL
ε for each n. We observe that for n large enough any entry

y ≤ 5
8 does not change the outcome under F

R
n . Thus, if entry changes

favorably the outcome under FL
n it will occur. We consider two cases.

Case 1. For each n0 there is n > n0 such that xnL < 3
8 . We will show that if

this is the case there is profitable entry at y = 9
16 .

Take a converging subsequence {xnL} such that xnL < 3
8 for each element

of the subsequence. First notice that since both xnL and xnR are less than

1 we have max
n 9

16
+xnL
2 ,

9
16
+xnR
2

o
≤

9
16
+1

2 < 4
5 . Also, since x

n
L ≥ 0, we have

9
16
+xnL
2 ≥ 9

32 > 1
8 . Thus, entry at y =

9
16 yields the following shares of the

vote when the distribution is FL
n :

vLn (x
n
L) =

1

4
+

Ã
xnL +

9
16

2
− 1
8

!
2

3
=
1

3
xnL +

17

48

vLn (y) =

Ã
1

2
− xnL +

9
16

2

!
2

3
+

Ã
xnR +

9
16

2
− 1
2

!
1− 2 1n

2
¡
1
n +

3
10

¢
vLn (x

n
R) =

Ã
4

5
+
1

n
− xnR +

9
16

2

!
1− 2 1n

2
¡
1
n +

3
10

¢ + 1

n
.

Let x∗L = limn−→+∞ xnL, and observe that it must be x
∗
L ≤ 3

8 . Also observe
that limn−→+∞ xnR = 1. The condition limn−→+∞ vLn (y) > limn−→+∞ vLn (x

n
L)

is therefore Ã
1 + 9

16

2
− 1
2

!
5

3
>
2

3
x∗L +

10

48
. (7)

14



which is satisfied since x∗L ≤ 3
8 .

The condition limn−→+∞ vLn (y) > limn−→+∞ vLn (x
n
L) is

7

48
+

Ã
1 + 9

16

2
− 1
2

!
5

3
−
Ã
4

5
− 1 +

9
16

2

!
5

3
>
1

3
x∗L

which again is satisfied since x∗L ≤ 3
8 .

We conclude that in this case there is always a profitable entry at y = 9
16

for n large enough, contradicting that {xnL, xnR} is a two-party equilibrium
for each n.

Case 2. There is n0 such that for each n > n0 we have xnL ≥ 3
8 . Consider

again a converging subsequence and let x∗L = limn−→+∞ xnL ≥ 3
8 . In this

case consider entry right at the left of xnL, i.e. at y = xnL− 2δn, with δn such
that limn−→+∞ δn = 0. The shares of the vote are

vLn (y) =
1

4
+
2

3

µ
xnL − δn − 1

8

¶
=
2

3
xnL −

2

3
δn +

1

6

vLn (x
n
L) =

2

3

µ
1

2
− (xnL − δn)

¶
+

1− 2 1n
2
¡
1
n +

3
10

¢ µxnR + xnL − 2δn
2

− 1
2

¶

vLn (x
n
R) =

1− 2 1n
2
¡
1
n +

3
10

¢ µ4
5
+
1

n
− xnR + xnL

2
− δn

¶
+
1

n

The condition limn−→+∞ vLn (y) > limn−→+∞ vLn (x
n
L) is

2

3
x∗L +

1

6
>
2

3

µ
1

2
− x∗L

¶
+
5

3

µ
1 + x∗L
2

− 1
2

¶
which is satisfied since x∗L ≥ 3

8 .
The condition limn−→+∞ vLn (y) > limn−→+∞ vLn (x

n
R) is

2

3
x∗L +

1

6
>
5

3

µ
4

5
− 1 + x∗L

2

¶
which again is satisfied since x∗L ≥ 3

8 .
We conclude that for n large enough there cannot be a two-party equi-

librium.
The example illustrates the reason why a two-party equilibrium may fail

to exist. Fior n large the distribution FR
n is very concentrated, imposing

severe constraints on the location of xnR (essentially, it has to be very close

15



to 1). On the other hand, the distribution FL
n has ‘peaks’ in the interval£

0, 18
¤
and

£
1
2 ,
4
5

¤
. This implies that if xnL is ‘large’ (close to

1
2) an entrant on

the left will be able to capture enough votes and win, while if xnL is ‘low’ an
entrant in the center can win.

