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Summary: We consider cross-sectional data that exhibit no spatial correla-
tion, but are feared to be spatially dependent. We demonstrate that a spatial
version of the stochastic volatility model of �nancial econometrics, entailing a
form of spatial autoregression, can explain such behaviour. The parameters are
estimated by pseudo Gaussian maximum likelihood based on log-transformed
squares, and consistency and asymptotic normality are established. Asymptot-
ically valid tests for spatial independence are developed.

Keywords: Spatial dependence, Parameter estimation, Asymptotic theory,
Independence testing.

1 INTRODUCTION

The possibility of cross-sectional dependence haunts much analysis of econo-
metric data. Rules of statistical inference based on cross-sectional or panel
data frequently assume independence of observables or, more likely, of unob-
servable disturbances. These rules are typically invalidated if there is actually
dependence. On the other hand, the modelling of cross-sectional dependence
is hugely complicated by the usual lack of any natural ordering over the cross-
section. This is in contrast to time series data, where dependence between
variables at di¤erent times is frequently modelled as a function of their time
di¤erence, as is appropriate under stationarity. In the standard setting of equal
spacing across time, elegant statistical procedures result, due to the ability to
exploit the Toeplitz structure of the covariance matrix. When there is unequal
spacing, matters are considerably complicated, but nevertheless there is still
a natural ordering, and the ability to regard the observations as arising from
sampling from, say, a continuous time process, and so it is still clear how one
might proceed, for example under Gaussianity where it su¢ ces to consider the
mean and covariance structure.
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The absence of any such natural ordering poses more of a dilemma. One
might consider pairwise covariances or correlations, but without data replication
these cannot be consistently estimated in the absence of suitable structure.
When there is a spatial context, however, progress may be possible. Lattice
data provide the simplest extension of time series, entailing equal spacing across
two or more dimensions. Though there is a lack of a single obvious ordering,
and di¢ culties due to end e¤ects and in data simulation, and there are natural
ways of extending stationary time series models, and the corresponding rules of
statistical inference.
However lattice observations arise infrequently in econometrics. With spatio-

temporal data, there may well still be regular spacing across time, but observa-
tions in geographical space are more likely to be at irregular intervals, in both
dimensions, for example when these are identi�ed with capital cities of countries.
Matters are further complicated if observations are to be interpreted as aggre-
gates across administrative regions of irregular shapes. And in many situations
geographical distances may not be the most relevant measures. More generally,
pairwise "economic distances" can be postulated, possibly varying with reversal
of direction. Much of the methodology of spatial econometrics has pursued this
setting, focussing on models of "spatial autoregressive" type, which depend on
the availability of such measures of distance between each pair of observations.
In the spatial econometrics literature, dependence has been usually taken to

be synonymous with correlation (an exception being Brett and Pinkse (1997)).
On the other hand other areas of econometric research stress the distinction
between these concepts. In particular, �nancial time series that exhibit lack
of serial correlation frequently contain evidence of dependence, for example in
serial correlation of second moments, and considerable activity has been de-
voted to modelling such phenomena. In the present paper we propose a model
that combines features of a stochastic volatility model of �nancial econometrics
with the spatial autoregressive model, deriving asymptotic statistical theory for
estimates of its parameters, and present related tests for lack of dependence,
justifying their asymptotic validity. The reference to stochastic volatility mod-
elling is not necessarily intended to imply particular relevance to �nancial data,
and the econometric and statistical literature on nonlinearity and testing for
dependence covers other possible applications also. Generally in non-Gaussian
settings, dependence and correlation have di¤erent meanings and there may
be interest in nonlinear modelling and independence testing, our particular ap-
proach being specialised but parsimonious. One could also think of our model
as applying not to raw data but uncorrelated but not necessarily independent
innovations, possible spatial correlation and explanatory variables having been
previously taken care of in a conventional fashion.
The following section describes the model and illustrates its ability to de-

scribe both dependence and lack of correlation. Section 3 describes the para-
meter estimates. Section 4 establishes their consistency. Section 5 establishes
their asymptotic normality. Section 6 examines tests that might be used to test
the hypothesis of spatial independence. Some concluding remarks are o¤ered in
Section 7. Proofs are left to an Appendix.
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2 A MODEL FOR SPATIAL DEPENDENCE

