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Abstract

This paper studies identi�cation of latent utility functions in multiple discrete choice models in which

there may be endogenous explanatory variables, that is explanatory variables that are not restricted to be

distributed independently of the unobserved determinants of latent utilities. The model does not employ

large support, special regressor or control function restrictions, indeed it is silent about the process

delivering values of endogenous explanatory variables and in this respect it is incomplete. Instead the

model employs instrumental variable restrictions requiring the existence of instrumental variables which

are excluded from latent utilities and distributed independently of the unobserved components of utilities.

We show that the model delivers set, not point, identi�cation of the latent utility functions and

we characterize sharp bounds on those functions. We develop easy-to-compute outer regions which in

parametric models require little more calculation than what is involved in a conventional maximum like-

lihood analysis. The results are illustrated using a model which is essentially the parametric conditional

logit model of McFadden (1974) but with potentially endogenous explanatory variables and instrumental

variable restrictions.

The method employed has wide applicability and for the �rst time brings instrumental variable

methods to bear on structural models in which there are multiple unobservables in a structural equation.
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1 Introduction

This paper develops results on the identi�cation of features of models of choice amongst multiple, discrete,

unordered alternatives. The model we employ allows for the possibility that explanatory variables are

endogenous.

Our model uses the random utility maximising framework set down in the ground-breaking work of

McFadden (1974). Individuals choose one of y = 1; : : : ;M alternatives, achieving utility Uy = uy(X) + Vy if

choice y is made. Individuals observe the utility achieved from all choices and select the alternative delivering

maximum utility. The econometrician observes the choice made, a realization of a discrete random variable

Y , and the explanatory variables, X. There is interest in the functions (u1; : : : ; uM ) � u and the distribution

of V � (V1; : : : ; VM ) and functionals of these features.

In the set up considered by McFadden the explanatory variables X and unobservable utility shifters V

are independently distributed. Our model relaxes this restriction, permitting X to be endogenous. We bring

a classical instrumental variable (IV) restriction on board, requiring that there exist observed variables Z

such that Z and V are independently distributed and Z is excluded from the utility functions u1; : : : ; uM .

We show that this model is set identifying and we characterize the identi�ed set of utility functions and

distributions of unobservable utility shifters.

In McFadden (1974) the distribution of V is fully speci�ed. The elements of V are independently and

identically distributed Type 1 extreme value variates leading to the conditional logit model. Since that

seminal contribution there have been many less restrictive, parametric speci�cations, as in for example the

conditional probit model of Hausman and Wise (1978) which gives V a multivariate normal distribution,

and the nested logit model of Domencich and McFadden (1975)1 in which V has a Generalized Extreme

Value distribution. Our results apply in all these cases and our development is quite general, delivering

characterizations of the identi�ed set even in the absence of parametric restrictions. In some illustrative

calculations we work with McFadden�s speci�cation which produces a conditional logit model when the

explanatory variables are restricted to be exogenous.

A novel feature of our results is that they demonstrate that instrumental variable models can have identi-

fying power in cases in which there are multiple unobservables appearing in structural functions. Hitherto IV

models have required unobservables to be scalar - see for example Newey and Powell (2003) Chernozhukov

and Hansen (2005), and Chesher (2010). A general approach to identifcation in models with multiple unob-

1See also Ben-Akiva (1973) and McFadden (1978).
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servables is set out in Chesher, Rosen, and Smolinski (2011).

The IV model studied here is unrestrictive relative to many other models of multiple discrete choice per-

mitting endogeneity that have been used till now. In our IV model there is almost no restriction placed on

the process generating the potentially endogenous explanatory variables.2 In this sense the model is incom-

plete. Because of this incompleteness the model is partially identifying but generally not point identifying.

The model does not employ large support conditions or special regressors and there need not be alternative-

speci�c covariates. Explanatory variables and instrumental variables can be continuous or discrete. Because

our model�s restrictions are weak the model can be credibly applied in a wide variety of situations.

Here is a brief outline of the main results of the paper.

1.1 The main results

The set of utility functions and distributions identi�ed by our IV multiple discrete choice model is charac-

terized by a system of inequalities which it is convenient to express in terms of a conditional containment

functional associated with a set-valued random variable, or random set, T (Y;X;u). A realization of one of

these random sets, T (y; x;u), is the set of values of di¤erences in random utility shifters, Wy � Vy � VM ,

y 2 f1; : : : ;M � 1g that leads to a particular realization y of the choice variable Y when the explanatory

variables X take the value x and the utility functions u govern choices. The conditional containment func-

tional Pr[T (Y;X;u) � Sjz] gives the probability conditional on instrumental variable Z = z that T (Y;X;u)

is a subset of the set S.

We show that a utility function u and a distribution PW of utility shifter di¤erences,W � (W1; : : :WM�1)

lies in the identi�ed set associated with conditional distributions of Y and X given Z, F 0Y XjZ , if and only if

PW (S) � Pr0[T (Y;X;u) � Sjz]

for almost every z in the support of Z and all compact sets S � RM�1. Here Pr0 indicates probabilities

taken with respect to F 0Y XjZ and PW (S) is the probability mass the distribution PW assigns to the set S.

By the �identi�ed set�we mean the set comprising all and only admissible duples (u; PW ) which deliver the

distributions F 0Y XjZ for all z in the support of Z.
3

We show that the only sets S that need to be considered when judging whether a particular pair (u; PW )

are in the identi�ed set are unions of the sets on the support of T (Y;X;u) which are connected. When X is

2All that is required is that the support of X and V are independent.
3Some authors term this the �sharp identi�ed set�.
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continuous there remains an in�nite number of inequalities but when X is discrete there is a �nite number

and it can be computationally feasible to obtain a complete characterization of the identi�ed set.

We develop characterizations of two outer regions within which the identi�ed set is guaranteed to lie.

One of these is particularly simple to calculate when X is discrete. Consider a model which speci�es P �W

as the distribution of W and speci�es p(y; x;u�; P �W ) as the probability Y = y when X = x and the utility

functions u take the value u�. For example in the classical conditional logit model with utility functions

u�y(x) = x
0��y

the probabilities involved are the following well known expressions.

p(y; x;u�; P �W ) =
exp(x0��y)

1 +
PM�1

y0=1 exp(x
0��y0)

.

The outer region associated with conditional distributions of Y and X given Z, F 0Y XjZ , contains all utility

functions u� and distributions P �W such that the inequalities:

p(y; x;u�; P �W ) � max
z2Z

fPr0[Y = y ^X = xjZ = z]g

hold for all y and x in the support of Y and X. Here Z denotes the support of the instrumental variables.

Any researcher in a position to calculate a parametric likelihood function when discrete explanatory variables

X are exogenous is able to calculate our outer region directly. Moreover in the conditional logit case the

outer region is convex which simpli�es computation.

