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Abstract

In this paper, we propose new tests for threshold cointegration in the
autoregressive distributed lag (ADL) model. The indicators in the thresh-
old model are based on either a nonstationary or stationary threshold vari-
able. The cointegrating vector in this paper is not pre-specified. We adopt a
supremum Wald type test to account for the so-called Davies problem. The
asymptotic null distributions of the proposed tests are free of nuisance pa-
rameters. As such, a bootstrap procedure is not required and critical values
of the proposed tests are tabulated. A Monte Carlo experiment shows a good
finite-sample performance of the proposed tests.
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1 Introduction

A large volume of papers document nonlinear and asymmetric adjustments
to a long-run equilibrium in macroeconomic time series. For example, Taylor
and Peel (2000), and Wu and Chen (2001) provide empirical evidence that
deviations from the long-run equilibrium level of exchange rates form a non-
linear adjustment process. The asymmetric dynamics in foreign exchange
rates can be caused by factors such as transaction costs and policy interven-
tion. Actually, there are many important studies that provide evidence of
nonlinear asymmetric behavior in various time series models; see Balke and
Wohar (1998), Sephton (2003), and Michael, Nobay and Peel (1997), among
others.

In this paper, we propose new tests for threshold cointegration in the
single equation framework. Our new tests utilize autoregressive distributed
lag (ADL) models. The properties of the ADL tests differ from the existing
tests using the Engle and Granger (1987, EG) type testing regression, or the
error correction model (ECM). In contrast to the EG or ECM based tests, we
do not test the significance of the coefficient of the cointegrating vector and
cointegrating residuals. Instead, we test the significance of the coefficient
of the lagged dependent variable in an unrestricted fashion. Ericsson and
Mackinnon (2002) refer to this type of cointegration test as an ADL test,
which was initially introduced by Banerjee, Dolado and Mestre (1986, BDM)
and Boswijk (1994, BO). The BDM test involves testing only the coefficient of
the lagged regressand, and requires adding leads of differences of conditioning
variables when strict exogeneity fails. In comparison, the BO test examines
the significance of the coefficients of the lagged regressand as well as the
lagged conditioning variables. In essence, our proposed tests are extensions
of these linear tests to a nonlinear threshold framework. To the best of
our knowledge, no threshold test using ADL models has been previously
considered in the literature. Thus, we wish to contribute to the literature by
filling a gap. We will discuss more details below, but the ADL based threshold
cointegration tests have desirable properties not found in the existing tests
based on the EG or ECM procedures.

Threshold cointegration models employ indicator functions reflecting a
regime change. We consider two different cases in a unified framework where
the indicators are based on either stationary or nonstationary threshold vari-
ables. We provide relevant asymptotic theory for both cases. The difficulty
lies in the treatment of the threshold parameter. Seo (2006) considers a fixed
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finite value as a threshold parameter. Given that the threshold parameter is
a nuisance parameter, Seo’s test is based on the presumption that the prob-
ability of a nonstationary variable being less than the fixed threshold value
approaches zero asymptotically. If so, Seo’s test can be free of the threshold
nuisance parameter in large samples. However, Seo (2006) shows that the
test based on this asymptotic result exhibits serious size distortions. As a re-
sult, he relies on the bootstrap test to improve performance. Our treatment
of the threshold parameter is somewhat different. In order to fully exploit
the information contained in the threshold value even in small samples, we
treat a certain percentile from the empirical distribution of the threshold
variable as a threshold parameter. In other words, our grid search is based
on a range of percentiles rather than a range of fixed values covering the
space of whole real numbers. As a result, the asymptotic distribution of our
tests depends on the parameter space of percentiles, which is restricted to lie
between 0 and 1. In addition, we do not rely on the presumption that the
threshold parameter vanishes in large samples. We perform simulations and
demonstrate no serious size distortions in our new tests, even though we do
not utilize bootstrapping.

Testing for threshold cointegration involves nonstandard inference in the
sense that the threshold parameter (percentile in our case) is not identi-
fied under the null hypothesis. To resolve this so-called Davies problem
(cf. Davies, 1977 and 1987), a Wald statistic is computed over percentiles
of the empirical distribution of the threshold variable. The sup Wald type
test is obtained by searching over the range of the percentile parameter.
The asymptotic distributions of our tests can be expressed as functionals of
(transformed) Brownian motions under the null hypothesis. Moreover, the
distributions of our ADL threshold cointegration tests are free of nuisance
parameters involving long-run endogeneity. This is possible for the BDM
type test when correction for long-run endogeneity is made by adopting the
lead-lag procedure of Saikkonen (1991). However, the BO type test does not
require such corrections. As in the usual cointegration tests, the limit distri-
butions of the tests depend only on the dimension of the regressors, types of
threshold variables and the deterministic terms in the test regression.

Testing for threshold cointegration can be undertaken in either a system
model or a single-equation conditional model. System-based tests, as pursued
by Seo (2006), have the advantage of assuming away weak exogeneity. But
the performance of system-based tests can be improved by utilizing single-
equation tests if weak exogeneity holds (cf. Bowswijk and Franses (1992)
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and Zivot (2000)). We consider only single-equation tests for some reasons.
First, weak exogeneity is found in many applications. In such cases, weak
exogeneity would better be imposed for simpler modeling strategies and re-
duced computational expense. Second, most often a specific cointegration
relationship, such as the demand for money, is implied by economic theory.
As a result, researchers may focus on one aspect of the economic system.
Finally, single-equation tests are easier to compute than system-based tests.
No matrix-oriented package is needed for single-equation tests.

The remainder of the paper will proceed as follows. In Section 2, we
discuss the issues in testing for threshold cointegration. Section 3 discusses
the threshold error-correction model and the weak exogeneity condition. In
Section 4, we formally propose the BDM and BO tests. Their asymptotic null
distributions are given and asymptotic critical values are tabulated. A Monte
Carlo experiment is carried out in Section 5 to illustrate the finite sample
performance of new tests. In Section 6, we provide an empirical example.
Section 7 concludes.

2 Literature and Issues

In dealing with nonlinear long-run equilibrium models, two issues are mixed.
One is whether nonlinearity exists or not, and the other is whether a long-run
relationship exists or not. When Balke and Fomby (1997) initially suggest
a test for threshold cointegration, they consider a two-step approach. In
the first step, they examine the null of no cointegration using the Engle-
Granger linear cointegration test. In the second step, they suggest to test
whether threshold behavior is present. The two-step procedure entails room
for improvement. Clearly, there are good reasons to jointly test for non-
linearity and cointegration. Suppose that nonlinearity exists, but one adopts
a linear cointegration test in the first step. We can expect that the linear
test will hardly reject the null of no cointegration since existing nonlinearity
will lead to loss of power. In light of Perron (1989), ignoring nonlinearity will
make the test biased toward not rejecting the null of nonstationarity. The
linear cointegration test will reject the null of no cointegration only when
linear cointegration is present. As such, the linear cointegration test cannot
distinguish linear cointegration against nonlinear cointegration. Thus, being
unable to reject the null in a linear cointegration test does not necessarily
imply the absence of a long-run relationship; the possibility of nonlinear
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cointegration still remains. It is obvious that allowing for nonlinearity can
increase power. The second step procedure testing for nonlinearity also poses
a problem. The second step of testing for the presence of a threshold effect is
valid only if cointegration holds and the cointegrating vector is known. It is
easy to expect that the null of linearity will be rejected when nonstationarity
holds. This is because such tests will diverge if cointegration does not hold.
Then, rejection of the null does not necessarily mean nonlinearity. Instead, it
can imply nonstationarity or no cointegration. As such, Seo (2006) notes that
tests for a threshold effect in a vector error correction model, as suggested in
Hansen and Seo (2002), are valid only in a cointegrated system. Thus, the
presumption of cointegration seems critical.