Introduce �rst sequences �i; "i, i = 1; 2; :::, of zero-mean independent and
identically distributed (iid) random variables, having �nite variances �2� and �

2
",

respectively, and such that �i and "j are independent for all i; j. Next de�ne

" = ("1; :::; "n)
0
; (2.1)

and an n� n weight matrix W , having zero diagonal elements, and for a scalar
� de�ne

S(�) = I � �W; (2.2)

I being the n� n identity matrix. For some �0 2 (�1; 1), put S0 = S(�0), and
de�ne the n� 1 vector

� = (�1; :::; �n)
0 (2.3)

by the spatial autoregressive model (see Cli¤ and Ord (1973))

S0� = ": (2.4)

Though the �i are unobservable, as are the �i, we observe

xi = �ie
�0+�i ; i = 1; :::; n; (2.5)

where �0 is a scalar constant. This is a model analogous to the stochastic volatil-
ity model of �nancial econometrics of Taylor (1986), and extensively developed
and applied since. We will develop asymptotic theory of parameter estimates as
n!1, in which case all non-diagonal elements ofW (as well as its dimension),
can vary as n increases, especially as some normalization restriction is typically
placed on W (see Assumption A2 below). In this case the �i, and correspond-
ingly the xi, form triangular arrays. However, as is common, for notational
convenience we suppress reference to this.
When �0 = 0, the xi are clearly independent. For �0 6= 0 spatial indepen-

dence is lost, though there is still no spatial correlation, as we now demonstrate.
For the purpose of the immediately following argument assume also that the "i
have a moment generating function; thus so also do the �i. We have

E(xi) = 0; (2.6)

E
�
x2i
�
= �2�e

2�0E
�
e2�i

�
<1; (2.7)

and, for i 6= j,
E (xixj) = 0; (2.8)

so that the xi are uncorrelated. Thus they exhibit no spatial correlation. How-
ever, consider now

x2i = �
2
i e
2�0+2�i : (2.9)

Then, for i 6= j, using also (2.7),

Cov
�
x2i ; x

2
j

�
= �4�e

4�0
n
E
�
e2(�i+�j)

�
� E

�
e2�i

�
E
�
e2�j

�o
: (2.10)
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For �0 6= 0, the �i are not independent, so the expression in braces is non-
zero, and thus the x2i do exhibit spatial correlation. Of course, other nonlinear
functions of xi, such as jxij� for any � > 0, will also do so, but for simplicity
we focus on squares.
Parametric functional expressions are available on making distributional as-

sumptions on the "i. For example, suppose they are Gaussian. From (2.4), we
can write

�i = t
0
i"; (2.11)

where t0i is the i-th row of
T0 = S

�1
0 : (2.12)

Thus
E
�
e2�i

�
= e2ktik

2�2" (2.13)

and for i 6= j

E
�
e2(�i+�j)

�
= E

�
e2(ti+tj)

0"
�
= e2kti+tjk

2�2" (2.14)

where for any real matrix A, kAk denotes the square root of the largest eigen-
value of A0A. Thus

Cov
�
x2i ; x

2
j

�
= �4�e

4�0+2ktik2+2ktjk2
�
e4t

0
itj�

2
" � 1

�
; i 6= j: (2.15)

Note that when �0 = 0 the elements of ti are all zero except for the i-th, so
indeed (2.15) then reduces to zero, but otherwise it is generally non-zero.