1.2 Related results

The prior literature on multinomial choice models is substantial. Only a small subset of this literature

has allowed for endogeneity. An important early contribution is in Matzkin (1993) where it is shown that,

if the unobservable components of utility from the di¤erent alternatives are identically distributed and

conditionally independent of one another, and if there is an alternative-speci�c special regressor with large

support, then the latent utility functions can be nonparametrically identi�ed. Lewbel (2000) shows how a

special regressor can be used to achieve point-identi�cation in various qualitative response models, including

multinomial choice models where the joint distribution of the error and regressors is independent of the
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special regressors conditional on the instrument. Some recent papers have provided su¢ cient conditions for

point-identi�cation under alternative assumptions. This includes control function approaches as in Petrin and

Train (2010) and Fox and Gandhi (2009), the latter focusing on identi�cation in a fully nonparametric setting,

and also making use of large support conditions. Chiappori and Komunjer (2009) provide an alternative

route to nonparametric identi�cation, relying on conditional independence and completeness conditions quite

distinct from the marginal independence restrictions imposed here. In limited dependent variables models

with simultaneity, Matzkin (2009) builds on the results of Matzkin (2008) to provide conditions for the

nonparametric identi�cation of structural functions and the distribution of unobserved heterogeneity when

there are exogenous regressors with large support.

Also related is the recent literature on the estimation of demand for di¤erentiated products by means of

random coe¢ cient discrete-choice models pioneered by Berry, Levinsohn, and Pakes (1995). This approach

uses the insight of Berry (1994) to allow for the endogeneity of prices. The setting in which this method

is applied di¤ers from ours in that demand estimation is carried out on market-level data that consists

of a large number of markets. Berry and Haile (2010) and Berry and Haile (2009) establish nonparametric

identi�cation under completeness conditions in such settings with the presence of special regressors, the latter

when micro-level data is also available, as in Berry, Levinsohn, and Pakes (2004). The endogenous variable

in these models is product price, which varies across alternatives and markets, but not across individuals.

Our model allows endogenous variables to di¤er across individuals, and as previously stated requires neither

variables that di¤er across alternatives nor covariates with large support.

There are a number of antecedents to our work that partially identify quantities of interest in other

models of discrete choice. Chesher (2010) and Chesher and Smolinski (2010) study ordered discrete outcome

models with endogeneity. Those papers provide set identi�cation results for a single equation speci�cation for

an ordered choice, which includes endogenous covariates. As done there, we remain agnostic as to the joint

determination of covariates and instruments, but here we focus on choices from unordered sets of alternatives.

This di¤ers fundamentally by requiring a utility speci�cation for each of the alternatives. Each utility function

admits an unobservable, and as a consequence the present context is one in which there are multiple sources

of unobserved heterogeneity, rather than a single source. Other research on partially-identifying models of

multinomial response includes Manski (2007) and Beresteanu, Molchanov, and Molinari (2009), although the

mechanism by which partial identi�cation is obtained in these papers is quite distinct. Manski (2007) provides

bounds on predicted choice probabilities from counterfactual choice sets using variation in choices made by

individuals who previously faced heterogeneous choice sets. Beresteanu, Molchanov, and Molinari (2009)
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provide sharp bounds on the parameters of multinomial response model with interval data on regressors,

demonstrating general identi�cation results derived from random set theory.

1.3 Plan of the paper

The paper proceeds as follows. Section 2 de�nes the instrumental variable multiple discrete choice model

with which we work throughout.

Section 3 develops our main identi�cation results. In Section 3.1 we provide a theorem that characterizes

the identi�ed set of structural functions applicable in both parametric and nonparametric models. In Section

3.2 we provide a theorem that de�nes a minimal system of �core determining�inequalities that are all that

need to be considered when calculating the identi�ed set. In Section 3.3 we provide two easy-to-compute

outer regions for the case in which the explanatory variables are discrete.

In Section 4 the results are illustrated for three-choice models, core determining inequalities are listed

for the binary explanatory variable case and identi�ed sets and outer regions are calculated and displayed

for an instrumental variable version of the conditional logit model studied by McFadden (1974). Section 5

concludes.

2 The Instrumental Variable Model

An individual makes one choice from M alternatives obtaining utility Uy from alternative y as follows.

Uy = uy (X) + Vy y 2 Y � f1; 2; : : : ;Mg (2.1)

This additively separable form is used throughout. De�ne U � (U1; : : : UM ) and V � (V1; :::; VM ).

The elements of X are observed variables with support X . The elements of V are unobservable variables

that capture heterogeneity in tastes across individuals. The model restricts V to be continuously distributed

with positive density with respect to Lebesgue measure on all of RM .

The elements of Z are observable variables which the IV model excludes from the utility functions and

requires to be jointly independently distributed with V .

Individuals are utility maximisers, observing the value of U and choosing the alternative that gives the
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highest utility as follows. For each y 2 Y,

Y = y ,

8><>: 8y0 2 Y, y0 < y: Uy � Uy0 ,

8y0 2 Y, y0 > y: Uy > Uy0 .

9>=>; . (2.2)

This formulation breaks ties between maximal utilities by settling on the alternative with the highest index.

Since V is absolutely continuously distributed this is not a substantive restriction because ties will occur

with probability zero. Thus simpler representations that ignore ties and specify the chosen alternative as

the strict utility maximizer will be used in what follows.

Since the optimal selection of alternatives is entirely determined by utility di¤erences the normalization:

uM (x) = 0 for all x 2 X can be employed. The model is comprised of the following restrictions.

Restriction A1: (Y;X;Z; V ) are de�ned on a probability space (
;F ;P), where F contains the Borel Sets

on 
, the support of Y is a �nite set Y � f1; 2; :::;Mg, and the support of (V;X;Z) is RM �X �Z.

Restriction A2: For each value z 2 Z there is a proper conditional distribution of (Y;X) given Z = z,

F 0Y XjZ(y; xjz). The associated conditional distribution of X given Z = z is denoted by F 0XjZ(xjz). The

conditional distributions F 0Y XjZ(y; xjz) and F 0XjZ(xjz) are identi�ed by the sampling process.

Restriction A3: Given (V;X;Z), Y is determined uniquely by (2.1) and (2.2).

Restriction A4: V is a continuously distributed random variable on RM with everywhere positive density

with respect to Lebesgue measure and with distribution belonging to a speci�ed family of distributions PV .

Restriction A5: The utility functions u = fu1; :::; uM�1g belong to a speci�ed family of functions U .

Restriction A6: V and Z are stochastically independent.

In our analysis of the identifying power of this model we determine the set of observationally equivalent

structures which are admitted by the model and deliver the probability distributions of Restriction A2.

Throughout the notation �Pr0�will indicate probabilities calculated using these distributions.

Restriction A6 requires V and the variables Z to be independently distributed and Restriction A3 excludes

these variables from the structural function so the variables Z are instrumental variables in the classical sense.

Of course these restrictions have no force unless Z has some role in the determination of X. The model

employed here is silent about this role unlike other models used in the analysis of multiple discrete choice

with potentially endogenous explanatory variables.

In Restriction A4 the family of distributions PV can be more or less constrained in particular applica-

tions allowing consideration of nonparametric or parametric speci�cations. Restriction A5 similarly allows
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consideration of parametric and nonparametric speci�cations of utility functions.

Alternative models place more or less restrictions on the family of distributions PV . Here are two

examples.

1. In an instrumental variable (IV) extension of McFadden�s (1974) conditional logit model there is just

one distribution in the family PV , namely the distribution in which the elements of V are mutually

independently distributed with common extreme value distribution function as follows.

Pr[
^
y2Y

(Vy � vy)] =
Y
y2Y

exp(� exp(�vy)) (2.3)

In McFadden�s (1974) model the class of utility functions U is restricted to the parametric family in

which uy(X) � X 0�y for y 2 Y and each vector �y is nonstochastic.

