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Abstract 
 

We propose a multivariate generalization of the multiplicative volatility model of 
Engle and Rangel (2008), which has a nonparametric long run component and a 
unit multivariate GARCH short run dynamic component. We suggest various 
kernel-based estimation procedures for the parametric and nonparametric 
components, and derive the asymptotic properties thereof. For the parametric part 
of the model, we obtain the semiparametric efficiency bound. Our method is 
applied to a bivariate stock index series. We find that the univariate model of Engle 
and Rangel (2008) appears to be violated in the data whereas our multivariate 
model is more consistent with the data. 
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1 Introduction

Modelling volatility is a big industry after the seminal work of Engle (1982) and Bollerlsev (1986).

One of the issues that has recently come to the fore is that of stationarity. Specifically, a number of

authors, Drees and Starica (2003), Pohlzehl and Spokoiny (2004), Pesaran and Timmerman (2004),

Engle and Rangel (2008) have presented evidence against global stationarity and proposed modifica-

tions of standard models. In Table 1 we present our own evidence based on a quite general parametric

volatility model applied to S&P500 daily returns data. Evidently, assuming constant parameters for

these data is problematic. Engle and Rangel (2008) have proposed a nonstationary model of volatility

that makes the unconditional variance time varying in a deterministic but smooth fashion, but the

short run volatility to be driven by a univariate GARCH model. Engle and Rangel (2008) estimate

their model by a spline methodology and apply this to a cross-country panel dataset. This model

can be viewed as a special case of the class of locally stationary processes introduced by Dahlhaus

(1997) (see also Robinson (1989)). Recently, Dahlhaus and Subba Rao (2006) have investigated a

class of time varying ARCH(∞) processes that allows all the parameters to vary smoothly over time.

Pohlzehl and Spokoiny (2004) have proposed a methodology for estimation of time varying volatility

processes that is quite general and allows the process to have structural breaks at many unknown

locations.

Modelling multivariate volatility is now a big area with many important contributions, see Engle

and Sheppard (2001), Alexander (2001), Tse and Tsui (2002), van der Weide (2002), Vrontos, Della-

portas and Politis (2003), Lanne and Saikkonen (2005), Boswijk and van der Weide (2006), Patton

(2006), Jondeau and Rockinger (2006), Kawatsu (2006), Bauwens, Laurent and Rombouts (2006)

and Silvennoinen and Teräsvirta (2009b). We propose a new semiparametric multivariate volatility

model that allows for nonstationarity. It captures a slowly changing unconditional covariance ma-

trix (low frequency volatility) in a nonparametric way, but also allows for dynamic evolution of the

conditional covariance matrix (high frequency volatility) in a more standard fashion. Our model can

be viewed as a generalization of the univariate multiplicative model of Engle and Rangel (2008) to

the multivariate case as well as a generalization of Rodriguez-Poo and Linton (2001) to allow for

short run dynamics. Silvennoinen and Teräsvirta (2009a) propose a related methodology based on

smooth transition between a finite number of states, where the transition is determined by a speed

parameter and a c.d.f.

We propose several estimation methods for the unknown parameters of low and high frequency

volatility based on kernel methods combined with maximum likelihood. The advantage of kernel

methods is that one can provide a rigorous asymptotic distribution theory both for the finite dimen-

sional parameters and the nonparametric functions under quite weak conditions, and thereby conduct

valid inference about the parameters. We establish the asymptotic properties of our procedures under

a semi-strong form specification of the errors. Under the strong form Gaussian distributional spec-

ification our procedures are semiparametrically efficient, and we characterize this efficiency bound.
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We apply our methods to the study of several empirical problems. We should point out that the

generalization from the univariate case to the multivariate case is not straightforward and some of

the features exploited by Engle and Rangel (2008) do not carry over to the multivariate case. This

provides additional motivation for studying the multivariate model.

Throughout the paper we use the following notation: A ⊗ B is the Kronecker product of two

matrices A and B. vec() is the operator that stacks the columns of a matrix in a column vector,

while vech() stacks only the lower triangular including the diagonal into a column vector. DN is

the N2 × N(N + 1)/2 duplication matrix defined by the property DNvech(A) = vec(A) for any

symmetric matrix A, and D+
N is its generalized inverse. For any matrix A, let ||A|| = Tr(A⊤A)1/2 be

the Euclidean norm.

Proofs of the theorems as well as lemmata are delegated to an appendix.

2 The Model and its Properties

We observe a vector time series yt ∈ RN for t = 1, . . . , T. We shall ignore mean effects in the main

development and suppose that yt satisfies the model

yt = Σ(t/T )1/2ut = Σ(t/T )1/2G1/2
t εt, (1)

where: εt is (at least) a strictly stationary unit conditional variance martingale difference sequence,

i.e., E(εt|Ft−1) = E(εtε
⊤
t − IN |Ft−1) = 0, where Ft−1 is the sigma field generated by {yt−1, yt−2, . . .}

and IN is the identity matrix, Σ(t/T ) is a deterministic covariance matrix, while Gt ∈ Ft−1 is a
strictly stationary stochastic covariance matrix process with EGt = IN . We model Gt parametrically

so that Gt = Gt(φ) for φ ∈ Rp and in fact we shall assume that

Gt(φ) = Γ(ut−1, ut−2, . . . ;φ) (2)

for some fixed known function Γ. This is a very general class of processes, and includes many of the

models reviewed in Bauwens, Laurent and Rombouts (2006). It is perhaps too general to understand

stationarity and mixing conditions and to obtain detailed analytical results for distribution theory

so we shall in some cases specialise to the BEKK process that imposes the normalization condition

EGt(φ) = IN ,

Gt(φ) = IN −AA⊤ −BB⊤ +Aut−1u
⊤
t−1A

⊤ +BGt−1B
⊤ (3)

in which case φ = (vec(A)⊤, vec(B)⊤)⊤ denote the free parameters of Gt. However, other models for

Gt can be considered. The matrix function Σ(u) is assumed to be of unknown functional form, either

smooth or having a finite number of jumps in any compact interval. In the main part of the paper

we restrict attention to smooth Σ, but we discuss later the important extension to allow for breaks.