3 PSEUDO-MAXIMUM LIKELIHOOD
ESTIMATION

Though W is chosen by the practitioner, the parameters �0, �0, �
2
� and

�2" are generally unknown. Given further distributional assumptions they can
be estimated by maximum likelihood, but this is a computationally onerous
procedure, and asymptotic statistical properties are di¢ cult to derive. Instead,
we consider a Gaussian pseudo-likelihood procedure based on logs. Denote

yi = log x
2
i ; �0 = E log �

2
i ; �i = log �

2
i � �0: (3.1)

We deduce from (2.9)
yi = 2�0 + �0 + �i + 2�i: (3.2)

De�ne also

�0 = 2�0 + �0; (3.3)

�i = �i + 2�i; (3.4)

and write
yi = �0 + �i; (3.5)
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or in vector form
y = �0`+ �; (3.6)

where
� = (�1; :::; �n)

0
; y = (y1; :::; yn)

0 (3.7)

and ` is the n� 1 vector of 1�s. We could rewrite (3.6) as

S(�0)y = �0S(�0)`+ S(�0)� + 2"; (3.8)

where � = (�1; :::; �n)
0, so that the yi follow a kind of constrained spatial au-

toregressive moving average. Note that if the row sums of W are normalized
the intercept term in (3.8) becomes �0(1� �0)`.
The yi have mean �0, and y has covariance matrix

�20I + �
2
"T0T

0
0; (3.9)

where �20 = V ar(�i): Though � in general is non-Gaussian, we will apply
Gaussian estimation procedures to (3.6). This means that parameters must
be identi�able from �rst and second moments of the yi. We can only identify �0
from E(yi). Also, (3.9) reduces to

�
�20 + �

2
"

�
I when �0 = 0, whence we cannot

identify both �20 and �
2
". Though our work is motivated by the possible pres-

ence of spatial dependence, there is interest to interest also testing for spatial
independence, i.e. �0 = 0, so we restrict to a parsimonious version of the model,
in which we constrain �2" = 1. Since T0 depends only on the parameter �0, we
are left with three unknown parameters, summarized in the vector

�0 =
�
�0; �

2
0; �0

�0
: (3.10)

Let �, �2, � be any admissible values, of �0, �
2
0, �0, and de�ne

� =
�
�; �2; �

�0
; (3.11)

T (�) = S(�)�1; (3.12)



�
�2; �

�
= �2I + T (�)T (�)0: (3.13)

The Gaussian pseudo-maximum likelihood estimate (PMLE) of �0 is de�ned as

�̂ = argmin
�2�

Q(�); (3.14)

where

Q(�) =
1

n
log det

�


�
�2; �

�	
+
1

n
(y � �`)0
(�2; �)�1(y � �`); (3.15)

and � is a compact subset of R� (0;1)� (�1; 1), in particular

� = �� ���2 ���; (3.16)

where
�� = [c1; c2] ; ��2 = [c3; c4] ; �� = [c5; c6] ; (3.17)

where �1 < c1 < c2 <1, 0 < c3 < c4 <1, �1 < c5 < c6 < 1.
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4 CONSISTENCY OF ESTIMATES

We introduce the following assumptions.

Assumption A1 The "i, �i are iid with zero means, "i is independent of �j,
for all i; j, and E

�
"4i
�
<1, E

�
�4i
�
<1.

The identity of distribution aspect, and indeed the independence, can be
somewhat relaxed, but we opt for simplicity.

Assumption A2 For all n, kWk � 1.

The spatial autoregression literature imposes various conditions on W . One
is that the row sums of W are normalized to 1, which implies that 1 is an
eigenvalue of WW 0 (and of W if W is symmetric), so that Assumption A2
requires that there be no other eigenvalue that is larger in absolute value. When
all the elements of W are non-negative, 1 is then also the maximum row sum
norm of W (see Horn and Johnson, 1988 p.295). In a sense, Assumption A2
is costless because some normalization is necessary in order to identify �0, and
indeed kWk = 1 not only achieves this but is natural from a stability perspective
because then

kT (�)k �
1X
j=1

j�jj kWk �
1X
j=0

j�jj = (1� j�j)�1 ; (4.1)

which is �nite for all � 2 (�1; 1). It is possible to impose more general conditions
on W , such as ones on T (�) that are uniform in � (see e.g. Lee (2004)), but we
prefer in this respect to separate requirements on W from other aspects.
De�ne H = 
�

1
2

�
�2; �

�


�
�20; �0

�

�

1
2

�
�2; �

�
(where we employ the posi-

tive de�nite square root), and then

r(�2; �) =
1

n
tr
n


�
�2; �

��1


�
�20; �

�o
� 1

n
log det

n


�
�2; �

��1

(�20; �)

o
� 1

=
1

n
tr fHg � 1

n
log detfHg � 1

=
1

n

nX
j=1

(�j � log �j � 1) ; (4.2)

where the �j are eigenvalues of H.

Assumption A3 For any � > 0;

lim
n!1

inf
fk�2��0;���0k>�g\f��2���g

r
�
�2; �

�
> 0: (4.3)

Because H is positive de�nite the �j , j = 1; :::; n; are positive, and for all j,
the j-th summand in (4.2) is non-negative, and positive when �j 6= 1. Of course
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�j = 1 for all n only when 

�
�2; �

�
= 


�
�20; �0

�
, so that Assumption A3 is an

identi�ability condition. It seems di¢ cult in general to reduce it to something
more comprehensible (see also the identi�ability assumption employed by Lee
(2004) in his asymptotic theory for the Gaussian PMLE of spatial autoregres-
sion).

Assumption A4 �0 2 �:

Theorem 1 Let Assumptions A1-A4 hold. Then

�̂ !p �0; as n!1: (4.4)

5 ASYMPTOTIC NORMALITY OF ESTIMATES

Using the consistency just established, and additional conditions, we proceed
to establish asymptotic normality of the Gaussian PMLE.
De�ne the 3 � 3 symmetric matrices A and B, as follows. Write 
0 =



�
�20; �0

�
. The (i; j)-th element of A is aij , where a12 = a13 = 0 and

a11 = 2 lim
n!1

1

n
`0
�10 `; (5.1)

a22 = lim
n!1

1

n
tr
�

�20

	
; (5.2)

a23 = 8 lim
n!1

1

n
tr
�

�20 T0WT0T

0
0

	
; (5.3)

a33 = 32 lim
n!1

tr
�

�10 T0WT0T

0
0


�1
0 T0 (WT0 + T

0
0W

0)T 00
	
; (5.4)

and the (i; j)-th element of B is bij , where b11 = 2�11 and

b12 = lim
n!1

1

n
E
�
`0
�10 �tr

��
��0 � 
0

�

�10

	�
; (5.5)

b13 = 16 lim
n!1

1

n
E
�
`0
�10 �tr

��
��0 � 
0

�

�10 T0WT0T

0
0


�1
0

	�
; (5.6)

b22 = E lim
n!1

1

n
E
�
tr2
��
��0 � 
0

�

�10

	�
; (5.7)

b23 = � lim
n!1

8

n
E
�
tr
��
��0 � 
0

�

�10

	
tr
��
��0 � 
0

�

�10 T0WT0T

0
0

	�
;(5.8)

b33 = 64 lim
n!1

1

n
E
�
tr2
��
��0 � 
0

�

�10 T0WT0T

0
0


�1
0

	�
; (5.9)

where we assume:

Assumption A5 The matrices A and B exist, and are �nite and non-singular.
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We also impose standard additional conditions for a central limit theorem.