2. The same restriction on U applies in an IV generalization of the conditional probit model studied in

Hausman and Wise (1978) which speci�es PV as a parametric family of multivariate normal, N(0;�),

distributions with a suitable normalization of �.

In order to specify the selection of alternatives as a function of utility di¤erences de�ne for each y 2 Y:

Wy � Vy � VM

and, with W � (W1; :::;WM�1) 2 RM�1, de�ne:

�Uy (X;W ) � Uy � UM = uy (X) +Wy.

Then there is a convenient representation for the selection of alternatives equivalent to (2.2) given by

Y = h (X;W ;u)

with h de�ned as follows.

h (x;w;u) �
MX
y=1

y � 1
�
min

k2Y;k 6=y
(�Uy(x;w)��Uk(x;w)) > 0

�
(2.4)

Because the dependence of the structural function h(X;W ;u) on the utility functions listed in u is crucial it
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is made explicit in the notation.

The model requires the random components of utility, V , to have a distribution in the family PV . Let

PW denote the corresponding family of probability distributions for the random utility di¤erences, W .

Our interest is in the identi�cation of the utility functions listed in u 2 U and the probability distribution

PW 2 PW that generate the distributions of Restriction A2.

3 Identi�cation

3.1 The identi�ed set

We now develop results on the identifying power of the IV model of multiple discrete choice. Structures

admitted by the model are characterized by a duple, D � (u; PW ), comprising a list of utility functions, u,

and a distribution of di¤erences in random utility shifters, PW . It is shown that the IV model set identi�es D.

In general there are many admissible duples D that can generate a particular set of conditional distributions

F 0Y XjZ for z 2 Z. We develop a system of inequalities which characterize the identi�ed set of duples.

Key in what follows are the sets of values of the unobservable variables W that, for a particular list of

utility functions, u, deliver the value y of Y when X = x.

T (y; x;u) � fw : h(x;w;u) = yg

Note that for any admissible u and each value x, the sets T (y; x;u), y 2 Y, partition the support ofW which

is RM�1. These sets are illustrated for particular structural functions in Section 4.

Let K
�
RM�1� denote the collection of all compact subsets of RM�1.4 Consider a probability distribution

PW 2 PW and for any S 2 K
�
RM�1� let PW (S) denote the probability under PW of the event fW 2 Sg.

Consider a family of conditional distributions PW jXZ for z 2 Z and for any S 2 K
�
RM�1� let PW jXZ(Sjx; z)

denote the associated conditional probability of the event fW 2 Sg given X = x and Z = z. Recall that

F 0XjZ denotes the conditional distribution functions of X given Z associated with the particular distributions

F 0Y XjZ of Restriction A2.

We �rst consider an implication of the IV model�s independence restriction, A6.

� Independence: The IV model requires V and Z to be independently distributed so W and Z must

be independently distributed. It follows that for a choice PW 2 PW all associated conditional distrib-

4We use a calligraphic font, e.g. S, to denote a set and a sans serif font, e.g. K, to denote a collection of sets.
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utions PW jXZ that (i) are admitted by the IV model and (ii) can generate the particular probability

distributions of Restriction 2 must satisfy the condition

Z
x2X

PW jXZ(Sjx; z)dF 0XjZ(xjz) = PW (S) (3.1)

for all values z 2 Z and sets S 2 K
�
RM�1�. The left hand side of (3.1) is the conditional probability

PW jZ(Sjz) which the independence restriction requires to be invariant with respect to z.

Now consider observational equivalence conditions which all admissible utility functions u 2 U and

probability distributions PW 2 PW must support if they are to be capable of delivering the probability

distributions of Restriction 2.

� Observational equivalence. Since for any value, x, of X the utility functions u deliver Y = y if

and only if W 2 T (y; x;u), there is the requirement that, associated with PW , there are conditional

distributions PW jXZ such that for all y 2 Y, x 2 X and z 2 Z:

PW jXZ(T (y; x;u)jx; z) = Pr0[Y = yjX = x;Z = z]: (3.2)

These two implications of the IV model�s restrictions lead to a system of inequalities which must be

satis�ed by all admissible duples that deliver the particular distributions of Restriction 2, that is all duples

in the identi�ed set associated with F 0Y XjZ for z 2 Z. Let the identi�ed set be denoted by D0(Z). This

system of inequalities is now derived.

Considering any compact set S 2 K
�
RM�1�, equation (3.2) places restrictions on PW jXZ(Sjx; z) and the

utility functions u associated with duples in D0(Z).

First, if (3.2) is to be satis�ed then for any set S, the smallest value that PW jXZ(Sjx; z) can take is equal

to the sum of the probabilities Pr0[Y = yjX = x;Z = z] associated with all sets T (y; x;u) contained entirely

within S. This is expressed in the inequality

PW jXZ(Sjx; z) �
X
y2Y

1[T (y; x;u) � S] Pr0[Y = yjX = x; Z = z] (3.3)

which holds for all x 2 X and z 2 Z.

Second, for any compact set S, the largest value that PW jXZ(Sjx; z) can take is equal to the sum of the

probabilities Pr0[Y = yjX = x;Z = z] associated with all sets T (y; x;u) that have a non-null intersection
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with S. This is expressed in the following inequality which holds for all x 2 X and z 2 Z. The symbol �

denotes the empty set.

PW jXZ(Sjx; z) �
X
y2Y

1[T (y; x;u) \ S 6= �] Pr0[Y = yjX = x; Z = z] (3.4)

Marginalizing with respect to X given Z = z on the left and right hand side of the inequalities (3.3) and

(3.4) and simplifying using (3.1) there are the following inequalities.

PW (S) �
Z

x2X

0@X
y2Y

1[T (y; x;u) � S] Pr0[Y = yjX = x; Z = z]

1A dF 0XjZ(xjz) (3.5)

PW (S) �
Z

x2X

0@X
y2Y

1[T (y; x;u) \ S 6= �] Pr0[Y = yjX = x;Z = z]

1A dF 0XjZ(xjz) (3.6)

All duples (u; PW ) in the identi�ed set D0(Z) satisfy these inequalities for all z 2 Z and all S 2 K
�
RM�1�.

So the inequalities (3.5) and (3.6) obtained as S passes across all sets in K
�
RM�1� comprise a system of

inequalities that de�nes at least an outer region for the identi�ed set of duples. Note that given a choice of

u 2 U with knowledge of the distributions F 0Y XjZ of Restriction A2 the right hand sides of these inequalities

can be calculated for any S 2 K
�
RM�1� and for any such S, given a choice PW 2 PW the left hand sides

of the inequalities can be calculated. We will shortly show that the system of inequalities de�ne the sharp

identi�ed set.

To facilitate that development it is convenient to express the inequalities (3.5) and (3.6) in terms of set

valued random variables as in Beresteanu, Molchanov, and Molinari (2009) and Galichon and Henry (2009).