Example: The ‘no large peaks’ assumption is not necessary. Let
FL be represented by the density function

fL (x) =


1 if x < 1

3
3 if 1

3 ≤ x ≤ 5
12

1
3 if 5

12 < x ≤ 2
3

1 if x > 2
3

with median mL = 7
18 , and FR by

fR (x) =


1 if x < 1

3
1
3 if 1

3 ≤ x ≤ 7
12

3 if 7
12 < x ≤ 2

3
1 if x > 2

3

with median mR = 11
18 . We want to show that there is a two-party equilib-

rium {xL, xR} with xL =
1
3 and xR =

2
3 .

Observe first that the left-wing party wins when the distribution is fL,
and the right-wing party wins when the distribution is fR, so they both want
to enter. To check that no new entry is profitable, consider first entrants at
y < 1

3 . When the distribution is F
R the right-wing party still wins, so entry

has no effect. When the distribution is FL the entrant obtains strictly less
than FL

¡
1
3

¢
= 1

3 . Since the right-wing party still collects
1
3 of the vote, the

entrant loses for sure and either does not change the original outcome or it
causes the right wing party to win. We conclude that entry is not profitable.
An identical reasoning shows that entry at y > 2

3 is not profitable. We are
left with entry in the interval y ∈ ¡13 , 23¢. First observe that no entrant can
win an election under both distributions, since in both cases the left-wing
party and the right-wing party collect at least 13 of the vote. Thus the issue
is whether an entrant can change the result of the election in a way which is
favorable. It is enough to observe that an entrant at 12 does not change the
outcome. Since an entrant at y > 1

2 subtracts fewer votes to the left wing
party, it cannot change favorably the outcome, and similarly for y < 1

2 . The
reasoning for fR is symmetric, so no entry occurs.
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4 Equilibria with More than Two Parties

While equilibria with two parties seem to be quite natural in this model,
there may be other equilibria. In particular we may both have equilibria in
which more than two parties win and equilibria in which only two parties
win but more than two parties enter. In this case the entry of ‘losing’
parties is justified by the fact that entry still changes the set of winners in
a way which is favorable to the losing entrant. However, it is possible to
characterize quite tightly the number of winners in any equilibrium. In fact,
it turns out that either there is a single winner for each distribution or there
are exactly two winners for each distribution. We now make the statement
precise.

For a given political configurationX let nq = |W (F q,X)| the cardinality
of the set of winners under distribution F q, q ∈ {L,R}. When no ambiguity
arises we will write W q =W (F q,X).

Proposition 6 If X = {x1, . . . , xk} is a political equilibrium then,

1. either nL = nR = 1 or nL = nR = 2. No other combinations are
possible in equilibrium and

2. Equilibria in which nL = nR = 2 have WL = {x1, xk−1} and WR =
{x2, xk}.

Essentially, in order to accept tieing under FL party x1 must be unwilling
to move slightly to the right. This happens only of x2 ties under FR, so
that a movement to the right by x1 causes x2 to lose under FR.

Equilibria with nL = nR = 1 tend to be quite robust, in the sense that
by moving slightly the positions of xL and xR or by changing slightly the
distributions FL and FR the equilibrium is preserved. This is not true for
equilibria with nR = nL = 2, which tend instead to be quite fragile. In fact
nR = nL = 2 requires that parties tie; in order to avoid profitable deviations
a very careful balance has to be struck between the expected gain and the
expected loss in case of any deviation. The next proposition illustrates this
point for the case of a three-party equilibrium.

Proposition 7 In a three-party equilibrium {xL, xM , xR} in which all three
parties win with strictly positive probability we must have xM = θxL +
(1− θ)xR with WL = {xL, xM} and WR = {xM , xR}.
To understand the point observe that xM can win under FL by moving
slightly to the left, thus gaining an expected value θ

2 (xM − xL), at the

17



cost of letting xR win with probability 1, thus suffering an expected loss
of (1−θ)2 (xR − xL). Thus

θ (xM − xL) ≤ (1− θ) (xR − xL)

must be true in equilibrium. An identical reasoning with regard to a slight
movement to the right yields the reverse inequality, thus leading to the
conclusion that in equilibrium

(1− θ) (xR − xM) = θ (xM − xL) . (8)

From Proposition 6 we also know that xL and xM must tie under FL, and
xM and xR must tie under under FR. This adds two equalities that have to
be satisfied. Together with (8) we have a system of three equations in three
unknowns. Generically the system will have a finite number of solutions. If
a solution is indeed an equilibrium (i.e. if it can be shown that there is no
incentive to enter) then the positions of the parties are exactly determined,
and slight perturbations are not equilibria.