The testing procedure developed by Enders and Siklos (2001) is encour-
aging in this regard. They suggest a formal test for the joint hypothesis
of the absence of both nonlinearity and cointegration. They use the Engle-
Granger (1987, EG) type testing regression. In particular, they propose two
different sets of threshold cointegration tests with threshold autoregressive
(TAR) and momentum-TAR (MTAR) adjustments, depending on whether a
threshold variable is non-stationary or stationary. In the TAR model, the in-
dicator function takes the value of 1 if the past residual from a cointegrating
regression exceeds the threshold value and 0 otherwise. The MTAR model
uses the first difference of the cointegrating residuals in the indicator. The
threshold cointegration tests of Enders and Siklos (2001), however, also leave
room for improvement. In particular, their tests entail limitations found in
the Engle-Granger (EG, hereafter) type tests. One well known problem of
the EG procedure is that the test imposes a strong restriction that may not
hold in practice. Although the coefficients in the long-run cointegration re-
gression usually differ from the short-run adjustment coefficients, these two
sets of coefficients are assumed to be equivalent in the EG procedure. Kre-
mers, Ericsson and Dolado (1992) refer to this restriction as a common factor
restriction (CFR). As a consequence of imposing the CFR, the EG type tests
lose power when the signal-noise ratio increases. This same problem carries
over to threshold cointegration tests using the EG type testing procedure.

One may adopt an error correction model (ECM) framework. It is well
known that an ECM cointegration test has a mixture of nonstandard and
standard normal distributions, where the weight induces a nuisance param-
eter problem. Zivot (2000) suggests to estimate the weight parameter in a
nonparameteric fashion. No such test for threshold cointegration has been
suggested in the literature, and a similar procedure could be considered;
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however, the ECM version threshold cointegration test also depends on the
nuisance parameter, which can make things more complicated.

There are clear operating advantages of using the ADL version tests for
threshold cointegration. The ADL based threshold cointegration tests are
free of the CFR restriction problem, and they are free of the nuisance pa-
rameter dependency problem of the ECM based tests. As such, by adopting
the ADL version tests, we can improve upon some limitations found in the
existing tests.

3 The model

3.1 Triangular representation of a threshold vector er-
ror correction model

Consider an (n + 1)-dimensional observed series zt = (yt, x
′
t)
′, t = 1, . . . T,

where the regressand yt is a scalar and T is the number of observations. The
two-regime threshold vector error correction model (TV-ECM) augmented
by a deterministic term is given by

zt = dt + wt (1)

∆wt = Π1wt−1I1t + Π2wt−1I2t + Φ(L)∆wt−1 + εt,

where dt denotes the deterministic term, Φ(L) involves the p-th order poly-
nomial matrices, and the innovation process is εt ∼ iid(0, Eεtε

′
t). For ex-

positional ease, we temporarily assume dt = 0 so that zt = wt. The two
regimes are determined by the indicators I1t and I2t, which are specified be-
low. Most economic theories imply a long-run equilibrium in the relationship
among integrated variables. Hence the cointegrating vector θ = (1,−γ′)′ is
assumed to be regime-invariant. By definition, the error correction term is
θ′zt = yt−γ′xt, which measures the deviation from the long-run relationship.
Let κ1 = (κ11, κ

′
21)

′ and κ2 = (κ12, κ
′
22)

′ be the adjustment speed toward the
long-run equilibrium in the two regimes, then the loading matrices in (1) are
Π1 = κ1θ and Π2 = κ2θ. The point of the TV-ECM model is that the ad-
justment speed is allowed to switch across two regimes. The different speed
can be theoretically attributed to transaction costs and other factors. We
assume that the polynomial term Φ(L) is regime-invariant so as to facilitate
deriving asymptotic results under the null hypothesis. Note that the same
TV-ECM model is considered by Seo (2006), but the indicator functions are
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defined differently in our tests. The following assumption is made regarding
model (1).

Assumption 1. In model (1), Π1 and Π2 have rank 1 or rank 0. If
cointegration exists, the cointegration relationship involves yt (and therefore
xt itself is not cointegrated).

This assumption is common for single-equation cointegration tests, see
Boswijk (1994) and Banerjee et al. (1998). Note that if κ1 = κ2 = 0, then
Π1 and Π2 have rank 0. In that case, zt is not error-correcting and there
is no threshold cointegration between yt and xt. We wish to illustrate the
condition under which the single-equation model of yt, given xt, leads to an
efficient test, without losing the information contained in the system model.
Model (1) can be explicitly written as (assuming dt = 0 for simplicity)

(
∆yt

∆xt

)
=

(
κ11

κ21

)
θ′zt−1I1t+

(
κ12

κ22

)
θ′zt−1I2t+

(
Φ1(L)
Φ2(L)

)
∆zt−1+

(
ε1t

ε2t

)
.

We assume the joint normality of (ε1t, ε
′
2t)

′ ∼ N(0, Σ) for convenience but
this assumption is not essential. We partition Σ conformably into blocks of
Σij. Then the conditional model of ε1t upon ε2t is ε1t = α′ε2t + u1t, where
α = Σ−1

22 Σ21 and var(u1t) = Σ11− Σ12Σ
−1
22 Σ21. Note that u1t is the projection

error and is uncorrelated with ε2t. The above equation has the following
triangular representation of a marginal model for ∆xt, and a conditional
model of ∆yt on ∆xt

∆yt = κ∗11θ
′zt−1I1t + κ∗12θ

′zt−1I2t + α′∆xt + Φ∗
1(L)∆zt−1 + u1t

∆xt = κ21θ
′zt−1I1t + κ22θ

′zt−1I2t + Φ2(L)∆zt−1 + ε2t,

where zt = (yt, x
′
t)
′, κ∗11 = κ11 − α′κ21, κ

∗
12 = κ12 − α′κ22 and Φ∗

1(L) =
Φ1(L) − α′Φ2(L). If the conditioning variable xt is assumed to be weakly
exogenous to θ, or equivalently κ21 = κ22 = 0, then the triangular system
becomes

∆yt = κ11θ
′zt−1I1t + κ12θ

′zt−1I2t + α′∆xt + Φ∗
1(L)∆zt−1 + u1t (2)

∆xt = u2t,

where u2t ≡ Φ2(L)∆zt−1+ε2t by definition. A similar data generating process
(DGP) is considered by Boswijk (1994) in a linear framework. Notice that
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weak exogeneity requires that the error correction term be absent in the
marginal process of ∆xt. As noted previously, weak exogeneity is found in
many empirical works such as Hendry and Ericsson (1991); see also Zivot
(2000) for various examples. It is clear that testing κ1 = κ2 = 0 in (1)
amounts to testing κ11 = κ12 = 0 in the conditional model in (2) under weak
exogeneity. Asymptotic properties of subsequent tests are determined by the
joint error process of ut = (u1t, u

′
2t)

′, for which the following assumption is
made.

Assumption 2. In model (2), the process {ut} is a weakly stationary
process that satisfies the multivariate invariance principle. As T →∞,

T−1/2(u1 + . . . + u[Tr]) ⇒ B(r), 0 < r ≤ 1, (3)

where [x] denotes the nearest integer close to x, and ⇒ denotes the weak con-
vergence of the associated probability measure. B(r) is an (n+1) dimensional
vector Brownian motion with a long-run covariance matrix

Ω =

(
Ω1 Ω12

Ω21 Ω2

)
,

where Ω is positive definite.

Assumption 2 holds under conditions given in Phillips and Durlauf (1986)
and Chan and Wei (1988). Assumption 2 allows for a high degree of temporal
dependence in {ut} . It is instructive to analyze each block of Ω. First, because
u1t is an innovation process relative to {xt, zt−j, j = 1, 2, . . .} , Ω1 = σ2 ≡
Eu2

1t. Second, Ω2 = Eu2tu
′
2t +

∑∞
j=1(Eu2tu

′
2t−j + Eu2t−ju

′
2t), which is a non-

diagonal matrix in general unless Φ2(L) = 0. Finally and most importantly,

Ω12 = Eu1tu
′
2t +

∞∑
j=1

Eu1tu
′
2t−j +

∞∑
j=1

Eu2tu
′
1t−j, (4)

where Eu1tu
′
2t =

∑∞
j=1 Eu1tu

′
2t−j = 0, since εt is serially uncorrelated and u1t

is orthogonal to ε2t. However,
∑∞

j=1 Eu2tu
′
1t−j is not necessarily equal to zero

unless ∆xt is strictly exogenous to u1t. Let C denote a lower triangular matrix
which is the Cholesky decomposition of Ω. We can write B(r) = CW (r),
because CC ′ = Ω. The explicit expression of C is given by

C =

[
c11 c12

0 c22

]
=

[ (
Ω1 − Ω12Ω

−1
2 Ω21

)1/2
Ω12Ω

−1/2
2

0 Ω
1/2
2

]
(5)
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and we let ρ2 = Ω−1
1 Ω12Ω21Ω

−1
2 . By definition, ρ2 measures the long-run

correlation between u1t and u2t. A necessary and sufficient condition for ρ2 =
0 is that Ω12 = 0. As shown by Boswijk (1994), the distribution of the
linear BDM test depends on the nuisance parameter ρ unless strict exogeneity
holds. Note that strict exogeneity is not assumed in this paper. As such, in
particular, a special correction is needed for the BDM test. We will talk more
about this issue later.