To this end, de�ne random sets T (Y; x;u) and T (Y;X;u) as

T (Y; x;u) � fw : h(x;w;u) = Y g ,

and

T (Y;X;u) � fw : h(X;w;u) = Y g ,

which are random closed sets on the probability space (
;F ;P) of Restriction A1.5

5These are random closed sets because the sigma-algebra F is endowed with the Borel sets. This guarantees that for any
compact set S � RM�1, the events fT (Y; x;u) \ S 6= �g and fT (Y;X;u) \ S 6= �g are F -measurable. For a formal de�nition
of random closed sets see e.g. Molchanov (2005) or Beresteanu, Molchanov, and Molinari (2010) Appendix A.
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Probability distributions of random sets are characterized either by containment functionals or by capacity

functionals, see Molchanov (2005). The containment and capacity functionals of T (Y; x;u) conditional on

X = x and Z = z under the particular probability distributions of Restriction 2 are respectively

Pr0 [T (Y; x;u) � SjX = x; Z = z] =
X
y2Y

1[T (y; x;u) � S] Pr0[Y = yjX = x; Z = z]

and

Pr0 [T (Y; x;u) \ S 6= �jX = x;Z = z] =
X
y2Y

1[T (y; x;u) \ S 6= �] Pr0[Y = yjX = x;Z = z]

which are precisely the expressions on the right hand sides of respectively (3.3) and (3.4).

Similarly the containment and capacity functionals of T (Y;X;u) conditional on Z = z alone, under the

particular probability distributions of Restriction 2 are respectively

Pr0 [T (Y;X;u) � SjZ = z] =
Z

x2X

0@X
y2Y

1[T (y; x;u) � S] Pr0[Y = yjX = x;Z = z]

1A dF 0XjZ(xjz)
and

Pr0 [T (Y;X;u) \ S 6= �jZ = z] =
Z

x2X

0@X
y2Y

1[T (y; x;u) \ S 6= �] Pr0[Y = yjX = x;Z = z]

1A dF 0XjZ(xjz)
which are the expressions on the right hand sides of respectively (3.5) and (3.6).

It follows that all admissible duples (u; PW ) with probability distributions PW 2 PW and utility functions

u 2 U that deliver the particular distributions in Restriction 2 satisfy the inequalities:

Pr0 [T (Y;X;u) � SjZ = z] � PW (S) � Pr0 [T (Y;X;u) \ S 6= �jZ = z] (3.7)

for all sets S 2 K
�
RM�1� and instrumental values z 2 Z.

Capacity and containment functionals are equivalent characterizations of the distribution of a random

set because for all S 2 K
�
RM�1� and z 2 Z,

Pr0 [T (Y;X;u) � SjZ = z] = 1� Pr0 [T (Y;X;u) \ Sc 6= �jZ = z] (3.8)

where Sc is the complement of S. So the inequalities generated by the lower and upper bounds in (3.7) as
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S passes through all sets in K
�
RM�1� are identical. It follows that only one of the bounds in (3.7) need be

considered. We work henceforth with the lower bounding probability given by the containment functional

of T (Y;X;u).

The following Theorem states that all and only duples (u; PW ) which satisfy the system of inequalities

generated by the lower bound in (3.7) for all z 2 Z and all S 2 K
�
RM�1� deliver the distributions of

Restriction 2, that is that the system of inequalities de�nes the identi�ed set of duples.

Theorem 1 The identi�ed set of admissible duples (u; PW ) associated with the conditional distributions

F 0Y XjZ , z 2 Z, is

D0(Z) �
�
(u; PW ) : u 2 U ; PW 2 P; s.t. Pr0 [T (Y;X;u) � SjZ = z] � PW (S), 8S 2 K

�
RM�1� a.e. z 2 Z	

where K
�
RM�1� denotes the set of all compact subsets of RM�1.

Proof. D0(Z) contains all duples (u; PW ) with u 2 U and PW 2 P such that for all S 2 K
�
RM�1�,

Pr0 [T (Y;X;u) � SjZ = z] � PW (S) for almost every z 2 Z. The preceding development shows that all

admissible duples that deliver the conditional distributions F 0Y XjZ , z 2 Z lie in this set. Further, a key result

from random set theory provided by Artstein (1983) and Norberg (1992), Artstein�s inequality, guarantees

sharpness, see also Molchanov (2005) Section 1.4.8. To see why consider any (u; PW ) 2 D0(Z) and �x

z 2 Z. Then with probability one we have that

Pr0 [T (Y;X;u) � SjZ = z] � PW (S), 8S 2 K
�
RM�1� ,

by de�nition of D0(Z). This is equivalent to

Pr0 [T (Y;X;u) \ S 6= �jZ = z] � PW (S), 8S 2 K
�
RM�1� ,

see Beresteanu, Molchanov, and Molinari (2010, Theorem 2.1) for a formal proof of the equivalence. Then

by Artstein (1983) and Norberg (1992) it follows that there exists a random variable ~W and a random set ~T

realized on the same probability space as (W; T (Y;X;u)) such that conditional on Z = z, both ~W � PW and

~T d
= T (Y;X;u) with ~W 2 ~T with probability one. This implies that conditional on Z = z there exist random

variables
�
~Y ; ~X

�
de�ned on the same probability space with ~W 2 T ( ~Y ; ~X;u) and

�
~Y ; ~X

�
d
= (Y;X) with

probability one given Z = z. The choice of z 2 Z is arbitrary and the inequality de�ning D0(Z) holds for
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almost every z 2 Z. Thus the argument holds for almost every z 2 Z, implying there exist random variables�
~Y ; ~X

�
conditionally distributed F 0Y XjZ a.e. z 2 Z so that restriction A2 is satis�ed.

Remarks

1. Key to the proof of sharpness is the result from random set theory that for any random set T and any

random variable W 2 RM�1 such that

Pr [T \ S 6= �] � PW (S), 8S 2 K
�
RM�1� ,

we can couple with W and T a random variable ~W and a random set ~T , respectively, living on the

same probability space and with the same distributions as the original random variableW and random

set T , such that ~W 2 ~T with probability one. Our proof makes use of the existence of such a couple

conditional on each instrumental value z 2 Z to show that every duple (u; PW ) in D0(Z) can produce

the distributions F 0Y XjZ of Restriction A2.

2. In the de�nition of the identi�ed set D0(Z) the containment functional inequality:

Pr0 [T (Y;X;u) � SjZ = z] � PW (S)

can be replaced by the capacity functional inequality:

Pr0 [T (Y;X;u) \ S 6= �jZ = z] � PW (S):

3. The inequalities of Theorem 1 are required to hold for almost every z 2 Z so for each S 2 K
�
RM�1�

only the maximum over z 2 Z of the lower bounds is binding.

4. The development so far allows for the possibility that there are no parametric restrictions on the classes

of utility functions U and probability distributions PW . When there are parametric restrictions these

classes of functions are indexed by a �nite dimensional parameter.

5. When X is exogenous (that is when X and V are stochastically independent) we can proceed as if

X = Z, and (3.7) simpli�es as follows.

Pr0 [T (Y;X;u) � SjX = x] � PW (S) � Pr0 [T (Y;X;u) \ S 6= �jX = x] (3.9)

14



The upper and lower bounds are equal for sets S on the support of T (Y;X;u) because for all (y; x) on

the support of (Y;X) and any u 2 U there is the following.

Pr0 [T (Y;X;u) � T (y; x;u)jX = x] = Pr0 [Y = yjX = x] = Pr0 [T (Y;X;u) \ T (y; x;u) 6= �jX = x]

So for such sets the inequalities (3.7) become

Pr0 [Y = yjX = x] = PW [T (y; x;u)]

which hold for (y; x) 2 Y � X and with su¢ cient restrictions on U and PW there may be point

identi�cation of u and PW .