We now provide two examples of three-party equilibria, one in which all
parties win with positive probability and another in which the centrist party
never wins.

Example. A three-party equilibrium with nR = nL = 2. Assume
θ = 1

2 . The distribution FL has density

fL (x) =

½
5
4 if 0 ≤ x ≤ 4

5
0 if 4

5 < x ≤ 1,

while distribution FR has density

fR (x) =

½
0 if 0 ≤ x < 1

5
5
4 if 1

5 ≤ x ≤ 1.
We now show that the three party political configuration

X =

½
xL =

1

6
, xM =

1

2
, xR =

5

6

¾
is a political equilibrium where all the three parties win with positive prob-
ability.

Notice that

vL (xL) = vL (xL) =
5

12
, vL (xR) =

1

6

18



vR (xL) =
1

6
, vR (xM) = vR (xR) =

5

12

so that xL, xM win under FL and xM , xR win under FR. Since xM =
1
2xR +

1
2xL the existing parties do not want to move. Entry at the left of

xL is unprofitable since it cause xL to lose under FL and does not change
the outcome under FR. A similar argument proves that entry to the right
of xR is not profitable.

Now consider entry on the interval (xL, xM). Observe that any entrant
here receives a vote of 16 under F

L which is always less that the maximum of
what xL or xM receives under FL. Moreover, such an entry does not affect
the share of xR under any distribution. Hence, such an entry never wins.
Notice that any such entry closer to xL either does not affect the outcome
or defeats xL (the ideologically closer party) under FL and ensures victory
for xR (the ideologically farthest party) under FR. So there cannot be any
entry in the interval (xL, xM) which is closer to xL. Now let the entry be
at the center of the interval (xL, xM). Here the outcome remains unaffected
under FL while under FR, xR (the ideologically farthest party) wins with
probability 1. Hence such an entry is not profitable. Now consider an entry
closer to xM . In this case, xL wins for sure under FL and xR wins for sure
under FR. Since xM is the closest party for this entrant, such entry is never
beneficial. By similar arguments, there is no profitable entry in the interval
(xM , xR).

Example. A three-party equilibrium with nR = nL = 1. Let the total
mass of voters be 39

10 . The distribution FL is given by the density

fL =


11 if 0 ≤ x < 1

10
2 if 1

10 ≤ x ≤ 5
10

10 if 5
10 < x ≤ 7

10
0 if 1 ≥ x > 7

10 ,

while FR is given by the density

fR =

½
24
7 if 0 ≤ x < 7

10
5 if 1 ≥ x ≥ 7

10 .

We want to show that the political configuration

X =

½
xL =

2

10
, xM =

4

10
, xR =

8

10

¾
is a political equilibrium where xM never wins.
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First notice the voter indifferent between xL and xM is at 3
10 , the voter

indifferent between xM and xR is at 6
10 and the voter indifferent between xL

and xR is at 5
10 (this is relevant if xM withdraws).

Under FL the shares of the vote are as follows:

vL (xL) =
15

10
vL (xM) =

14

10
vL (xR) =

10

10

so that xL wins. Under FR the shares of the vote are as follows:

vR (xL) =
72

70
vR (xM) =

72

70
vR (xR) =

129

70

so that xR wins. Since there are no ties, no slight movement is profitable.
Furthermore, it is easy to check that if xM exits then xR wins under both
distributions. Since xM is closer to xL, it strictly prefers to stay. The only
thing left to do is to check that no party wants to enter.

Consider first the wings. A party entering right at the left of 2
10 collects

a share of vote equal to 13
10 under F

L, making xM the winner. Under FR

the outcome is unchanged. Thus the only change is unfavorable, and entry
on the left of xL is not profitable.

A party entering right to the right of xR obtains 7070 of the vote when the
distribution is FR, so that in this case the xL and xM win with probability
1
2 , while the outcome does not change under F

L. Again, the only changes
are unfavorable and entry is not profitable.

Consider now entry at the center. First consider the interval
£
2
10 ,

4
10

¤
.