3.2 Indicators

In this paper, we consider two different indicator functions that utilize the
change or deviation from the long-run equilibrium as the threshold variable.
The deviation from the long-run equilibrium is obtained from the OLS resid-
ual et in the first stage regression

yt = γ̂′xt + et. (6)

By definition, et = yt − γ̂′xt is the estimated error-correction term. Without
(6) we have to grid search the cointegrating vector as well as the thresh-
old value, which becomes infeasible when the cointegrating vector is high-
dimensional. An efficient algorithm for a low-dimensional grid search is pro-
vided by Hansen and Seo (2002). Notice that θ̂ = (1,−γ̂′)′ will be a super-
consistent estimate of the cointegrating vector if yt and xt are cointegrated.
Otherwise, the above regression (6) is spurious, implying that et = Op(T

1/2)
is nonstationary.

We first consider the following indicator function (which we call ”Indicator
A”)

I1t = I(et−d < e∗t−d(τ)), and I2t = 1− I1t, (7)

where I1t = 1 if et−d < e∗t−d(τ) and I1t = 0 otherwise. In this indicator,
the threshold variable et−d is nonstationary under the null hypothesis of no
cointegration; d ≥ 1 denotes the delay parameter. To focus on our main
issues, d is assumed to be known a priori. We let d = 1 in this paper, but
extension to cases with an unknown delay is straightforward. The threshold
value, denoted by e∗t−d(τ), is the τ -th percentile element of

{
e∗t−d

}
which

is the ranked process of {et−d} in an ascending order. In other words, the
threshold value is given by the τ -th percentile of the empirical distribution
of et−d. This specification is consistent with the case where the threshold
variable is stationary. Thus, we always seek threshold values in the ranked
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series of the threshold variable (it is meaningless to grid search the threshold
outside the empirical domain of threshold variables). See Hansen (1997)
for more discussion on the grid search. It can be shown that the following
equivalence holds

I(et−d < e∗t−d(τ)) = I(σ−1
e T−1/2et−d < σ−1

e T−1/2e∗t−d(τ)) (8)

⇒ I(W (r) < W ∗(τ)),

where σ2
e is the long-run variance of et−d, and W ∗ is the Brownian motion

using a sorted time series. We note that the above expression involves the
threshold percentile parameter τ , which is a nuisance parameter. An indica-
tor function using a nonstationary threshold variable was previously consid-
ered in Seo (2006). However, our treatment of the threshold parameter and
the relevant asymptotic distribution will differ from that in Seo (2006), who
utilized the following result

I(et−d < c) = I(σ−1
e T−1/2et−d < σ−1

e T−1/2c) ⇒ I(W (r) < 0).

Seo (2006) assumed that the threshold parameter c is a fixed value. Under
this assumption, he suggests that the rescaled parameter c∗(= σ−1

e T−1/2c)
will approach zero asymptotically as T →∞. Thus, the threshold parameter
becomes irrelevant in the limiting distribution of his test. In Seo’s suggested
testing procedure, a grid search is again adopted over the threshold value to
obtain the sup Wald statistic. It is also suggested that his supW statistic has
the same asymptotic null distribution as the Wald statistic that is constructed
by fixing the threshold parameter at a certain value. However, as noted in
Seo (2006), his proposed test using the asymptotic distribution does not
perform well in finite samples so he relies on a bootstrap procedure. It is
useful to note that our tests have different asymptotic properties. First, our
tests do not rely on the assumption that the threshold parameter is fixed or
irrelevant in the asymptotic distribution. Thus, we allow for the possibility
that c = Op(T

1/2) when Indicator A is used. Second, the distribution of
a supW type statistic is different from that of a Wald statistic using fixed
threshold parameters. This is so since the supW statistic is an order statistic.
Third, using the asymptotic distribution our tests do not exhibit any serious
size distortions. Lastly, in our testing procedure, all nuisance parameters are
identified and controlled for. As such, our tests do not require bootstrapping.

In our test, the parameter τ can be viewed as a threshold percentile (or
more appropriately, a threshold index) rather than a threshold value. The
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point is, when a threshold variable is nonstationary, it will be desirable not to
restrict the threshold parameter to a fixed value. Treating τ as a percentile
parameter has two theoretical advantages. First, it yields an asymptotic
distribution that depends on the range of τ . The threshold parameter is
estimated via a grid search to obtain a supW type statistic. That means
that the information contained in the grid search is preserved and utilized
in the asymptotic theory. The presence of a threshold percentile parameter
does not pose a problem, since this nuisance parameter appears only under
the alternative and will be controlled using the sup Wald type tests. Second,
τ always lies in a compact set τ ∈ Θ = [τ , τ ], where τ and τ denote the lower
and upper bound of Θ, respectively. Thus, the asymptotic distributions
of our new tests can be derived by applying convergences with respect to
the uniform metric on the compact parameter space Θ. Following Andrews
(1993), we set Θ = [0.15, 0.85] to avoid a divergent asymptotic distribution.

We next consider the ”momentum” type indicator function, which is
based on a stationary threshold variable. A simple way to achieve stationarity
is by taking the first-order difference of the long-run equilibrium error. Then,
we use the first differenced series as the threshold variable. We denote this as
”Indicator B”.2 The MTAR model utilizes the first difference of et−d. Hence,
Indicator B is defined as: I1t = I(∆et−d < ∆e∗t−d(τ)), and Ĩ2t = 1− Ĩ1t where
∆e∗t−d(τ) denotes the τ -th percentile element of the empirical distribution
of ∆et−d. This specification indicates that the regime switching depends on
whether the difference of the error correction term is less than some thresh-
old value. The required asymptotic result is simpler. Following Caner and
Hansen (2001), we can have

I(∆et−d < ∆e∗t−d(τ)) ⇒ I(U(r) < τ), (9)

where U(r) is a univariate uniform process on [0, 1]. Since the true DGP
is seldom known, both Indicators A and B are possible. These two indi-
cators were previously considered in Enders and Siklos (2001) for their EG
type tests. But they did not consider a percentile threshold parameter and
required asymptotic theory differs from ours.

2The word ”momentum” stems from the terminology of Enders and Granger (1998).
Enders and Granger (1998) considered this case for unit root tests, and Caner and Hansen
(2001) provide the asymptotic theory for unit root tests with this indicator function. We
follow Enders and Siklos (2001), who considered the momentum threshold autoregressive
(MTAR) model for threshold cointegration tests.
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Note that we focus on a two-regime model in this paper. However, the
basic model can be easily extended to multiple-regimes, including especially
the so-called band threshold models of Balke and Fomby (1997), by redefining
the indicators. So far, selecting the number of regimes can be guided by a
priori information and economic sense. There is no formal test for the null of
k regimes against k + 1 regimes in a threshold model. Nevertheless, readers
should be aware that the grid search will increase exponentially as the number
of regimes increases.

4 Single-equation tests for threshold cointe-

gration

We can consider possibly two versions of single-equation tests; one approach
uses a pre-specified cointegrating vector (e.g. Kremers et al. (1992) and
Zivot (2000)), and the other is based on the estimated cointegrating vector.
The former approach is proper if the cointegrating vector is known a priori
and may yield better power than the latter approach, since the cointegrating
vector does not need to be estimated. The extension of single-equation tests
with a pre-specified cointegrating vector to threshold models is also consid-
ered by Li (2006). However, in many empirical applications the cointegrating
vector is unknown. In this case, the tests proposed in this paper are more
appealing. We extend two linear single-equation tests to test for threshold
cointegration. The first—the BO type test, is due to Boswijk (1994), who
suggests testing the coefficients of both yt−1 and xt−1 in the test regression.
In contrast, the second-the BDM type test of Banerjee et al. (1998), is con-
cerned only with the coefficient of yt−1. Banerjee et al. (1998) suggest adding
leads of ∆xt to their regression so that the asymptotic results are valid in
the absence of strict exogeneity.