Assumption A6 �0 is an interior point of �0:

Assumption A7 For some � > 0

E
�
j"ij4+� + j�ij4+�

�
<1: (5.10)

Theorem 2 Let Assumptions A1-A3 and A5-A7 hold. Then as n!1;

n
1
2

�
�̂ � �0

�
!d N

�
0; A�1BA�1

�
:

6 TESTING FOR SPATIAL INDEPENDENCE

Theorem 2 can be applied to set con�dence regions for �0 or its individual
elements, but it is also a basis for testing hypotheses. One of leading interest is

H0 : �0 = 0; (6.1)

which in the setting of our model is equivalent to independence of the xi.
We present �rst a result which is largely, but not strictly, a corollary of

Theorem 2. In this connection, we introduce

Assumption A8

tr fW (W +W 0)g ! 1; as n!1: (6.2)

Notice that Assumption A3 would require, under H0, that tr fW (W +W 0)g
increase at rate n. We could indeed have relaxed conditions for Theorem 2 to
permit a slower rate, which would have been re�ected in the convergence rate of
�̂ (see also Lee, 2004). Assumption A2 implies that tr fW (W +W 0)g = O(n),
and thus that no faster rate would be possible.
For notational convenience de�ne also

�2� = �
2
0 + 4; (6.3)

which is the variance of �i under H0.

Theorem 3 Let Assumptions A1, A2, A6 and A8 hold. Then under H0,

n
1
2 �̂=��; n

1
2

�
�̂2 � �20

�
=
�
E
�
�41
�
� �4�

	 1
2 ; 4

h
tr

1
2 fW (W +W 0)g

i
�̂=�2� (6.4)

converge in distribution as n!1 to independent standard normal variates.
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Theorem 3 motivates the test statistic

s1 =
4tr

1
2 fW (W +W 0)g �̂

�̂2 + 4
: (6.5)

A simpler one is

s2 =
~�
0
W~�

~�2�tr
1
2 fW (W +W 0)g

; (6.6)

where

~� =
�
~�1; :::;

~�n

�0
; ~�2� =

1

n
~�
0~�; ~�i = yi � ~�; ~� = n�1

nX
i=1

yi: (6.7)

Of course (6.6) is merely a standard statistic test for lack of spatial correlation
but applied to the ~�i: see Moran (1950), Pinkse (1999); also Robinson (2007)
for a more general class.

Theorem 4 Let Assumptions A1, A2, A6 and A8 hold. Then under H0, s1
and s2 both converge in distribution as n!1 to standard normal variates.

Both s1 and s2 can be used in one- or two-sided tests based on standard
normal critical regions. A Pitmen argument indicates that tests that reject for
large positive (negative) values of s1=s2 have power against local, at rate n�

1
2 ,

positive (negative) alternatives toH0. We can think of s21 and s
2
2 as pseudo-Wald

and pseudo-score statistics, respectively. A pseudo-log-likelihood-ratio test can
also be developed, but for brevity, and as there is no one-sided version of it, we
omit the details.

7 CONCLUDING REMARKS

We have established consistency and asymptotic normality of parameter es-
timates of a simple model that can explain spatial dependence in observations
xi in the absence of spatial correlation in the xi, and has also presented re-
lated asymptotically justi�ed tests for spatial dependence. One straightforward
extension of the model would allow spatial correlation of observables, and per-
haps include also explanatory variables; then test spatially uncorrelated inputs
for spatial independence. It would also be worth examining both higher-order
asymptotic properties, and �nite-sample properties, of our various statistics.
Higher-order asymptotics should be possible at least under Gaussian assump-
tions, on �i and �i but presents a substantial additional challenge. There seems
to be no higher-order asymptotic theory yet for even most basic statistics based
on spatial weight matrices, and in the general statistical literature there is rel-
atively little work covering implicitly de�ned estimates. Some �nite-sample
theory would be possible for s2 under H0 and Gaussianity of �i and �i because
it is then merely a ratio of quadratic forms of independent Gaussian variates.
On a more mundane level, Monte Carlo simulations can also provide informa-
tion about �nite-sample properties, but given the limited nature of proposals

9



for modelling and inference of spatial dependence without spatial correlation,
and for testing for spatial dependence as distinct from spatial correlation, it
would be appropriate �rst to develop some further models, estimates and tests,
with which ours can be compared. Other parametric models, including spatial
moving averages, and spatial autoregressive moving averages, can be considered
for our �, and along with the tests for independence suggested by such models
there is considerable scope for developing nonparametric tests for independence
in addition to those of Brett and Pinkse (1997). Bearing in mind the range
of nonparametric independence tests available for time series data, there are
clearly many possibilities in spatial settings.
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APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1: We have