No party entering in this region can change the outcome at FR. Also, no
party entering in this region can win under FL (the total mass of voters in
the interval is 4

10 , less that v
L (xR)). Thus, entry can be profitable only if it

changes the winner under FL in a favorable way, i.e. making sure that xM
wins. Entering at y ∈ £ 210 , 410¤ yields the following shares of the vote:
vL (xL) = y +

11

10
vL (y) =

1

5
vL (xM) =

8

5
− y vL (xR) = 1.

For xM to win it must be y + 11
10 < 8

5 − y, or y < 0.25. But citizens with
ideal point y ∈ (0.2, 0.25) prefer xL to xM .

Next consider the interval
£
4
10 ,

8
10

¤
. First observe that any such entry

will not change the outcome under FL. When the distribution is FR it is
impossible to make sure that xM wins, since xL gets strictly more votes
if y ∈ ¡ 410 , 810¢ wins. Thus the only possible changes that y may induce
are either victory by xL or victory by y. The highest share of the vote is
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obtained through entry just at the left of xR, and it is 59
70 . Thus, outright

victory is impossible.
Consider now citizens with y ∈ (0.4, 0.5). Those citizens prefer xL to

xR and would be happy to enter if this would shift victory to xL under FR.
Clearly xR = 5

10 is the citizen with the best chance to give victory to xL. If
y = 0.5 enters the distribution of votes is

vR (xL) =
72

70
vR (xM) =

36

70
vR (y) =

36

70
vR (xR) =

117

70

so xR still wins. We conclude that no entry is profitable and X is a political
equilibrium.

5 Conclusions

We have shown that the introduction of aggregate uncertainty in the citizen
candidate model has important consequences in terms of characterization of
the equilibrium. In our model parties decide to enter before the distribu-
tion of voters’ preferences is determined. Political opinion may be left-wing
or right-wing, with certain probabilities. The model has some interesting
predictions. Two-party equilibria in such a model have some intriguing char-
acterstics. First, there are no ties: parties win when the political mood is
favorable, and when they do they win decisively. Second, parties tend to
be ‘extremist’: the right wing party is to the right of the median right-wing
voter and the left-wing party is to the left of the left-wing voter.
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Appendix

Proof of Proposition 1. Point 1 follows from Proposition 1 in OS for the
case b = c = 0. Point 2 is a corollary of Proposition 2 in OS for the case
b = c = 0.

Proof of Proposition 2. If the citizen located at i = m enters then no
citizen can enter and change the outcome. Thus, this is a Nash equilibrium
for each δ > 0.

To prove that this is the unique Nash equilibrium, first observe that
no equilibrium with a single candidate not at the median can exist, since
the median citizen could profitably enter. Suppose that at δ > 0 there is
an equilibrium with n > 1 parties, and let xδ1, x

δ
2, . . . , x

δ
n be the positions

occupied by the entering parties. Consider the party with platform xδ1. It
cannot be the case that the party wins with probability 1, since otherwise the
other parties would be better off not entering. On the other hand xδ1 party
must win with positive probability, since otherwise not entering would be a
profitable deviation. But if the party wins with strictly positive probability
at xδ1 then it can win with probability 1 by moving to any point x

δ
1 + ε

such that xδ1 + ε < xδ2 and ε > 0. For ε sufficiently small the deviation
is profitable, contradicting the fact that the proposed configuration is an
equilibrium.

Proof of Proposition 3. To prove point 1 observe that if a single party
enters at location x then there is at least one distribution F q such that
x 6= mq. If the voter with ideal point mq enters then she surely wins the
election when the distribution is F q, which is strictly better than getting x
with probability 1. We conclude that mq would enter, contradicting the fact
that in equilibrium there is only one entrant.

To prove point 2, suppose that x1 never wins. By exiting either the
outcome is unchanged or party x2 is more likely to win. Thus, exiting is
a profitable deviation, a contradiction. This implies that x1 is a winner
with strictly positive probability. The argument for xh is similar. We now
show that if the distribution is FR, then x1 loses with probability 1. So
suppose not. Then x1 wins with positive probability on FL and FR which
is impossible since then x1 will re-position itself arbitrarily small and win
with probability 1 under both distributions, a contradiction.

Proof of Proposition 4. Proposition 3 implies that in any two-party
equilibrium it must be the case that one party wins with probability 1 when
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the distribution is FL and the other wins with probability one when the
distribution is FR. Suppose xL wins under FR and xR wins under FL.
Then xL+xR

2 > mR and xL+xR
2 < mL, contradicting mR > mL. We conclude

that in any two-party equilibrium the ‘natural’ outcome occurs: the left-wing
party wins with probability 1 under the left-wing distribution and loses with
probability 1 under the right-wing distribution.