3.2 Core determining inequalities

It is often infeasible to consider the complete system of inequalities of Theorem 1 that are generated as S

passes through all compact subsets of RM�1. However a system of inequalities based on only some of these

sets will deliver at least an outer identi�cation region and this may be useful in practice.

For some models it is possible to �nd a small collection of the sets in K
�
RM�1� whose inequalities de�ne

D0(Z). This is a core-determining class of inequalities as studied by Galichon and Henry (2009) in obtaining

identi�cation regions in incomplete models.

The result of Theorem 2 below is useful in producing the sets that deliver core determining classes of

inequalities for the models considered in this paper. We call these collections of sets core determining sets

in what follows. The proof makes use of the following Lemma.

Lemma 1 For the model de�ned by Restrictions A1-A6 the sets on the support of T (Y;X;u) are connected.

Proof. The sets are convex because each set T (y; x;u) on the support of T (Y;X;u) is an intersection of

linear half spaces as follows.

T (y; x;u) = fW :Wy �Wy0 > uy0 � uy; 8 y0 6= y 2 Yg

Since the sets are convex they are connected.
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Theorem 2 The identi�ed set of Theorem 1 is de�ned by the inequalities generated by sets S which are (i)

connected and (ii) unions of sets on the support of T (Y;X;u).

Proof. (i). Consider a set S which is the union of disjoint connected sets, Sj , j 2 f1; : : : ; Jg. Because the

component sets are disjoint and, by Lemma 1 the sets on the support of T (Y;X;u) are connected, the lower

bounding probability of the inequality of Theorem 1 is additive across the component connected sets.

Pr0 [T (Y;X;u) � SjZ = z] =
JX
j=1

Pr0 [T (Y;X;u) � Sj jZ = z]

This is so because each of the connected sets T (y; x;u) is a subset of S if and only if it is a subset of one of

the disjoint sets Sj . Because the component sets that make up S are disjoint the probability assigned to S

by any measure PW is additive:

PW (S) =
JX
j=1

PW (Sj):

Therefore:

Pr0 [T (Y;X;u) � Sj jZ = z] � PW (Sj) 8j 2 f1; : : : ; Jg

implies
JX
j=1

Pr0 [T (Y;X;u) � Sj jZ = z] �
JX
j=1

PW (Sj)

and so:

Pr0 [T (Y;X;u) � SjZ = z] � PW (S):

It follows that, if the inequalities of Theorem 1 hold for all connected sets S 2 K
�
RM�1� then they hold for

all S 2 K
�
RM�1�.6

(ii) For any set S let CS(u) denote the collection of the sets on the support of T (Y;X;u) that are subsets

of S. Let

GS(u) �
[

T (y;x;u)2CS(u)

T (y; x;u),

6Here we have made use of our de�nition of the sets T (y; x;u) on the support of T (Y;X;u) as open sets, which follows
from our use of strict inequalities in the de�nition of h(y; x;u) in (2.4). This guarantees that two sets on the support of
T (Y;X;u) that share only a common boundary are not connected, since neither contains their boundary. This can be amended
to accommodate alternative de�nitions of T (y; x;u) that may contain boundary points, for example by explicitly working with
their interior, which corresponds to our de�nition and only di¤ers on a set of measure zero PW .
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be the union of sets on the support of T (Y;X;u) that are contained in S. Then GS(u) � S and

Pr0 [T (Y;X;u) � SjZ = z] = Pr0 [T (Y;X;u) � GS(u)jZ = z] :

It follows that if the inequalities of Theorem 1 hold for all unions of the sets on the support of T (Y;X;u)

then they hold for all sets S 2 K
�
RM�1�, since then

Pr0 [T (Y;X;u) � GS(u)jZ = z] � PW (GS(u)) � PW (S) ,

where the �nal inequality follows by GS(u) � S.

The following algorithm delivers the collection of sets that de�ne core determining inequalities for discrete

X. This collection varies with the speci�c utility functions u under consideration but it is invariant with

respect to changes in PW . Let the support of discrete X be X � fx1; : : : ; xKg. X may be a �nite dimensional

vector.

For collections of sets C1 and C2 let C1 
 C2 be the collection of sets obtained when the union of each

set in C1 with each set in C2 is formed.7 Let C1kC2 denote the collection of the sets that appear either in

C1 or in C2.8 Let C(u) denote the MK sets on the support of T (Y;X;u). Let G(u) denote the list of core

determining sets to be produced by the algorithm.

An algorithm for producing core determining sets when X is discrete

1. Initialization. Set G(u) = C(u) and G�(u) = C(u).

2. Repeat steps (a)-(c) until the collection of sets G�(u) is empty.

(a) Create the collection of sets G�(u)
 C(u) and place the connected sets in this collection that are

not already present in G�(u) into a collection of sets: B(u).

(b) Remove any duplicate sets from B(u).

(c) Let G�(u) = B(u) and replace G(u) by G(u)kG�(u).

7This is a Kroneker-product-like operation hence our choice of symbol. For example if C1 = fC11; C12g and C2 = fC21; C22g
then

C1 
 C2 = fC11 [ C21; C12 [ C21; C11 [ C22; C12 [ C22g:

8Thinking of collections of sets as sets of sets the concatenation C1kC2 is the union of the �sets�C1 and C2.
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Let Con(�) applied to a list of sets select the connected sets in the list. The algorithm recursively creates

the following list of sets.

C(u)kCon (C(u)
 C(u)) kCon (Con (C(u)
 C(u))
 C(u)) k � � �

This is the same as the list

Con (C(u)kC(u)
 C(u)kC(u)
 C(u)
 C(u)k � � � )

which is evidently the list of all connected unions of sets on the support of T (Y;X;u) as required by Theorem

2, but is more e¢ cient computationally. The algorithm terminates in at most MK � 1 iterations.

The algorithm we use to produce tables later in the paper eliminates duplicates �from the left�: �rst

each element of C(u) is compared with every subsequent element in the list and elements in C(u) that arise

further up the list are deleted, then each element of Con (C(u)
 C(u)) is compared with every subsequent

element in the list and elements in Con (C(u)
 C(u)) that arise further up the list are deleted, and so on.

The result is that where sets in C(u) are subsets of other sets in C(u) the latter (i.e. the �supersets�) will

appear later in the list than the other elements in C(u).

An advantage of this approach is that the lists of unions that are obtained reveal precisely which sets in

C(u) lie in each of the unions that comprise the core determining sets. Thus, consider a member, G, of a

collection of core determining sets, G(u). Let CG(u) be the sets on the support of T (Y;X;u) that are subsets

of G. These are the lists produced by the algorithm. The lower bound in the inequality associated with the

set G and the instrumental value z 2 Z is:

X
f(y;x):T (y;x;u)2CG(u)g

Pr0[Y = y ^X = xjZ = z]:

The number of core determining sets is far smaller than the number of possible unions of sets on the

support of T (Y;X;u). For example in a 3 choice model with a binary explanatory variable, for any choice of

u, there are at most 12 potentially informative core determining sets compared with 26 = 64 possible unions

of the 6 sets on the support of T (Y;X;u). In the three choice example studied in Section 4 in which a linear

index restriction is imposed, when X takes just 7 values there are over 2 million unions of the 21 sets on the

support of T (Y;X;u) but the number of potentially informative core determining sets for any choice of u is

at most 842 - see Table 1.
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Number of points of support of X Number of core determining sets
2 12
3 33
4 82
5 188
6 406
7 842

Table 1: Number of core determining sets in the 3 choice model for each choice of u when (i) X is discrete
having K points of support and (ii) utilities are linear in X.