Q(�) =
1

n
log det

�

(�2; �)

	
+
1

n
(�� �0)

2
`0


�
�2; �

��1
`

� 2
n
(�� �0) `0


�
�2; �

��1
� +

1

n
�0


�
�2; �

��1
�: (A.1)
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Then write
Q(�)�Q(�0) = u(�) + v(�); (A.2)

where

u(�) =
2

n
(�0 � �) `0


�
�2; �

��1
�

+
1

n
tr
hn


�
�2; �

��1 � 
 ��20; �0��1o���0 � 
 ��20; �0�	i ; (A.3)
v(�) =

1

n
(�� �0)

2
`0


�
�2; �

��1
`+ w

�
�2; �

�
: (A.4)

By Assumption A4 and a standard kind of argument for consistency of
implicitly-de�ned extremum estimates, it thus su¢ ces to show that

sup
�2�

ju(�)j !p 0; as n!1; (A.5)

and, for all �� > 0, � > 0

lim
n!1

inf
fk���0k>��g\�

v(�) > 0: (A.6)

To prove (A.6) we �rst consider the contribution to u(�) from the �rst term
in (A.4). This is uniformly op(1) if

1

n
`0
(�2; �)�1� !p 0; uniformly in �. (A.7)

We �rst show pointwise convergence, for any � 2 �. The left side of (A.7) has
mean zero and variance

n�2`0

�
�2; �

��1


�
�20; �0

�


�
�2; �

��1
` � n�2

�
`0`

�4

�
 ��20; �0�
� Cn�1

�
�20 + kT (�0)k

2
�
: (A.8)

But from (4.1)
kT (�0)k � C; (A.9)

where C denotes throughout a generic �nite constant. Thus pointwise conver-
gence is established. The uniform convergence follows from an equicontinuity
argument, as follows. Consider a neighbourhood N of any, �2�; ��, such that
N � ��2 ���. We have

sup
(�2;�)2N

������
`0
n


�
�2; �

��1 � 
 ��2�; ����1o �
n

������
�

�
�0�

n

� 1
2

sup
(�2;�)2N

8><>:
`0
n


�
�2; �

��1 � 
 ��2�; ����1o2 `
n

9>=>;
1
2

: (A.10)

11



Now E�0�=n = tr
�


�
�20; �0

�	
=n � C, whereas the expression in braces is

bounded by
 ��2; ���12 
 ��2�; ����12 
 ��2; ��� 
 ��2�; ���2 : (A.11)

The �rst two factors are bounded uniformly on N , while the last one is��2 � �2�� I + 4 (TT 0 � T�T�)2 ; (A.12)

where T� = T (��). Now, with S = S(�), S� = S(��);

TT 0 � T�T 0� = T�T 0� (S�S0� � SS0)TT 0; (A.13)

where

S�S� � SS0 = (I � ��W ) (I � ��W )
0 � (I � �W ) (I � �W )0

= (�� ��) (W +W 0) +
�
�2� � �2

�
WW 0: (A.14)

Then from (4.1), (A.14) is bounded by

C
�
�2 � �2�

�2
+ C (�� ��)

2
: (A.15)

This can be made arbitrarily small uniformly on N by choosing N small enough.
Since any open cover of ��2 � �� has a �nite subcover, the proof of (A.9) is
completed. The second term in u(�) can be dealt with in a similar way, using
the fourth moment conditions in Assumption A1. We omit the details.
Now looking at v(�), in view of Assumption A3 it su¢ ces to show that, for

any �� > 0, that

lim
n!1

inf
j���0j>��
�22�

�2
;�2��

(�� �0)
2 `

0

�
�2; �

��1
`

n
> 0: (A.16)