To prove point 2, suppose xL ≥ mL. Consider a citizen located at
yε = mL− ε. By entering the citizen obtains a share of the vote FL

¡yε+xL
2

¢
when the distribution is FL. Since, by assumption, xR obtains a strictly
positive share of the vote when the distribution is FL and FL is strictly
increasing and continuous we can find ε small enough such that

FL

µ
yε + xL
2

¶
> max

½
FL

µ
xL + xR

2

¶
− FL

µ
yε + xL
2

¶
, 1− FL

µ
xL + xR

2

¶¾
,

where FL
¡
xL+xR
2

¢− FL
¡yε+xL

2

¢
is the share of xL vote under distribution

FL and 1− FL
¡
xL+xR
2

¢
is the share of the xR vote under distribution FL.

Thus, for ε small enough, yε can enter and win with probability 1 under FL.
Furthermore entry does not change the outcome when the distribution is
FR, since the share of xR vote does not change and it remains greater than
50%. Thus, xL ≥ mL cannot be part of an equilibrium because it would
cause entry on the left. Similarly, x2 ≤ mR cannot be part of an equilibrium
because it would cause entry on the right.

Proof of Proposition 5. The proof will be in two steps. In the first step
we show that there is a pair (x∗1, x∗2) such that ΨL (x∗1, x∗2) = ΨR (x∗1, x∗2) = 0,
x∗1 < mL, x∗2 > mR and mL <

x∗1+x
∗
2

2 < mR. This implies that x∗1 wins under
FL and x∗2 wins under FR, so that neither of the two parties wants to exit
or move.

In the second step we show that when there are two parties positioned at
the pair (x∗1, x∗2) with the above described properties there is no profitable
entry.

Step 1. Fix x2 ≥ mR and consider the equation in x1 given by

ΨL (x1, x2) = 0.

The function ΨL (·, x2) is continuous and differentiable almost everywhere in
x1. Furthermore, there exists x1 such that ΨL (x1, x

∗
2) > 0, Ψ

L
¡
mL, x2

¢
< 0

anddΨ
L

dx1
< 1 wherever the derivative is defined. We can therefore conclude
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that a solution exists and it is unique. Let h (x2) be the solution and observe
that h is continuous and h (x2) < mL for each x2.

Next consider the equation

ΨR (h (x2) , x2) = 0.

The function is continuous in x2 since it’s the composition of continuous
functions. Furthermore ΨR

¡
h
¡
mR

¢
,mR

¢
< 0 and there exsits x2 sich that

ΨR (h (x2) , x2) > 0. Thus, there is a point x∗2 such that ΨR (h (x∗2) , x∗2) = 0.
Let now x∗1 = h (x∗2). By construction we haveΨL (x∗1, x∗2) = ΨR (x∗1, x∗2) = 0,
x∗1 < mL, x∗2 > mR.

To complete Step 1 we have to show mL <
x∗1+x

∗
2

2 < mR. Suppose
x∗1+x

∗
2

2 ≤ mL. Then 1 − FL
³
x∗1+x

∗
2

2

´
≥ 1

2 > FL (x∗1), since x∗1 < mL. But

this implies ΨL (x∗1, x∗2) > 0, a contradiction; thus mL <
x∗1+x

∗
2

2 . A similar

argument shows that x∗1+x
∗
2

2 < mR.

Step 2. Consider a pair (x∗1, x∗2) satisfying the properties described in Step
1. We now show that no new party can be profitably formed.

Consider first entry at the left of x∗1, i.e. entry at y = x∗1 − δ for some
δ > 0. In this case the shares of the vote are as follows

vL (x∗1 − δ) = FL

µ
x∗1 −

1

2
δ

¶
, vL (x∗1) = FL

µ
x∗1 + x∗2
2

¶
−FL

µ
x∗1 −

1

2
δ

¶

vL (x∗2) = 1− FL

µ
x∗1 + x∗2
2

¶
.

Since

FL

µ
x∗1 −

1

2
δ

¶
< FL (x∗1) =

max

½
FL

µ
x∗1 + x∗2
2

¶
− FL (x∗1) , 1− FL

µ
x∗1 + x∗2
2

¶¾
≤ max©vL (x∗1) , vL (x∗2)ª

we conclude that x∗1 − δ is defeated when the distribution is FL. When the
distribution is FR the winner remains x∗2, so the entry is not profitable. A
similar reasoning establishes that no entry at the right of x∗2 is profitable.