3.3 An easy-to-compute outer region

Amongst the core determining inequalities there is always one associated with each set in the support of

T (Y;X;u), that is, with each set in the collection C(u). These inequalities require that all duples (u; PW )

in the identi�ed set be such that the inequalities:

PW [T (y; x;u)] � Pr0[Y = y ^X = xjZ = z]

hold for all (y; x; z) 2 Y � X � Z. It follows that:

PW [T (y; x;u)] � max
z2Z

Pr0[Y = y ^X = xjZ = z] (3.10)

must hold for all (y; x) 2 Y � X . The MK inequalities (3.10) de�ne an outer region within which lies the

identi�ed set of duples (u; PW ).

The probability PW [T (y; x;u)] that appears on the left hand side is simply the probability assigned by

the structure (u; PW ) to the event Y = y when X = x. When X is exogenous this is a conditional probability

given X = x. For example in the conditional logit model studied in Section 4 in which PW admits only the

distribution for W generated by the i.i.d. Type 1 Extreme Value distributions for the elements of V there is:

PW [T (y; x;u)] =
exp (uy(x))

1 +
PM�1

y0=1 exp(uy0(x))
; y 2 f1; : : : ;Mg: (3.11)

In general the probability PW [T (y; x;u)] is the probability that would appear in a classical discrete choice

likelihood function (for independent realisations) constructed using (u; PW ) and de�ned by conditioning on

observed values of the explanatory variables X as if they were exogenous.

For all (u; PW ) in the identi�ed set the inequalities (3.10) require that the probability PW [T (y; x;u)] must
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exceed the maximal value over z 2 Z of the joint probability that Y = y and X = x conditional on Z = z.

Whenever a model is considered for which, under an exogeneity restriction, there is a well de�ned parametric

likelihood function, the outer region de�ned by these inequalities is very easy and quick to compute.

This outer region can be tightened whenever there is (y00; x00) for which there exist a list L containing

one or more index pairs (y0; x0) such that T (y0; x0;u) � T (y00; x00;u) because in such cases the containment

functional inequality requires:

PW [T (y00; x00;u)] � Pr0[Y = y00 ^X = x00jZ = z] +
X

(y0;x0)2L

Pr0[Y = y
0 ^X = x0jZ = z]:

In the three choice models with binary X considered in Section 4 this improvement is obtained for 2 of the

6 sets on the support of T (Y;X;u). In general there are many cases in which such improvements can be

obtained.

4 Illustration: Three choice models

4.1 Core determining sets

In this Section we provide examples of identi�ed sets, focusing on models for choice amongM = 3 alternatives

and the case in which X is discrete with �nite support X � fx1; : : : ; xKg. In this case we can give a graphical

display of the support of the set valued random variable T (Y;X;u). We provide the core determining

inequalities for the case in which K = 2 and present numerical examples of identi�ed sets for a variety of

values of K.

In the 3 choice model utilities are determined as follows.

U1 = u1(X) + V1; U2 = u2(X) + V2; U3 = V3

With W � (W1;W2) = (V1 � V3; V2 � V3) the support of T (Y;X;u) is:

T (1; x;u) = fW : (W1 > �u1(x)) ^ (W1 > W2 � u1(x) + u2(x))g

T (2; x;u) = fW : (W2 > �u2(x)) ^ (W1 < W2 � u1(x) + u2(x))g

T (3; x;u) = fW : (W1 < �u1(x)) ^ (W2 < �u2(x))g
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for x 2 X . These 3K sets comprise the collection of sets C(u).

For each value x 2 X , the collection of sets: T (y; x;u) y 2 f1; 2; 3g, is a partition of R2 �centred�on a

point denoted w(x) with coordinates W1 = �u1(x) and W2 = �u2(x).

The situation with two values x1 and x2 of X is drawn in Figure 1. Values of W1 are measured verti-

cally and values of W2 are measured horizontally. Sets T (1; x;u), T (2; x;u) and T (3; x;u) lie respectively

northwest, southeast and southwest of the point w(x).9

The collection of sets G(u) that generates the core determining inequalities varies with u, depending on

the relative orientation of the points w(x); x 2 X .

When K = 2 there are 6 cases which can be grouped into 3 pairs distinguished by the slope of the line

connecting w(x1) and w(x2): (1) in which the slope is negative, (2) in which the slope is positive and less

than 1=2 and (3) in which the slope is positive and greater than 1=2. Within each of these cases there is one

orientation in which w(x1) lies higher (in the W1 direction) than w(x2) and another in which these positions

are reversed.

When K is much larger than 2 the number of orientations to be considered may be very large. There is

substantial simpli�cation in the case in which X is scalar and u1(x) and u2(x) are both linear functions of x.

In this case the locus of points described by w(x) as x varies in X is linear and there are only 6 orientations

to be considered as in the case in which K = 2.

The three orientations with w(x2) above w(x1) are shown in Figures 1 - 3.10 Tables 2 and 3 give the

collections of sets G(u) that generate the core determining inequalities. There are 12 sets in each collection,

substantially fewer than the 26 = 64 possible unions of sets in the support of T (Y;X;u).

Table 2 gives the collections for three cases, 1a, 2a, 3a, in which w(x2) is above w(x1). Table 3 gives the

collections for three cases, 1b, 2b, 3b, in which w(x2) is below w(x1). Table 3 is obtained from Table 2 by

exchanging indexes identifying the points of support of X.

In these Tables, in each case, only 4 of the 6 sets in C(u) appear in the initial 4 columns of the Tables.

The reason is that, as noted in Section 3.3, in each case two of the six sets in C(u) are subsets of others. For

example, in Case 1a T (1; x2;u) � T (1; x1;u) and T (2; x1;u) � T (2; x2;u) (see Figure 1) and, as explained

earlier, our algorithm includes the �supersets�

T (1; x2;u) [ T (1; x1;u) = T (1; x1;u)
9Koning and Ridder (2003) consider these partitions in a paper studying the falsi�ability of utility maximising models of

multiple discrete choice.
10At the end of the paper.
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Support Unions
Case set 1 2 3 4 5 6 7 8 9 10 11 12

T (1; x1;u) � � � �
T (2; x1;u) � � � � �

1a T (3; x1;u) � � � � �
T (1; x2;u) � � � � �
T (2; x2;u) � � � �
T (3; x2;u) � � � � �
T (1; x1;u) � � � � �
T (2; x1;u) � � � �

2a T (3; x1;u) � � � � �
T (1; x2;u) � � � � �
T (2; x2;u) � � � � �
T (3; x2;u) � � � �
T (1; x1;u) � � � �
T (2; x1;u) � � � � �

3a T (3; x1;u) � � � � �
T (1; x2;u) � � � � �
T (2; x2;u) � � � � �
T (3; x2;u) � � � �

Table 2: Blocked cells indicate sets on the support of T(Y,X;u) that appear in the unions generating the 12
core determining inequalities, M=3, K=2, Case 1a, 2a and 3a.

and

T (2; x1;u) [ T (2; x2;u) = T (2; x2;u)

later in the list of core determining sets (in columns 5 and 6 in Case 1a in Table 2).