4.1 Threshold BO test

The threshold BO test is based on the regression in (2) augmented by the
deterministic term dt, which is usually defined as dt = 1 or dt = (1, t)′

∆yt = π′dt + B′
1zt−1I1t + B′

2zt−1I2t + c′qt + u1t, (10)

where zt−1 = (yt−1, x
′
t−1)

′, and qt = (∆x′t, ∆z′t−1, . . . , ∆z′t−p)
′. Note that qt

is stationary by design. Assuming weak exogeneity, we have B1 = κ11θ,
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B2 = κ12θ, and θ = (1,−γ′)′, which is unknown. The indicators in (10) can
be either I1t = I(et−d < e∗t−d(τ)) (Indicator A), or I1t = I(∆et−d < ∆e∗t−d(τ))
(Indicator B), and I2t = 1− I1t, where et is the residual of (6). As usual, u1t

is uncorrelated with qt. We want to test the null hypothesis of no threshold
cointegration

H0 : B1 = B2 = 0,

against the alternative hypothesis H1: H0 is not true. The test of the
above hypothesis is nonstandard in the sense that the parameter τ is not
identified under H0. Hypothesis testing involving the nuisance parameters
identified only under the alternative was first investigated by Davies (1977
and 1987). Further discussion of the Davies problem can be found in An-
drews and Ploberger (1994) and Hansen (1996). The Davies problem is
resolved by first constructing a test statistic for each τ , then the final test
is a continuous functional of the sequence of statistics. More specifically, let
B̂(τ) = (B̂1(τ)′, B̂2(τ)′)′ be the OLS estimate of B = (B′

1, B
′
2)
′ for given τ in

(10), and V̂ (B̂(τ)) be the OLS variance estimate. We denote the test statis-
tics based on Indicator A as BO,BOµ and BOt, which are associated with
dt = 0, dt = 1 and dt = (1, t)′ respectively. We denote the corresponding test

statistics based on Indicator B as B̃O, B̃Oµ and B̃Ot, respectively. They are
specified as follows

BO, BOµ, BOt, B̃O, B̃Oµ, B̃Ot ≡ sup
τ∈Θ

B̂(τ)′V̂ (B̂(τ))−1B̂(τ), (11)

where Θ denotes the parameter space of τ . Because I1t and I2t are orthogonal,
it follows that the test statistics in (11) can be rewritten as

sup
τ∈Θ

B̂1(τ)′V̂ (B̂1(τ))−1B̂1(τ) + B̂2(τ)′V̂ (B̂2(τ))−1B̂2(τ).

That is, the test for a given threshold can be calculated as the sum of two
separate Wald statistics for Bj = 0, j = 1, 2. The functional supremum
is used by (11) for its simplicity. Tests involving functionals, such as the
exponential test or average test, are proposed by Andrews and Ploberger
(1994). In large samples, these tests may be superior due to their greater
power. Since the sample size of a macroeconomic research topic can be
relatively small, we stick with the simple supremum test. As is common in
the literature, we assume that the deterministic term dt is absent under the
null hypothesis, but the asymptotic distribution of the tests is invariant to
the coefficients of dt in the DGP.
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We introduce some additional notation to succinctly express our asymp-
totic results. Let P (r) and G(r) be two stochastic processes. First, the con-
tinuous residual process RP,G(r) is defined as the residual of the continuous

time regression P (r) = φ̂
′
G(r) + RP,G(r), where φ̂ solves minφ

∫
||P (r) −

φ′G(r)||2dr. Explicitly,

RP,G(r) = P (r)−
(∫

G(r)P (r)dr

)′ (∫
G(r)G(r)′dr

)−1

G(r).

We let W3(r) = RW1,W2(r), where W = (W1, W
′
2)
′ is a standard (n + 1)

dimensional vector Brownian motion. Let W ∗
3 be the sorted W3 and U(r) be

a uniform process on [0, 1]. Then, we define

A(H) = sup
τ∈Θ

2∑
j=1

∫
H · IjdW1

(∫
H · IjH

′
)−1 ∫

H · IjdW1

Ã(H) = sup
τ∈Θ

2∑
j=1

∫
H · ĨjdW1

(∫
H · ĨjH

′
)−1 ∫

H · ĨjdW1

where I1 = I(W3 < W ∗
3 (τ)), I2 = I(W3 ≥ W ∗

3 (τ)) and Ĩ1 = I(U < τ), Ĩ2 =
I(U ≥ τ) for given τ . The parameter space Θ is set as Θ = [0.15, 0.85].
The limit distribution of the threshold BO test (11) under H0 is given in the
following theorem.

Theorem 1 Let W (r) = (W1(r),W2(r)
′)′ be an (n + 1)-dimensional stan-

dard vector Brownian motion. Also, we let Wµ(r) = RW,1(r), and Wt(r) =
RW,(1,r)(r). Under the null hypothesis H0 and Assumptions 1-2, as T →∞

BO ⇒ A(W ), BOµ ⇒ A(Wµ), BOt ⇒ A(Wt)

B̃O ⇒ Ã(W ), B̃Oµ ⇒ Ã(Wµ), B̃Ot ⇒ Ã(Wt).

Some remarks here are helpful. Most importantly, there is no nuisance
parameter in the null distributions of the BO threshold cointegration tests.
In other words, all distributions are similar. Thus, critical values can be
tabulated for different cases when the asymptotic null distributions depend
on (i) the dimension of W (r), which is the same as the dimension of zt,
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(ii) different types of indicators, and (iii) the deterministic term dt. Note
that the distributions are free of any other nuisance parameters. Actually,
our asymptotic result is consistent with the result in Theorem 1 of Boswijk
(1994) showing that all other nuisance parameters are controlled for, while
we additionally take into account of the presence of threshold parameters
and their indicators.

4.2 Threshold BDM test

The threshold BDM test is an alternative way to test the same null hypoth-
esis of no threshold cointegration. Recall that in (10), B1 = κ11θ, B2 = κ12θ
and θ = (1,−γ′)′ is the cointegrating vector. Therefore, testing B1 = B2 = 0
is equivalent to testing κ11 = κ12 = 0, which is the BDM test. Therefore, one
difference between the two tests is that the BDM test is concerned with the
coefficients of the subvector of zt−1. In order to discuss the asymptotic dis-
tribution of the threshold BDM test, the following notations are introduced.

Definition 1. Let ξt be an (n + 1) dimensional random walk pro-
cess such that ∆ξt ∼ iid(0, I). Define an (n + 1) dimensional V 1(r, τ),

V 2(r, τ), Ṽ 1(r, τ) and Ṽ 2(r, τ) as stochastic processes on [0, 1]2, such that

T−1/2ξt−1I1t ⇒ V 1(r, τ), T−1/2ξt−1I2t ⇒ V 2(r, τ), T−1/2ξt−1Ĩ1t ⇒ Ṽ 1(r, τ)

and T−1/2ξt−1Ĩ2t ⇒ Ṽ 2(r, τ).

Here, V processes can be treated as stochastic limits of the product of a
random walk process and an indicator. They are not necessarily a vector ver-
sion of the two-parameter Brownian motion introduced by Caner and Hansen
(2001), who assume a stationary threshold variable. Thus, our asymptotic
distribution differs from that of Caner and Hansen (2001). The following
Corollary is to explain why a BDM test based on regression (10) is limited
in practice.

Corollary 1. Use Indicator A and consider the squared OLS t-ratios of
t2(κ̂11(τ)) and t2(κ̂12(τ)) in regression (10), where κ̂11(τ) and κ̂12(τ) are
estimated coefficients of yt−1 in each of two regimes, respectively, for given
τ . Then, under H0 and Assumptions 1-2 , as T →∞

t2(κ̂1j(τ)) ⇒
∫

QjdW ρ

(∫
QjQ

′
j

)−1 ∫
QjdW ρ, j = 1, 2,
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where Qj(r) = RV j
1 ,V j

2
(r), V j

1 and V j
2 are the first and remaining columns of

V j(r, τ) j = 1, 2, respectively, and W ρ = (1− ρ2)1/2W1 + ρW2.