But

`0

�
�2; �

��1
`

n
� n

�
`0


�
�2; �

�
`
��1

=

�
�2 +

`0TT 0`

n

��1
�

�
�2 + kTk2

��1
�

�
�2 + (1� j�j)�2

��1
�

�
c4 + (1�max (c5; c6))�2

��1
; (A.17)

so (A.16) is established, to complete the proof . �
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Proof of Theorem 2: By the mean value theorem,

0 = n
1
2
@Q(�̂)

@�
= n

1
2
@Q(�0)

@�
+ ~An

1
2

�
�̂ � �0

�
; (A.18)

where ~A is formed by evaluating each row of @2Q(�)=@�@�0 at (possibly di¤erent)
~�
(i)
, i = 1; 2; 3, such that

~�(i) � �0 � �̂ � �0. To evaluate the derivatives,
for notational convenience write 
(�2; �), and Q(�) as, respectively, 
, and Q.
Note �rst that

@


@�2
= I;

@2


@(�2)2
= 0;

@2


@�@�2
= 0: (A.19)

Noting also that
@S

@�
= �W; @T

@�
= TWT; (A.20)

we have

@


@�
= 4T (WT + T 0W 0)T 0; (A.21)

@2


@�2
= 8T (WTT 0W 0 +WTWT + T 0W 0T 0W 0)T 0: (A.22)

Then

@Q

@�
= � 2

n
`0
�1(y � �`); (A.23)

@Q

@�2
=

1

n
tr
�

�1

	
� 1

n
(y � �`)0
�2(y � �`); (A.24)

@Q

@�
= 8

1

n
tr
�

�1TWTT 0

	
(A.25)

� 8
n
(y � �`)0
�1TWTT 0
�1(y � �`); (A.26)

@2Q

@�2
=

2

n
`0
�1`; (A.27)

@2Q

@�@�2
= � 2

n
`0
�2(y � �`); (A.28)

@2Q

@�@�
= � 8

n
`0
�1T (WT + T 0W 0)T 0
�1(y � �`); (A.29)

@2Q

@(�2)2
= � 1

n
tr
�

�2

	
+
2

n
(y � �`)0
�3(y � �`); (A.30)

@2Q

@�2@�2
= � 8

n
tr
�

�2TWTT 0

	
+
16

n
(y � �`)0

�

�1TWTT 0
�2

	
(y � �`); (A.31)
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@2Q

@�2
=

1

n
tr

�

�1

�
@2


@�2
� @

@�

�1

@


@�

�

�1 f(y � �`)(y � �`)0 � 
g

�
+
1

n
tr

�

�1

@


@�

�1

@


@�

�1(y � �`)(y � �`)0

�
; (A.32)

where we omit the complicated expression for the latter in terms of W and T .
From (A.23)-(A.25)

@Q0
@�

= � 2
n
`0
�10 �; (A.33)

@Q0
@�2

= � 1
n
tr
��
��0 � 
0

�

�20

	
; (A.34)

@Q0
@�

= � 8
n
tr
��
��0 � 
0

�

�10 T0WT0T

0
0


�1
0

	
: (A.35)

Then we deduce that

lim
n!1

nE

�
@Q0
@�

@Q0

@�0

�
= B: (A.36)

Also evaluating second derivative at �0 we deduce via (A.33)-(A.35)

@2Q0

@�@�0
!p A; as n!1; (A.37)

by establishing convergence in probability to zero of zero mean quantities, via
techniques as in the proof of Theorem 1.
Then using Theoren 1 it is straightforward to show also that

~A� @2Q0

@�@�0
!p 0; (A.38)

and hence, from (A.37), ~A!p A. It remains to show that

n
1
2
@Q0
@�

!d N (0; B): (A.39)

This follows if all suitably normalized linear combinations of the left hand side
of (A.39) are asymptotically standard normal. To achieve this, a linear combi-
nation is written as a sum of martingale di¤erences, and a martingale central
limit theorem is applied. Many of the details are standard and straightforward,
and the aspect that most warrants attention pertains to (A.35), in view of its de-
pendence on W , so we simply consider the asymptotic normality of n

1
2 @Q0=@�.