4.2 Some calculations

In this Section we give examples of identi�ed sets for a particular probability distribution F 0Y XjZ . We study

cases with K = 2 and K = 4 and to keep the dimensionality of the identi�ed set small enough to allow a

graphical display we impose a linear index restriction.

The model whose identifying power we study has X discrete with support X = fx1; : : : ; xKg and utility

functions determined by a parameter � = (�01; �02; �11; �12) as follows.

u1(x) = �01 + �11x

u2(x) = �02 + �12x

We generate probabilities from a structure in which a scalar explanatory variable is in fact exogenous.

22



Support Unions
Case set 1 2 3 4 5 6 7 8 9 10 11 12

T (1; x1;u) � � � � �
T (2; x1;u) � � � �

1b T (3; x1;u) � � � � �
T (1; x2;u) � � � �
T (2; x2;u) � � � � �
T (3; x2;u) � � � � �
T (1; x1;u) � � � � �
T (2; x1;u) � � � � �

2b T (3; x1;u) � � � �
T (1; x2;u) � � � � �
T (2; x2;u) � � � �
T (3; x2;u) � � � � �
T (1; x1;u) � � � � �
T (2; x1;u) � � � � �

3b T (3; x1;u) � � � �
T (1; x2;u) � � � �
T (2; x2;u) � � � � �
T (3; x2;u) � � � � �

Table 3: Blocked cells indicate sets on the support of T(Y,X;u) that appear in the unions generating the 12
core determining inequalities, M=3, K=2, Case 1b, 2b and 3b.

The joint distribution of Y and X given Z = z is speci�ed as ordered probit for X given Z and multinomial

logit for Y given X with Y independent of Z given X. Probabilities are as follows.

Pr0[Y = 1^X = xkjZ = z] =
exp(a01 + a11xk)

1 + exp(a01 + a11xk) + exp(a02 + a12xk)

�
�

�
ck � d1z
d2

�
� �

�
ck�1 � d1z

d2

��

Pr0[Y = 2^X = xkjZ = z] =
exp(a02 + a12xk)

1 + exp(a01 + a11xk) + exp(a02 + a12xk)

�
�

�
ck � d1z
d2

�
� �

�
ck�1 � d1z

d2

��

Pr0[Y = 3^X = xkjZ = z] =
1

1 + exp(a01 + a11xk) + exp(a02 + a12xk)

�
�

�
ck � d1z
d2

�
� �

�
ck�1 � d1z

d2

��
Here k 2 f1; 2; : : : ;Kg, the thresholds ck are speci�ed a priori, c0 � �1, cK =1 and scalar z takes values

in a set Z, a set of instrumental values to be speci�ed.

Structures like this are admitted by the instrumental variable multiple discrete choice model and in fact

have X k V but of course this information is not embodied in the IV model whose identifying power we

study. That model would be point identifying were that restriction to be imposed. Our calculations give a

feel for the degree of ambiguity introduced when the exogeneity restriction is not imposed. A computational

advantage of this choice of distribution is that probabilities can be calculated without using numerical

integration methods.
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In our initial calculations we study the IV extension of McFadden�s (1974) model so the family of dis-

tributions PV is permitted to have just one member which has the three elements of V identically and

independently distributed with Type 1 extreme value distributions as in (2.3) with M = 3. The associated

probability distribution function for the di¤erences W is

FW (w) =
1

1 + e�w1 + e�w2
:

It is convenient to transform from W to ~W = ( ~W1; ~W2) using the transformations

~Wy =
1

1 + exp(�Wy)
; Wy = � log

 
1
~Wy

� 1
!
; y 2 f1; 2g:

The support of ( ~W1; ~W2) is the unit square. The joint distribution function of the random variables ~W1 and

~W2 is

c( ~w1; ~w2) =
1�

~w�11 + ~w�12 � 1
� : (4.1)

Probabilities PW (S) are approximated by evaluating the joint distribution function (4.1) over a dense grid

of equally spaced values11

~wji =
i

n
, j 2 f1; 2g; i 2 f1; : : : ; ng

on the unit square and second di¤erencing (once with respect to ~w1 and once with respect to ~w2) to obtain

exact probability masses on each cell in the grid. Denote the mass in the cell whose north-east vertex has

coordinates wis and w2t by mst. The probability mass placed by PW on a set S � [0; 1]2 is approximated by

P̂W (S) =
X

f(s;t): ( ~w1s; ~w2t)2Sg

mst:

De�ne the transformation of the set T (y; x;u):

~T (y; x;u) �
�
( ~w1; ~w2) :

�
� log

�
1

~w1
� 1
�
;� log

�
1

~w2
� 1
��

2 T (Y;X;u)
�

which is a subset of the unit square.

11A 500� 500 grid is used in the calculations reported here.
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The support of ~T (Y;X;u) is:

~T (1; x;u) =

8<: ~W :

�
~W1 >

1

1 + exp(u1(x))

�
^

0@ ~W1 >
1

1 + exp (u1(x)� u2(x))
�

1
~W2
� 1
�
1A9=;

~T (2; x;u) =

8<: ~W :

�
~W2 >

1

1 + exp(u2(x))

�
^

0@ ~W1 <
1

1 + exp (u1(x)� u2(x))
�

1
~W2
� 1
�
1A9=;

~T (3; x;u) =
�
~W :

�
~W1 <

1

1 + exp(u1(x))

�
^
�
~W2 <

1

1 + exp(u2(x))

��
for x 2 X . These are connected sets which meet at the point

~W1 =
1

1 + exp(u1(x))
~W2 =

1

1 + exp(u2(x))
;

the sets ~T (1; x;u), ~T (2; x;u) and ~T (3; x;u) lying respectively north-west, south-east and south-west of this

point. The function separating ~T (1; x;u) and ~T (2; x;u):

~W1 =
1

1 + exp (u1(x)� u2(x))
�

1
~W2
� 1
�

is monotone increasing, connecting the point

~W1 =
1

1 + exp(u1(x))
~W2 =

1

1 + exp(u2(x))

to the point

~W1 = 1 ~W2 = 1

and is concave if u1(x)� u2(x) < 0, linear if u1(x)� u2(x) = 0 and convex if u1(x)� u2(x) > 0.

In the illustrative calculations presented now, probability distributions, F 0Y XjZ are generated for cases in

which the coe¢ cients in the utility functions are

a01 = 0; a11 = 1; a02 = 0; a12 = �0:5.

The scalar instrumental variable takes two values, �1 and +1, the standard deviation parameter in the

ordered probit model for X is d2 = 1 and the slope coe¢ cient is set to d1 = 1 in one set of calculations (A)
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Case K d1 a01 a11 a02 a12

I.A 2 1 0 1 0 -1/2
I.B 2 1.5 0 1 0 -1/2
II.A 4 1 0 1 0 -1/2
II.B 4 1.5 0 1 0 -1/2

Table 4: Parameter values used in generating the probability distributions used in the illustrative examples

and d1 = 1:5 in another (B). In the latter case the instrumental variable is a better predictor of the value of

the variable X and in the discussion we describe this as the �strong instrument�case.