Corollary 1 shows that distributions of t2(κ̂11) and t2(κ̂12) involve the
nuisance parameter ρ2, which is the long-run cross correlation between u1t

and u2t. Hence in general these distributions are not similar. There are
two approaches to conduct inference based on squared t-ratios. The first
approach is to tabulate critical values of t2(κ̂11) and t2(κ̂12) for each ρ, as
in Hansen (1995). This approach requires a kernel-based semiparametric
estimation of ρ for the real data, and then comparing the test statistic to
the corresponding critical value. The second approach is to follow Saikkonen
(1991), and include leads of ∆xt to diagonalize u1t and u2t. Our threshold
BDM test will adopt the second approach. But, each has limitations. The
first approach requires choosing the bandwidth and proper kernels, while the
second entails selection of the lead length.

Therefore, we base our threshold BDM test on (10) augmented with leads
of ∆xt as follows

∆yt = π′dt +κ11yt−1I1t +κ12yt−1I2t + b11xt−1I1t + b12xt−1I2t + c∗′q∗t +vt, (12)

where q∗t = (∆x′t, ∆x′t+1, . . . , ∆x′t+m, ∆z′t−1, . . . , ∆z′t−p)
′. Notice that com-

pared to (10), q∗t in (12) adds leads of ∆xt. Following Saikkonen (1991),
the maximal value m for the lead terms are chosen such that the new error
process vt in (12) satisfies Evtu2t+j = 0 for all j and the long-run correlation
between vt and u2t becomes zero. If we can define the long-run covariance
matrix Ω∗ for (vt, u2t)

′ similarly as in (5), then Ω∗ is diagonal.
Intuitively, vt can be viewed as the projection error of u1t upon leads of

u2t. Thus, by construction, no effect of leads of u2t remains in vt. Only a
finite number of leads are needed, because the joint stationarity of u1t and
u2t implies that the effect of u2t+j on u1t dies out quickly as j increases.
Hence, it is reasonable to assume that Eu1tu2t+j ' 0 for j > q and q is big
enough. In practice, choosing q can be guided by the extent to which û1t−j is
correlated with u2t = ∆xt, where ût is the residual of (10). If the correlation
is weak, then q = 1 or 2 is recommended. Our objective is to test the null
hypothesis of no cointegration

H∗
0 : κ11 = κ12 = 0,

from (12) against the alternative hypothesis that H∗
1 : H∗

0 is not true. Let
κ̂(τ) = (κ̂11(τ), κ̂12(τ))′ be the OLS estimate of κ = (κ11, κ12)

′ for given
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τ in (12) and V̂ (κ̂(τ)) be the OLS variance estimate. The test statistics
BDM,BDMµ and BDMt are based on Indicator A; they are associated with

dt = 0, dt = 1 and dt = (1, t)′, respectively. The test statistics B̃DM, B̃DMµ

and B̃DM t are based on Indicator B in a similar manner. These statistics
are specified as follows

BDM, BDMµ, BDMt, B̃DM, B̃DMµ, B̃DM t ≡ sup
τ∈Θ

κ̂(τ)′V̂ (κ̂(τ))−1κ̂(τ).

(13)
Because I1t is orthogonal to I2t, the test statistics in (13) can be equivalently
calculated as

sup
τ∈Θ

t2(κ̂11(τ)) + t2(κ̂12(τ)),

where t2(κ̂11(τ)) and t2(κ̂12(τ)) are defined in Corollary 1.
The asymptotic distributions of the threshold BDM tests can be derived

using a partitioned regression. We decompose the expressions in Defini-
tion 1 into V j(r, τ) = (V j

1 , V j′
2 ) and Ṽ j(r, τ) = (Ṽ j

1 , Ṽ j′
2 ) j = 1, 2. We also

let V jµ(r) = (V jµ
1 , V jµ′

2 )′, V jt(r) = (V jt
1 , V jt′

2 )′, Ṽ jµ(r) = (Ṽ jµ
1 , Ṽ jµ′

2 )′, and

Ṽ jt(r) = (Ṽ jt
1 , Ṽ jt′

2 )′. Then, we express these terms as V jµ(r) = RV j ,1(r),

V jt(r) = RV j ,(1,r)(r), Ṽ jµ(r) = RṼ j ,1(r), and Ṽ jt(r) = RṼ j ,(1,r)(r), respec-
tively. We utilize the following functional

A1(H1, H2) = sup
τ∈Θ

2∑
j=1

∫
HjdW1

(∫
HjH

′
j

)−1 ∫
HjdW1.

Theorem 2 Under the null hypothesis H∗
0 and Assumptions 1-2, we have as

T →∞

BDM ⇒ A1(Q1, Q2), BDMµ ⇒ A1(Q
µ
1 , Q

µ
2), BDMt ⇒ A1(Q

t
1, Q

t
2)

B̃DM ⇒ A1(Q̃1, Q̃2), B̃DMµ ⇒ A1(Q̃
µ
1 , Q̃

µ
2 ), B̃DM t ⇒ A1(Q̃

t
1, Q̃

t
2),

where Qj(r) = RV j
1 ,V j

2
(r), Qµ

j (r) = RV jµ
1 ,V jµ

2
(r), Qt

j(r) = RV jt
1 ,V jt

2
(r), Q̃j(r) =

RṼ j
1 ,Ṽ j

2
(r), Q̃µ

j (r) = RṼ jµ
1 ,Ṽ jµ

2
(r) and Q̃t

j(r) = RṼ jt
1 ,Ṽ jt

2
(r) for j = 1, 2.

Theorem 2 shows that after including leads of ∆xt, the distributions of
the threshold BDM tests are asymptotically similar. In the next section,
we will investigate finite-sample performance of the BO and BDM threshold
cointegration tests.
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5 Monte Carlo Experiment

Asymptotic critical values of the threshold BO and BDM threshold cointe-
gration tests are reported in Table 1. These critical values are computed
by simulating the asymptotic distributions of the relevant statistics given in
Theorem 1 and Theorem 2. We use the asymptotic sample size T = 1, 000
with 10, 000 replications. The parameter space is set as Θ = [0.15, 0.85].
n denotes the number of conditioning variables in Table 1. In general, the
critical values with dt 6= 0 are greater than those with dt = 0.

[Insert Table 1]

In Table 2, we report the sizes of the BO and BDM threshold cointegration
tests for finite samples. The DGP is given by (1) with dt = 0, n = 1,
Π1 = Π2 = 0 (so the null hypothesis holds), and εt ∼ iid(0, Eεtε

′
t). Explicitly,

we consider

∆yt = φ1∆yt−1 + ε1t (14)

∆xt = φ2∆yt−1 + φ3∆xt−1 + ε2t

where Eε1tε2t = ρ1 and Eε2
1t = Eε2

2t = 1. For DGP (14), we can show that

u1t ≡ ε1t − ρ1ε2t (15)

u2t ≡ ∆xt = (1− φ3L)−1
[
φ2(1− φ1L)−1ε1t−1 + ε2t

]
.

It is clear from (15) that φ1 and φ2 are the key parameters yielding a nonzero
value of ρ. Hence, we let φ3 = 0 in (14) without a loss of generality. From (15),
it follows that Eu1tε1t = 1− ρ2

1 and Eu1tε2t = 0. Some algebra demonstrates
that Eu1tu2t−j = 0 for all j ≥ 0, Eu2tu1t−1 = φ2(1 − ρ2

1) and Eu2tu1t−j =
φ2φ

j−1
1 (1−ρ2

1) for all j ≥ 2. Then it follows from (4) that Ω12 = φ2(1−ρ2
1)/φ1.

We next let Θdgp = (ρ1, φ2, φ1). Similarly, Ω2 can be shown to be a more
intricate function of Θdgp. However, for our purposes, it suffices to know that
ρ is a function of Θdgp. If we can show that test sizes are invariant to the
parameters in Θdgp, which is the determinant of ρ, then it is safe to say
that the sizes are invariant to ρ. Hansen (1995) examines this issue from a
different perspective and estimates ρ, using kernel-based methods, for each
of his simulated data sets. From this procedure, he can show whether the
sizes are invariant to the estimated value of ρ, say, ρ̂. While it seems difficult
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to directly control ρ with any DGP, we can still control the value of ρ with
our DGP indirectly, but in an effective and time efficient manner.