First denote P = 
�10 T0WT0T
0
0


�1
0 , so

n
1
2
@Q0
@�

= � 8

n
1
2

tr
��
��0 � 
0

�
P
	
: (A.40)
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Then writing � = (�0=�0; "0)
0 and R = (�0In; 2T0), we have � = R� , and thence

(A.40) becomes

�8
n
1
2

tr f(�� 0 � I2n)Mg

=
�8
n
1
2

8<:
2nX
i=1

�
�2i � 1

�
mii +

2nX
i=1

� i
X
j<i

� j (mij +mji)

9=; ; (A.41)

where � i is the i-th element of � and mij is the (i; j)-th element of M = R0PR.
In view of Assumption A1, a martingale central limit thus holds if, as n!1

max
i

mii

n
1
2

+max
i
E

��������
X
j<i

� j (mij +mji)

n
1
2

��������
2+�

! 0; (A.42)

for some � > 0. Using Burkholder and von Bahr/Esseen inequalities, the expec-
tation is bounded by

C

0BB@
X
j<i

(mij +mji)
2

n

1CCA
1+�=2

; (A.43)

so it su¢ ces to show that as n!1

max
i

mii

n
1
2

+max
i

X
j<i

�
m2
ij +m

2
ji

�
n

! 0: (A.44)

Now
2nX
j=1

m2
ij = r

0
iPRR

0P 0ri; (A.45)

where ri is the i-th column of R. Thus

max
i

2nX
j=1

m2
ij �

�
max
i
krik2

�
kPRk2 : (A.46)

But

max
i
krik � kRk � �0 + 2 kTk � C; (A.47)

kPk � C kWk � C; (A.48)

whence (A.42) follows. �
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Proof of Theorem 3: It is straightforward to deduce under H0 that

a11 =
2

�2�
; (A.49)

a22 =
1

�2�
; (A.50)

a23 = lim
n!1

�
8=�2�

�
tr(W ) = 0; (A.51)

a33 =
32

�4�
lim
n!1

1

n
tr fW (W +W 0)g ; (A.52)

b11 =
4

�2�
; (A.53)

b12 = lim
n!1

1

n

nX
i=1

E
�
�3i
�

�2�
=
E
�
�3i
�

�2�
; (A.54)

b13 = lim
n!1

1

n
E

8<:
 

nX
i=1

�i
�2�

!
nX
j=1

�
�2j � �2�

�
�2�

9=; = 0; (A.55)

b22 = lim
n!1

1

n
E

(
1

�2�

nX
i=1

�
�2i � �2�

�)2
=
E
�
�4i
�
� �4�

�4�
; (A.56)

b23 = �8 lim
n!1

1

n
E

8<: 1

�2�

nX
i=1

�
�2i � �2�

� 1
�2�

nX
j=1

nX
k=1

�j�kwjk

9=; = 0; (A.57)

b33 = 64 lim
n!1

1

n
E

8<: 1

�4�

nX
j=1

nX
k=1

�j�kwjk

9=;
2

=
64

�4�
lim
n!1

1

n
tr fW (W +W 0)g ; (A.58)

where wj is the (j; k)-th element of W . Thus A and B are diagonal matrices.
Then the theorem is proved when n�1tr fW (W +W 0)g converges to a positive
limit. But if in fact tr fW (W +W 0)g = o(n), while Assumption A8 holds, then
a modi�ed proof leads to the statement of the present theorem. For brevity we
omit the details. �

Proof of Theorem 4: The result for s1 follows directly from Theorems 1
and 3. The proof for s2 proceeds by noting that ~�i = �i + (�0 � ~�), and then
using standard arguments with a simpli�ed version of the martingale central
limit arguments in the proof of Theorem 2.
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