What remains is to check that no entry in the interval (x∗1, x∗2) is prof-
itable. We first show that no citizen y ∈ (x∗1, x∗2) can enter and win. Under
distribution F q, such an entry yields voting shares

vq (x∗1| y) = FL

µ
x∗1 + y

2

¶
, vq (y| y) = F q

µ
y + x∗2
2

¶
− F q

µ
x∗1 + y

2

¶
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vq (x∗2| y) = 1− FL

µ
y + x∗2
2

¶
.

Consider FL first, and define the function

g (y) = vL (x∗1| y)− vL (y| y) .

Since FL (x∗1) = max
n
F i
³
x∗1+x

∗
2

2

´
− F i (x∗1) , 1− FL

³
x∗1+x

∗
2

2

´o
we have g (x∗1) ≥

0. Furthermore

g0 (y) = fL
µ
x∗1 + y

2

¶
− 1
2
fL
µ
y + x∗2
2

¶
> 0,

where the inequality follows from assumption 1. Thus, for each y ∈ (x∗1, x∗2)
and entrant loses against x∗1 at FL. Furthermore, an entrant cannot change
the outcome either. Define

z (y) = vL (x∗1| y)− vL (x∗2| y) .
Again, by construction we have z (x∗1) ≥ 0 and

z0 (y) =
1

2
fL
µ
x∗1 + y

2

¶
+
1

2
fL
µ
y + x∗2
2

¶
> 0.

Thus, any entry y ∈ (x∗1, x∗2) does not change the outcome under FL. A
similar reasoning establishes that the outcome does not change under FR

either. This completes the proof.

Proof of Proposition 6. Suppose first that min
©
nL, nR

ª
= 1, and with-

out loss of generality assume nR = 1. Proposition 3 part 2 implies that the
unique winner under FR is xk and that under FL party x1 wins with pos-
itive probability. But in equilibrium it must be that x1 is the only winner
at FL, since otherwise it could ensure victory with probability 1 by moving
slightly to the right, without affecting the outcome under FR. We conclude
that min

©
nL, nR

ª
= 1 implies nL = nR = 1.

Thus, suppose that min
©
nL, nR

ª
> 1, i.e. nL ≥ 2 and nR ≥ 2. Again,

by proposition 3 we know that x1 ∈ WL and xk ∈ WR. Next observe that
nL ≥ 2 must imply that x2 ∈ WR. If not, x1 could move slightly to the
right and win with probability 1 (rather than 1

2) under F
L without affecting

the outcome at FR. A similar argument establishes that xk−1 ∈ WL. We
consider now two cases.
Case 1: x2 ∈WL ∩WR. For this to be an equilibrium it must be the case
that x1 does not want to move to the right. If x1 did move to the right,
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then the set of winners at FL would be just x1, while the set of winners at
FR would be WR\ {x2}. Therefore the relevant inequality is

− θ

nL

 X
xq∈WL\{x1}

|xq − x1|
− 1− θ

nR

 X
xq∈WR

|xq − x1|
 ≥

− 1− θ

nR − 1

 X
xq∈WR\{x2}

|xq − x1|
 (9)

which can be written as

(1− θ)

 X
xq∈WR\{x2}

|xq − x1|
 ≥

θ
nR − 1
nL

 X
xq∈WL\{x1}

|xq − x1|
+ (1− θ)

¡
nR − 1¢
nR

 X
xq∈WR

|xq − x1|
 .

Since |xq − x1| ≥ |x2 − x1| for each xq ∈WR this in turn implies

(1− θ)

 X
xq∈WR\{x2}

|xq − x1|
 ≥

θ
nR − 1
nL

 X
xq∈WL\{x1}

|xq − x1|
+ (1− θ)

¡
nR − 1¢ |x2 − x1| . (10)

Consider now a slight movement to the left by x1. This gives victory with
probability 1 to x2 under both distributions. The condition for the deviation
not to be profitable can be written as

− θ

nL

 X
xq∈WL\{x1}

|xq − x1|
−

−1− θ

nR

 X
xq∈WR\{x2}

|xq − x1|
− 1− θ

nR
|x2 − x1| ≥ − |x2 − x1|
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which in turn becomes

¡
nR − (1− θ)