The BO and BDM tests are based on the testing regression (10) and

(12) respectively. Thus, we use different indicators for the B̃O and B̃DM
tests but the testing regression remains the same. For completeness, we also
consider the BDMN and ˜BDMN tests, which are supposedly the BDM
and B̃DM tests but without using the lead of ∆xt in (12). We expect that

the BDMN and ˜BDMN tests can suffer size distortions due to a lack of
correction for violating strict exogeneity and we examine how serious the
problem will be. We let p = 1 in (10) and p = q = 1 in (12). Moreover, we
set dt = 0 in (10) and (12), since a similar pattern is found for the models
with nonzero deterministic terms. We consider different combinations of ρ1,
φ2 and φ1. Note that Ω12 = 0 (so ρ = 0) when φ2 = 0, φ1 = 0.4. In the other
two cases using (φ2 = 0.5, φ1 = 0.1) and (φ2 = 0.5, φ1 = 0.4), we have ρ 6= 0.
In all simulations, we use the 5% nominal size with 2,000 replications.

[Insert Table 2]

We can summarize our main findings as follows. First, no obvious size
distortion is found in our simulations using different combinations of ρ1, φ2

and φ1. This result is consistent with Theorems 1 and 2, which state that our
test distributions are free of ρ. Second, the size distortion in finite samples
is alleviated (at a slow speed) as the sample size increases. Overall, our
new tests tend to over-reject the null only mildly. Third, contrary to our
initial expectation, excluding the leads of ∆xt in (12) does not introduce any
serious size distortions in the BDM tests. This fact indicates that the BDM
type tests omitting lead terms do not suffer much in the threshold models
we consider with our DGPs. Fourth, in terms of size distortions, there is
no apparent difference between the BO and BDM tests or the tests using
different indicators. Finally, the size distortions of our proposed tests are
much smaller than in Seo’s test (see Table 2 in Seo, 2006). Note that this is
so even though we do not adopt a bootstrap method.

The power of our proposed tests is investigated using the following DGP

∆yt = −0.1εt−1I1t + kεt−1I2t + φ1∆yt−1 + ε1t (16)

∆xt = k2εt−1I1t + k3εt−1I2t + φ2∆yt−1 + ε2t,

where εt−1 = yt−1−γ′xt−1, I1t = I(εt−1 < c) and I12 = 1− I1t. Some remarks
here about the DGP (16) will be helpful. First, by assuming that ∆xt is not
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error-correcting (so k2 = k3 = 0) in (16), we impose weak exogeneity of xt

in the cointegrating vector. Second, we consider only the case where regime
switching is based on the level (rather than the difference) of εt. Accordingly,
only the BO and BDM type tests are considered in power simulations. In
order to focus on the key parameters of τ , γ and k, we let Eε1tε2t = ρ1 = 0.7
and φ2 = 0.5 in (16). Note that γ and k measure the long-run relationship
among variables and the short-run adjustment speed, respectively.

We have compared the power of our tests to the tests of Enders and Siklos
(2001), and denote their tests as the ES test in Table 3. To evaluate the ES
test in our context, we first run the regression (6) and obtain the residual et.
Next, we run the regression

∆et = ϕ1et−1I1t + ϕ2et−1I2t + ϕ3∆et−1 + vt, (17)

where I1t = I(et−1 < c) and I2t = 1 − I1t. Then, the ES test is given as
sup F (τ), where F (τ) is the F statistic for ϕ1 = ϕ2 = 0 in (17) for a given τ .
We define τ as the percentile parameter of the rescaled threshold value of c.
Since the ES test is the extended Engle-Granger residual-based cointegration
test in the threshold framework, in principle, the ES test can lose power when
it implicitly imposes the common factor restriction as discussed in Section
2.

[Insert Table 3]

From Table 3, we first observe that the power of our tests increases as
the sample size increases, implying that the proposed tests are consistent.
Second, it is clear that the BO and BDM tests dominate the ES test. In
addition, there is some weak evidence that the BO test outperforms the
BDM test. This comes as no surprise, considering that the BDM test requires
adding additional regressors in the form of leads of ∆xt. We can say that the
BO test is based on a more parsimonious model. As a result, we expect that
the power gain of the BO test over the BDM test will increase as the long-
run correlation increases (because more leads of ∆xt are needed for the BDM
test in this case). Third, when c changes from 0 to 2, the power of all tests
worsens. This is because more observations cluster into one regime when τ
increases. In other words, it is less likely for any regime switching to occur
as c increases. As c increases, less information is left in the other regime for
estimation and inference. Fourth, it is clear that the power depends on φ1, γ
and k. That is, even though a power function is not explicitly derived, we can
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see that the power is an increasing function of φ1 and a decreasing function
of γ and k. The reason for a negative relationship between the power and k is
intuitive-the deviation from the null hypothesis increases as k decreases, so
the power should also increase. Note that there is no threshold effect when
γ = 0.2 and k = −0.1. This explains why the power is invariant to changes
in the threshold values. In short, the BO test performs better than any of
other tests in terms of size and power. Given this, we recommend using the
BO threshold cointegration test for empirical research.

6 Application Example

In this section, we implement and examine an application of our new ADL
threshold cointegration tests. We are interested in the relationship between
U.S. consumption (y2) and GDP (y1). A textbook model implies the following
long-run relationship at time t :

y2t = kyα
1te

εt , (0 < k < 1),

where k is the marginal propensity to consume, α is a parameter and εt

captures other determinants of consumption. Taking logs and rearranging
gives

ln y2t − α ln y1t = ln k + εt.

This equation states that if εt is stationary, and both consumption and GDP
are nonstationary, then the cointegrating vector for consumption and GDP
is given by (1,−α). We are interested in examining whether the short-run
adjustment speed toward the long-run equilibrium is the same regardless of
the previous state of the system. The above equation says little about the
short-run dynamics. However, the short-run dynamics can be represented by
the threshold ADL model. We will estimate the model using quarterly U.S.
data obtained from Economic Data–FRED at the web site of the Federal
Reserve Bank of St. Louis. The data that we employ covers the time period
1947:Q1–2006:Q1, which consists of 237 observations and is not seasonally
adjusted. Figure 1 plots the time series of the natural log of consumption
and GDP. Both time series appear nonstationary, but tend to move together;
thus, the deviation between the two series is likely to converge to a constant
number and suggests cointegration.

In this paper, we want to relax the assumption of a pre-specified cointe-
grating vector and consider estimating the cointegrating vector. Therefore,
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the threshold ADL model is appropriate and threshold cointegration tests are
suggested. First the estimated cointegrating vector is given by the following
regression

ln y2t − 1.0239 ln y1t = −0.6213 + et.

Note that the coefficient of ln y1t is slightly different from 1. Figure 1 also
plots the estimated error correction term given by et = ln y2t−1.0239 ln y1t +
0.6213. From Figure 1, it is safe to conclude that the error correction term is
free of a deterministic trend. Two indicators, Indicator A with It = I(et−1 <

e∗t−1(τ)) and Indicator B with Ĩt = I(∆et−1 < ∆e∗t−1(τ)), are considered.
Specifically, the following threshold ADL regression is fitted:

∆y2t = β0 + β1y2t−1It + β2y2t−1(1− It) + β3y1t−1It + β4y1t−1(1− It)+

β5∆y1t + β6∆y1t−1 + β7∆y2t−1 + et,

where It can be replaced with Ĩt if Indicator B is adopted. Most important,
the adjustment speeds toward the long-run equilibrium, as measured by βi

(i = 1, 2, 3, 4), are allowed to vary in the threshold model. Thus, the conven-
tional ADL model is a special case of the threshold ADL model when β1 = β2

and β3 = β4. Notice that only one lag of ∆y1t and ∆y2t is included in the
regression following the the parsimony principle. Here, the lag-selection is
guided by the partial autocorrelation function (PACF) (not presented in the
paper) of ∆y2t. In our case, the PACF indicates little serial correlation after
one lag. Readers should keep in the mind, however, that the final results
depend on the selection of RHS variables. We wish to point out that ∆y1t

must be present as a regressor, since the single-equation model is conditioned
on y1t.

To focus on the main issues, we assume here that the regime switching de-
pends on et−1. In a more general model, the threshold variable could be et−d,
where the delay lag d is estimated by a grid search. The threshold variable
et−1 is nonstationary under the null hypothesis of no threshold cointegration.
The threshold value reported in Table 4 is obtained by maximizing the Wald
statistic (threshold Boswijk) for the null

H0 : β1 = β2 = β3 = β4 = 0

between the lower and upper 15% percentiles of the sorted series et−1. Alter-
natively, the threshold value can be determined by minimizing the residual
sum of squares. The diagram at the bottom of Figure 1 plots the residual
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sum of squares of the threshold ADL regression against the various values of
the error correction term. It is clear that the diagram is roughly V-shaped,
with possible multiple threshold values. However, for simplicity, we focus
here on the threshold ADL model with two regimes.