The explanatory variable has K = 2 points of support in one pair of cases, X = f�1; 1g (I) and values

are generated using the single threshold c1 = 0 in the ordered probit speci�cation above. In another pair of

cases (II) K = 4, X = f�1;�1=2; 1=2; 1g and the thresholds are c1 = �1=2, c2 = 0 and c3 = 1=2.

Table 4 summarizes the settings for the four cases considered.

Figure 4 shows 2 dimensional projections of the 4 dimensional identi�ed set and of two outer regions for

each pair of parameters. Case I.A in which X is binary and the instrument is relatively weak is illustrated

in Figure 4. Cases I.B, II.A and II.B are Illustrated in Figures 5, 6 and 7.

In each case the results are obtained by calculating membership of identi�ed sets and outer regions at

each point on a grid of around 130; 000 values of the 4 parameters and plotting the boundary of the set or

outer region for each pairing of parameters.12 For each pair of values in a 2-D projection of a 4-D set there

exists a value of the other two parameters such that the quadruple thus obtained lies in the 4-D set.

In each case three sets are drawn.

1. The inner set (blue) is the identi�ed set obtained using all the core determining inequalities of Theorem

2.

2. The outer set (green) is the outer region obtained using the 3K inequalities:

exp (a0y + a1yx)

1 +
P2

y0=1 exp(a0y0 + a1y0x)
� max

z2Z
Pr0[Y = y ^X = xjZ = z]; y 2 f1; 2; 3g; x 2 X : (4.2)

implied by (3.10). Since, as shown in McFadden (1974), the logarithms of the choice probabilities

on the left hand side of (4.2) are concave functions of the parameters a � (a01; a11; a02; a12) these

inequalities de�ne a convex set.

3. The intermediate set (magenta) is the set obtained using 3K inequalities in which the left hand sides

12We draw convex hulls of points calculated to lie in each 2-D set that is graphed.
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are as in (4.2) but the right hand sides take account of the existence of any pairs (y0; x0) and (y00; x00)

such that T (y0; x0;u) � T (y00; x00;u). This intermediate set is a proper subset of the other outer region

because allowing for the subset relationships leads to some increases in the values appearing on the

right hand side of the inequalities (4.2) with no change in the values on the left hand sides. This set

cannot be guaranteed convex because the identity of the values (y0; x0) and (y00; x00) that are involved

in subset relationships depends on the relative signs and magnitudes of the parameters a11 and a12.

However in the cases considered here the values a11 and a12 in the outer region all have a11 > 0 and

a12 < 0 which implies that the subset relationships do not vary within the set. This outer region is

therefore an intersection of linear half spaces and so is convex.

In all four cases examined the calculations suggest that all the 2-D projections are convex. Accordingly

the set boundaries we draw are the convex hulls of the points on the grids that are calculated to lie in the

each of the projected 2-D sets. In each pane of the Figures the red solid diamond locates the parameter

value that generates the probability distributions used in this analysis.

The IV model is quite informative. For example the slope coe¢ cients can be signed in the sense that all

values of a11 and a12 in the identi�ed set and the outer regions have a11 > 0 and a12 < 0. Comparing Figure

4 with Figure 5 (K = 2) and Figure 6 with Figure 7 (K = 4) it is clear that the identi�ed set and the outer

regions are much smaller in the stronger instrument case.

The sets in Figure 4 (K = 2) are substantially smaller than those in Figure 6 (K = 4). We believe this

occurs because the predictive power of the binary instrumental variable for particular values of X decreases

as the number of points of support of X rises. This result is sensitive to changes in the support of the

instrumental variable and to changes in the speci�cation of the relationship between potentially endogenous

X and the instrumental variable Z.

The outer regions (green, magenta) are around 10 times faster to compute and they are quite informative,

in some cases wrapping the identi�ed set quite tightly. In case II.A the intermediate outer region (magenta)

is substantially smaller than the extreme outer region. We think this happens because when K is large there

are many more subset relationships and these bring substantial re�nements of the inequalities de�ning the

extreme outer region.

The probability distributions employed here are generated by structures in which the explanatory variable

is exogenous. The model we use, with the addition of the exogeneity restriction, is point identifying, so the

extent of the identi�ed sets seen in these illustrations, relative to the solid red diamond demonstrates the
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identifying power of the exogeneity restriction.

5 Conclusion

We have considered multiple discrete choice models with potentially endogenous explanatory variables and

an instrumental variable (IV) restriction. The IV restriction requires that there exist variables that are

excluded from the random utilities and distributed independently of the latent variables that induce stochastic

variation in utilities. In a travel demand context these may be variables that in�uence choice of residential

location but have no other role in determining propensities to travel by alternative transport modes.

We have shown that this instrumental variable multiple discrete choice model has set identifying power

and we have characterized the sharp identi�ed set. The characterization may involve an extremely large

number of inequalities. We have characterized a smaller collection of core determining inequalities and we

have provided an algorithm for calculating these in the case in which explanatory variables are discrete.

Easy-to-compute outer regions are available. In parametric models with discrete explanatory variables

these only require calculation of probability expressions which appear in a conventional likelihood function

and calculation of probabilities of the joint occurrence of values of the outcome and the explanatory variables

conditional on the instrumental variables.

A novel aspect of our results is that we have characterized the identifying power of an instrumental

variable model which permits multiple unobservable variables in the structural function that delivers a

discrete outcome. We develop a general approach to models of this sort in Chesher, Rosen, and Smolinski

(2011).

Our model does not rely on special regressor, large support, triangularity or control function restrictions.

Nor does it require the existence of aggregate, e.g. market level, data. Indeed the model imposes quite

minimal restrictions, being incomplete in the sense that the model is silent about the genesis of the potentially

endogenous explanatory variables.

Topics being studied in ongoing research include the following.

1. The sensitivity of the identi�ed set and outer regions to variations in the strength and support of

instruments and the support of the endogenous variable.

2. Non-convexity and connectedness of identi�ed sets when instruments are weak.

3. The geometry of identi�ed sets and outer regions in the conditional probit model and in the nested
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logit model.

4. Identi�cation of random choice functions in nonparametric models.

5. The application of the methods employed here to other cases in which there are many unobservables

in structural functions, for example discrete choice models with �random coe¢ cients�.
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Figure 1: Support of T (Y;X;u), Y 2 f1; 2; 3g, X 2 fx1; x2g. Case 1a.
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Figure 2: Support of T (Y;X;u), Y 2 f1; 2; 3g, X 2 fx1; x2g. Case 2a.

33



­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
­5

­4

­3

­2

­1

0

1

2

3

4

5

W2

W
1

3 21

2

( ­u *
2
(x

2
),  ­u *

1
(x

2
) )

1

3
( ­u *

2
(x

1
),  ­u *

1
(x

1
) )

Figure 3: Support of T (Y;X;u), Y 2 f1; 2; 3g, X 2 fx1; x2g. Case 3a.
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Figure 4: Case I.A. 2-D projections of the identi�ed set and two outer regions, M = 3, K = 2, weaker
instrument.
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Figure 5: Case I.B. 2-D projections of the identi�ed set and two outer regions, M = 3, K = 2, stronger
instrument.
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Figure 6: Case II.A. 2-D projections of the identi�ed set and two outer regions, M = 3, K = 4, weaker
instrument.
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Figure 7: Case II.B. 2-D projections of the identi�ed set and two outer regions, M = 3, K = 4, stronger
instrument.

38