¢ |x2 − x1|− θ
nR

nL

 X
xq∈WL\{x1}

|xq − x1|
 ≥

(1− θ)

 X
xq∈WR\{x2}

|xq − x1|
 . (11)

Combining (10) and (11) we obtain the following a necessary condition for
X to be an equilibrium: ¡

nR − (1− θ)
¢ |x2 − x1| ≥

θ

µ
2nR − 1

nL

¶ X
xq∈WL\{x1}

|xq − x1|
+(1− θ)

¡
nR − 1¢
nR

 X
xq∈WR

|xq − x1|


which in turn, since |xq − x1| ≥ |x2 − x1| for each xq ∈ WR and each xq ∈
WL\x1, implies ¡

nR − (1− θ)
¢ |x2 − x1| ≥

θ

µ
2nR − 1

nL

¶¡
nL − 1¢ |x2 − x1|+ (1− θ)

¡
nR − 1¢ |x2 − x1|

and, after simplifications.

2nR + nL ≥ nRnL + 1

If nR ≥ 2 the inequality can be written as

nL ≤ 2n
R − 1

nR − 1
Thus, nL ≤ 2 if nR ≥ 2. We conclude that if min

©
nL, nR

ª ≥ 2 then in
fact nL = min

©
nL, nR

ª
= 2. However, remember that xk−1 ∈ WL. Since

{x1, x2} ⊂ WL and nL = 2 we conclude xk−1 = x2 and k = 3. Thus, if
x2 ∈ WL ∩ WR then X has exactly three members and WL = {x1, x2},
WR = {x2, x3}.

Case 2: x2 /∈WL. In this case a move to the right by x1 gives victory to x1
under FL and causes x2 to lose under FR, so that the relevant inequality is
still (9). A slight movement to the left by x1 gives victory with probability
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1 to x2 under FR and eliminates x1 from the set of winners under FL. Thus
the relevant inequality is

− θ

nL

 X
xq∈WL\{x1}

|xq − x1|
−1− θ

nR

 X
xq∈WR\{x2}

|xq − x1|
−1− θ

nR
|x2 − x1| ≥

− θ

nL − 1

 X
xq∈WL\{x1}

|xq − x1|
− (1− θ) |x2 − x1|

which can be written as

θ
nR

nL (nL − 1)

 X
xq∈WL\{x1}

|xq − x1|
+ (1− θ)

¡
nR − 1¢ |x2 − x1| ≥

(1− θ)

 X
xq∈WR\{x2}

|xq − x1|
 (12)

Combining (10) and (12) we obtain the following condition

θ
nR

nL (nL − 1)

 X
xq∈WL\{x1}

|xq − x1|
+ (1− θ)

¡
nR − 1¢ |x2 − x1| ≥

θ
nR − 1
nL

 X
xq∈WL\{x1}

|xq − x1|
+ (1− θ)

¡
nR − 1¢ |x2 − x1|

which can be written as

2nR + nL ≥ nRnL + 1

Which is the same as before. Thus, in this case as well we have nL = 2. In
particular, WL = {x1, xk−1}.

Now suppose nR > 2. We know that both x2 and xk belong to WR.
Since x1 cannot win under FR there must be at least 4 parties, that is
k ≥ 4.

Subcase 1.a xk−1 /∈WR. Suppose xk moves slightly to the right. Then
it drops out of the winning set under FR and it gives victory to xk−1 with
probability 1 under FL. The relevant inequality can be written as

(1− θ)

nR

 X
xq∈WR\{xk}

|xq − xk|
 ≥
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θ

¡
nR − 1¢
nL

 X
xq∈WL

|xq − xk|
− θ

¡
nR − 1¢ |xk−1 − xk| . (13)

Moving to the left by xk implies victory to xk with probability 1 under FR

and xk−1 dropping out of WL. In this case the relevant inequality can be
written as

θ

nL − 1

 X
xq∈WL\{xk−1}

|xq − xk|
− θ

nL

 X
xq∈WL

|xq − xk|
 ≥

1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 .

A necessary condition is therefore

θ

nL − 1

 X
xq∈WL\{xk−1}

|xq − xk|
 ≥

θ
nR

nL

 X
xq∈WL

|xq − xk|
− θ

¡
nR − 1¢ |xk−1 − xk| .

Since nL = 2 and WL = {x1, xk−1}, we have

|xk−1 − xk| ≥ |x1 − xk|

which is impossible.
Subcase 1.b xk−1 ∈WL∩WR. Suppose xk moves slightly to the right.