Table 4 reports the estimation results of the conditional threshold ADL
regression based on Indicator A (Panel A) and Indicator B (Panel B), re-
spectively. To check the robustness of our results, we also provide estimation
results for the model without lagged values of ∆y1t and ∆y2t. Note that
looking at the case with Indicator A, the threshold value determined by
maximizing the Wald statistics is the same as the one (displayed in Figure 1)
minimizing RSS. Table 4 also reports the ADL threshold cointegration tests
for the following two null hypotheses

H ′
0 : β1 = β2 = 0; BDM Test,

H ′′
0 : β1 = β2 = β3 = β4 = 0; BO Test.

It is clear from Table 4 that the null hypothesis of no threshold cointegration
is rejected in all tests. Therefore, we confirm that consumption and GDP
are threshold-cointegrated with a cointegrating vector of (1, -1.0239).

7 Summary and Concluding Remarks

In this paper, we develop new threshold cointegration tests based on ADL
type models. Our tests extend the linear ADL cointegration tests previously
suggested by Boswijk (1994) and Banerjee et al. (1986). Our ADL threshold
cointegration tests are new in the literature and perform reasonably well.
Using our new threshold cointegration tests, we can resolve or improve upon
some problems found in the existing tests. In particular, our threshold coin-
tegration ADL tests are not subject to the size distortions or power loss found
in some existing tests. Our new tests are free of the nuisance parameters that
generate problems in the ECM or EG based tests.

We provide the relevant asymptotic theory for two different cases in a
unified framework where the indicator function is represented by either a
nonstationary or stationary threshold variable. We treat the threshold pa-
rameter, which is not identified under the null, as a percentile parameter.
The resulting sup Wald statistics are obtained by searching over the range
between 0 and 1, regardless of different types of indicators. Our tests are
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asymptotic based tests that do not rely on the bootstrap procedure. Since
our tests are single equation based tests, the condition of weak exogeneity is
warranted. It seems plausible, however, that our findings might generalize to
a system of equations. This topic remains as a subject for future research.
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Table 1. Critical values of proposed ADL tests for threshold cointegration

BO BOµ BOt

n 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 20.96 16.60 14.66 24.00 19.04 16.90 26.98 22.07 19.57
2 27.53 22.56 19.95 30.09 24.67 22.11 32.97 27.47 24.74
3 32.09 27.06 24.48 34.75 29.35 26.50 38.03 32.36 29.34
4 37.36 31.58 28.97 39.93 33.88 30.99 42.86 36.53 33.79
5 42.33 36.33 33.41 44.29 38.10 35.24 48.36 41.19 37.71

BDM BDMµ BDMt

n 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 17.15 12.97 11.15 20.71 15.96 13.63 23.79 18.96 16.62
2 20.68 16.01 13.76 23.72 18.66 16.24 26.95 21.57 19.01
3 22.44 17.90 15.42 26.34 20.91 18.32 29.61 23.98 21.31
4 25.28 20.08 17.43 29.01 23.34 20.43 31.94 26.02 22.90
5 27.47 21.91 19.33 31.01 25.00 22.19 34.77 27.93 24.88

B̃O B̃Oµ B̃Ot

n 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 19.98 15.65 13.65 23.88 18.66 16.36 26.15 21.44 19.17
2 26.01 21.08 18.68 28.66 23.43 20.90 31.56 26.21 23.60
3 29.90 25.34 22.68 33.16 27.91 25.15 36.70 30.67 27.61
4 34.99 29.58 26.78 38.34 32.26 29.36 40.78 34.98 32.01
5 40.12 33.99 31.03 43.29 36.43 33.40 45.15 39.23 36.03

B̃DM B̃DMµ B̃DM t

n 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 15.95 11.92 9.94 20.07 15.03 12.90 22.92 18.12 15.87
2 18.57 13.88 11.66 21.46 16.84 14.53 24.89 19.76 17.18
3 20.04 15.40 13.15 23.77 18.49 16.09 27.23 21.41 18.68
4 22.50 17.17 14.65 25.63 20.37 17.54 28.29 23.00 20.08
5 24.34 19.06 16.55 27.81 21.57 18.87 30.71 24.53 21.51
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Table 2. Sizes of ADL tests for threshold cointegration at the 5% level

Test T ρ1 φ2 = 0, φ1 = 0.4 φ2 = 0.5, φ1 = 0.1 φ2 = 0.5, φ1 = 0.4
BO 100 0.3 0.066 0.070 0.085

0.7 0.069 0.075 0.075
250 0.3 0.072 0.061 0.063

0.7 0.065 0.059 0.063

B̃O 100 0.3 0.077 0.082 0.073
0.7 0.066 0.073 0.064

250 0.3 0.076 0.065 0.066
0.7 0.075 0.067 0.059

BDM 100 0.3 0.067 0.061 0.075
0.7 0.060 0.077 0.065

250 0.3 0.065 0.063 0.068
0.7 0.061 0.054 0.072

B̃DM 100 0.3 0.057 0.068 0.059
0.7 0.055 0.060 0.054

250 0.3 0.058 0.060 0.057
0.7 0.065 0.052 0.049

BDMN 100 0.3 0.069 0.068 0.081
0.7 0.059 0.077 0.070

250 0.3 0.068 0.066 0.068
0.7 0.058 0.053 0.068

˜BDMN 100 0.3 0.059 0.070 0.058
0.7 0.053 0.055 0.050

250 0.3 0.056 0.063 0.052
0.7 0.062 0.051 0.049

Note: The threshold BO and B̃O tests, which are defined in (11), are
testing B1 = B2 = 0 in (10). The threshold BDM and B̃DM tests, defined

in (13), are testing κ11 = κ12 = 0 in (12). The BDMN and ˜BDMN tests

are the same as the BDM and B̃DM tests, except that the lead terms of
∆xt are omitted in (12).
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Table 3. Powers of ADL and ES tests for threshold cointegration at the
5% level

c Test T φ1 γ = 0.2, k = −0.1 γ = 0.2, k = −0.3 γ = 0.7, k = −0.3
0.0 BO 100 0.1 0.283 0.558 0.333

0.4 0.579 0.848 0.464
250 0.1 0.893 0.995 0.924

0.4 0.996 0.100 0.987
BDM 100 0.1 0.205 0.471 0.342

0.4 0.396 0.742 0.451
250 0.1 0.730 0.973 0.897

0.4 0.951 0.999 0.967
ES 100 0.1 0.037 0.103 0.122

0.4 0.043 0.189 0.120
250 0.1 0.216 0.610 0.388

0.4 0.383 0.764 0.289

2.0 BO 100 0.1 0.283 0.473 0.201
0.4 0.579 0.822 0.337

250 0.1 0.893 0.911 0.782
0.4 0.966 0.100 0.963

BDM 100 0.1 0.205 0.368 0.212
0.4 0.396 0.690 0.321

250 0.1 0.730 0.953 0.750
0.4 0.951 0.997 0.906

ES 100 0.1 0.037 0.061 0.085
0.4 0.043 0.140 0.098

250 0.1 0.216 0.528 0.281
0.4 0.383 0.752 0.216

Note: The threshold BO and B̃O tests, which are defined in (11), are
testing B1 = B2 = 0 in (10). The threshold BDM and B̃DM tests, defined

in (13), are testing κ11 = κ12 = 0 in (12). The BDMN and ˜BDMN tests

are the same as the BDM and B̃DM tests, except that the lead terms of
∆xt are omitted in (12).