Then it gives victory with probability 1 to xk−1 under both distributions.
The relevant inequality is

− θ

nL

 X
xq∈WL

|xq − xk|
− 1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 ≥ − |xk−1 − xk| .

Using nL = 2 and
P

xq∈WL |xq − xk| = |x1 − xk|+ |xk−1 − xk| we obtain

µ
1− θ

2

¶
|xk−1 − xk|− 1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 ≥ θ

2
|x1 − xk| (14)
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Moving to the left by xk implies victory for xk with probability 1 under FR

and xk−1 dropping out of WL. Thus the relevant inequality is

− θ

nL

 X
xq∈WL

|xq − xk|
− 1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 ≥

− θ

nL − 1

 X
xq∈WL\{xk−1}

|xq − xk|


which again can be written as

θ

2
|x1 − xk| ≥ θ

2
|xk−1 − xk|+ 1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 . (15)

Combining (14) and (15) we obtain that a necessary condition for equilib-
rium is µ

1− θ

2

¶
|xk−1 − xk|− 1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 ≥

θ

2
|xk−1 − xk|+ 1− θ

nR

 X
xq∈WR\{xk}

|xq − xk|
 .

which, after manipulations, yields

|xk−1 − xk| ≥ 2

nR

 X
xq∈WR\{xk}

|xq − xk|
 .

Since |xq − xk| ≥ |xk−1 − xk| for each xq ∈WR\xk this in turn implies

|xk−1 − xk| ≥ 2

nR
¡
nR − 1¢ |xk−1 − xk|

which implies nR ≤ 2.

Proof of Proposition 7. From Proposition 6 we have WL = {xL, xM}
andWR = {xM , xR}. This in turn implies that the following equalities have
to be satisfied:

FL

µ
xL + xM

2

¶
= FL

µ
xM + xR

2

¶
− FL

µ
xL + xM

2

¶
(16)
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1− FR

µ
xM + xR

2

¶
= FR

µ
xM + xR

2

¶
− FR

µ
xL + xM

2

¶
. (17)

Furthermore, if this is indeed an equilibrium it must be the case that no
agent is willing to move. Consider xM first. In the postulated equilibrium
the expected utility of xM is

−θ
2
|xM − xL|− 1− θ

2
|xM − xR| .

Moving slightly to the right ensures victory with probability one under FR

and defeat under FL. Therefore, the following inequality has to be satisfied:

θ |xM − xL| ≥ (1− θ) |xM − xR| (18)

A slight movement to the left ensures victory with probability 1 under FL

and defeat under FR. Thus, the following equality must hold:

(1− θ) |xR − xM | ≥ θ |xM − xL| (19)

Combining (19) and (18) we obtain

(1− θ) |xR − xM | = θ |xM − xL| (20)

Consider now xL. In the postulated equilibrium the expected utility of xL
is

−θ
2
|xL − xM |− 1− θ

2
|xL − xM |− 1− θ

2
|xL − xR|

Moving slightly to the right gives victory with probability one under FL and
gives victory with probability 1 to xR under FR. Therefore the following
inequality has to be satisfied:

(1− θ) |xL − xR| ≥ θ |xL − xM | . (21)

A movement to the left gives victory with probability 1 to xM under both
distributions. Thus in equilibrium it must be

|xL − xM | ≥ (1− θ) |xL − xR| . (22)

Inequalities (21) and (22) imply

|xL − xM | = (1− θ) |xL − xR| . (23)
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At last, consider xR. The expected utility of xR under the proposed equi-
librium is

−θ
2
|xR − xL|− θ

2
|xR − xM |− 1− θ

2
|xR − xM | .

Moving slightly to the right yields victory with probability 1 under both
distributions to xM , so it must be the case that

|xR − xM | ≥ θ |xR − xL| ,

while moving slightly to the left ensures victory under FR and gives victory
under FL to xL. Thus we must have

θ |xR − xL| ≥ |xR − xM |

thus yielding
θ |xR − xL| = |xR − xM | . (24)

Summing up, if an equilibrium with all three parties winning exists the
positions xL, xC and xR must solve the three equations (20), (23) and (24).
The three equations are actually the same, that is

(1− θ)xR + θxL = xM (25)

An equilibrium exists if the system of equations (16), (17) and (25) has a
solution, and if at the solution there is no incentive to enter at the center
(there cannot be incentive to enter at the wings).
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