30



Table 4: Conditional threshold ADL model of consumption

Panel A
β0 β1 β2 β3 β4 β5 β6 β7 e∗(τ) τ

Coefficients -0.02 -0.03 -0.03 0.03 0.03 0.61 -0.42 0.12 -0.00269 0.52
t−ratio -0.94 -1.05 -1.23 1.11 1.25 9.39 -3.32 1.87

BO 59.62∗ BDM 35.01∗

β0 β1 β2 β3 β4 β5 e∗(τ) τ
Coefficients -0.02 -0.03 -0.03 0.03 0.03 0.53 -0.00336 0.53
t−ratio -0.75 -0.99 -0.93 1.01 0.93 7.08

BO 33.56∗ BDM 21.49∗

Panel B
β0 β1 β2 β3 β4 β5 β6 β7 ∆e∗(τ)

Coefficients -0.05 -0.10 -0.09 0.10 0.09 0.63 -0.34 0.07 -0.00688
t−ratio -3.22 -3.39 -3.80 3.45 3.79 9.40 -2.91 0.83

BO 41.72∗ BDM 30.17∗

β0 β1 β2 β3 β4 β5 ∆e∗(τ)
Coefficients -0.03 -0.06 -0.05 0.07 0.05 0.54 0.00541
t−ratio -2.05 -2.83 -2.06 2.81 2.10 7.50

BO 45.65∗ BDM 41.55∗

Note: ∗ significant at 5% level.
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Figure 1:
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Appendix

Proof of Theorem 1
For given τ , we have I1t = 1(et−d < e∗t−d(τ)), I2t = 1 − I1t. We let X1 =

(z1I11, . . . , z
′
T I1T )′, X2 = (z′1I21, . . . , z

′
T I2T )′, ∆y = (∆y1, . . . , ∆yT )′, and q =

(q′1, . . . , q
′
T )′, and define the projection matrix M = I − q(q′q)−1q′. It follows

that B̂j = (X ′
jMXj)

−1(X ′
jM∆y) for j = 1, 2 and V̂ (B̂j) = σ̂2(X ′

jMXj)
−1,

where σ̂2 = T−1(∆y−X1B̂1−X2B̂2)
′M(∆y−X1B̂1−X2B̂2) is the estimate

of Var(u1t). Following Lemma 1 of Boswijk (1994), we can express the vector
zt under H0 as

zt = ΓSt + ηt,

where Γ is a nonsingular matrix, St =
∑t

j=1 ut with ut = (u1t, u
′
2t)

′ and
ηt is a stationary process. Basically, this is a modification of the Granger
representation theorem. By Lemma 2.2(c) of Phillips and Ouliaris (1990) and
the continuous mapping theorem (CMT), we can show that I1t ⇒ I(W3 <
W ∗

3 (τ)). By Assumption 2 and the CMT, it follows from Kurtz and Protter
(1991) that

(
T−2

T∑
t=1

St−1S
′
t−1I1t, T

−1

T∑
t=1

St−1u1tI1t

)
⇒

(∫
BI1B

′,
∫

BI1dB1

)

(
T−2

T∑
t=1

St−1S
′
t−1I2t, T

−1

T∑
t=1

St−1u1tI2t

)
⇒

(∫
BI2B

′,
∫

BI2dB1

)
,

where I1 = I(W3 < W ∗
3 (τ)), I2 = I(W3 ≥ W ∗

3 (τ)). Also,
(

T−1
∑T

t=1 St−1qtIjt, T−1
∑T

t=1 qtq
′
t, T−1/2

∑T
t=1 wtu1t,

T−3/2
∑T

t=1 St−1ηtIjt, T−1/2
∑T

r=1 ηtq
′
t, T−1/2

∑T
r=1 ηtu1t

)
= Op(1).

for j = 1, 2. Let S ′−j = (S ′1Ijt, . . . , S
′
T IjT ) and η′−j = (η′1Ijt, . . . , η

′
T IjT ) for

j = 1, 2 and v′ = (u11, . . . , u1T ). It follows

T−2X ′
1MX1 = T−2(ΓS ′−1MS−1Γ

′ + η′1Mη1) = T−2ΓS ′−1MS−1Γ
′ + op(1)

= T−2Γ(S ′−1S−1 − S ′−1q(q
′q)q′S−1)Γ

′ = T−2ΓS ′−1S−1Γ
′ + op(1)

= Γ

∫
B · 11B

′drΓ′ + op(1).

Similarly, we can show that T−2X ′
2MX2 = Γ

∫
BI1B

′drΓ′+op(1), T−1X ′
1Mv =

Γ

∫
BI1dB1 + op(1) and T−1X ′

2Mv = Γ

∫
BI2dB1 + op(1). Let C denote a
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lower triangular matrix which is the Cholesky decomposition of Ω. So we can
rewrite B(r) = CW (r). The asymptotic distribution of B̂j can be written as

TB̂1 ⇒
(

ΓC

∫
WI1W

′drC ′Γ′
)−1

ΓC

∫
WI1dW1σ (18)

TB̂2 ⇒
(

ΓC

∫
WI2W

′drC ′Γ′
)−1

ΓC

∫
WI2dW1σ,

and their covariances converge weakly to

T 2V̂ (B̂1) ⇒ σ2

(
ΓC

∫
WI1W

′drC ′Γ′
)−1

(19)

T 2V̂ (B̂2) ⇒ σ2

(
ΓC

∫
WI2W

′drC ′Γ′
)−1

.

Combining these results yields for a given τ

BO(τ) ⇒
2∑

j=1

∫
WIjdW1

(∫
WIjW

′
)−1 ∫

WIjdW1.

The final claim follows after applying CMT to BO(τ) over Θ. The proof for
the case where an intercept or a time trend is added is analogous. For the
tests based on Indicator B, note that I1t ⇒ I(U < τ) by Caner and Hansen
(2001). The procedure for the proof of these tests is the same as that for
tests based on Indicator A, except that the expression for I1t is changed.

Proof of Corollary 2
First note that under the null hypothesis, T−1/2zt−1 ⇒ ΓCW (r). Then

by Definition 1, it is clear that

T−1/2zt−1I1t ⇒ ΓCV 1 ≡ (Z1
1,Z

1′
2 ), T−1/2zt−1I2t ⇒ ΓCV 2 ≡ Z2. (20)

Since 11t is orthogonal to 12t, simple algebra leads to

RZ1
1 ,(Z1

2 ,Z2)(r) = RZ1
1 ,Z1

2
(r). (21)

Then a partitioned regression based on (18), (19) and (21) implies that

t2(κ̂11) ⇒ σ̂−2

∫
RZ1

1 ,Z1
2
(r)dB1

(∫
RZ1

1 ,Z1
2
(r)RZ1

1 ,Z1
2
(r)′

)−1 ∫
RZ1

1 ,Z1
2
(r)dB1.

(22)
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Given (20) and the fact that Γ = (Γij) and C = (cij) are both lower triangular
(cf. Boswijk 1994 lemma 1), we can show that

RZ1
1 ,Z1

2
(r) = Γ11c11Q1(r),

where Q1(r) = RV 1
1 ,V 1

2
(r). Substitute RZ1

1 ,Z1
2
(r) = Γ11c11Q1(r) into (22), and

we have

t2(κ̂11) ⇒ σ̂−2

∫
Q1dB1

(∫
Q1Q

′
1

)−1 ∫
Q1dB1,

where the factor Γ11c11 cancels out in the end. The final result follows
by recalling that B(r) = CW (r), where C is given in (5). Thus B1(r) =
c11W1(r) + c12W2(r), B2(r) = c22W2(r) and

σ̂−1dB1 = σ̂−1c11dW1(r) + σ̂−1c12dW2(r)

= (1− ρ2)1/2dW1 + ρdW2 + op(1)

since ρ2 = Ω12Ω21/Ω2Ω1 and σ̂2 = Ω1 +op(1). The proof for t2(κ̂12) is similar.

Proof of Theorem 3
Define u∗t = (vt, u

′
2t)

′, where vt is the error in (12) and ∆xt = u2t. The
multiple invariance principle leads to

T−1/2(u∗1 + . . . + u∗[Tr]) ⇒ B∗(r), 0 < r ≤ 1,

where B∗(r) = (B∗
1(r), B

∗
2(r)

′)′ = C∗W (r) and

C∗ =

[
c11 0
0 c22

]
=

[
Ω∗

1
1/2 0

0 Ω
1/2
2

]
.

Notice that in this case the Cholesky decomposition for the long-run variance
of B∗(r) is diagonal by construction, because Evtu2t+j = 0 for any j. Using
similar arguments adopted in proving Corollary 2, we can show that for
j = 1, 2,

t2(κ̂1j) ⇒ σ̂−2
v

∫
QjdB∗

1

(∫
QjQ

′
j

)−1 ∫
QjdB∗

1 .

Because the matrix C∗ is diagonal, and σ̂2
v = Ω∗

1 + op(1), it follows that

σ̂−1
v dB∗

1 = σ̂−1
v Ω∗

1
1/2dW1(r) = dW1(r) + op(1),

as claimed. The proof for other cases where dt 6= 0 and different indicators
are used is analogous.
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