The model allows slowly varying unconditional variance matrix Σ along with short run dynamics
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through the process Gt. Under some conditions, one can approximate this process by a family of

locally stationary processes. Specifically, let ỹt(u) = Σ(u)1/2G
1/2
t εt for each u ∈ [0, 1]. Then one can

approximate yt by the stationary process ỹt(u) for t/T in a small neighborhood of u. See Dahlhaus

(1997).

This model is a multivariate generalization of the scalar multiplicative volatility model of Engle

and Rangel (2008) where yt = σ(t/T )g
1/2
t εt with gt a unit stationary GARCH process and εt is

i.i.d. with mean zero and variance one. Actually, they considered a more general model with

observed covariates xt also entering the unconditional variance function σ2(·), we shall discuss this
generalization later.1

We remark on some properties of the stochastic process yt. For the univariate process, the local

autocorrelation function (LACF) of any power of absolute returns in the Engle and Rangel (2008)

model is time invariant, i.e.,

ρ|y|α(t, j) =
cov(|yt|α, |yt−j|α)√
var(|yt|α)var(|yt−j|α)

=
σαt σ

α
t−jcov(g

α/2
t |εt|α, gα/2t−j |εt−j|α)√

σ2αt σ2αt−jvar(g
α/2
t |εt|α)var(gα/2t−j |εt−j|α)

=
cov(g

α/2
t |εt|α, gα/2t−j |εt−j|α)
var(g

α/2
t |εt|α)

= ρ|u|α(t, j) = ρ|u|α(j),

where |ut|α = g
α/2
t |εt|α, and ρ|u|α(t, j) is time invariant because of the stationarity of ut = g

1/2
t εt.

The dynamics of the model only enter through the stationary process ut. This means for example

that any long memory properties in |yt|α cannot be explained by structural breaks in the deter-

ministic part of volatility σ2(.), it has to arise from properties of ut. Likewise, E[|yt|α]/(E[y2t ])
α/2 =

E[|ut|α]/(E[u2t ])
α/2, so that the local cumulants for example are time invariant and depend only on

the corresponding cumulants of the stationary process ut. In fact both these properties hold for

whatever process gt just so long as it is measurable only with respect to the past and possesses the

required moments. This suggests a simple specification test of the model by looking at the local

(in time) correlogram of powers of absolute returns and local cumulants and testing whether these

quantities are constant over time. We will look at this in our application below.

In the multivariate case this time invariance does not hold, even approximately, which follows from

well known properties of the multivariate autocorrelation matrices. That is, they are not invariant

1Their model for long run volatility was of the form

σ2t = c exp

(
w0t+

k∑

i=1

wi(t− ti−1)2+ + x⊤t δ
)
,

where xt are observed covariates, while w0, . . . , wk, δ are unknown parameters. In order to make sense of the asymptotic

properties of such a (nonparametric) procedure one should rescale time as we have done.
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to affine transformations of the data xt 
→ b + Axt for nonsingular matrix A. Specifically, consider

ηt = vech(yty
⊤
t ) and define:

zt = vech(G
1/2
t εtε

⊤
t G

1/2
t − IN), (4)

Mj = E[ztz
⊤
t−j], and W (t, j) = Σ(t− j/T )1/2 ⊗ Σ(t− j/T )1/2. Then

Γ(t, 0) = E(ηtη
⊤
t ) = D+

NW (t, 0)M0W (t, 0)D+⊤
N

Γ(t, j) = E(ηtη
⊤
t−j) = D+

NW (t, 0)MjW (t, j)D+⊤
N .

Then the local autocorrelation matrix is

Ψ(t, j) = diag[Γ(t, 0)]−1/2Γ(t, j)diag[Γ(t, 0)]−1/2.

In this case there is generally no cancellation even when one just takes the leading term in Γ(t, j),

which is D+
NW (t, 0)MjW (t, 0)D+⊤

N for small j (this corresponds to the correlogram of the locally

stationary approximation). Consider the bivariate case y1t = σ11(t/T )u1t+σ12(t/T )u2t, where u1t, u2t

are stationary processes. Therefore, for example

ρ|y|α(t, j) =
cov(|y1t|α, |y1t|α)√
var(|y1t|α)var(|y1t|α)

=
cov(|σ11(t/T )u1t + σ12(t/T )u2t|α, |σ11(t− j/T )u1t−j + σ12(t− j/T )u2t−j|α)√
var(|σ11(t/T )u1t + σ12(t/T )u2t|α)var(|σ11(t− j/T )u1t−j + σ12(t− j/T )u2t−j|α)

≃ cov(|σ11(u)u1t + σ12(u)u2t|α, |σ11(u)u1t−j + σ12(u)u2t−j|α)√
var(|σ11(u)u1t + σ12(u)u2t|α)var(|σ11(u)u1t−j + σ12(u)u2t−j|α)

.

This depends on t or, in the local stationary approximation, on u.2

Starica (2003) argued that the simple deterministic model yt = σtεt = σ(t/T )εt, where σ(·) is
an unknown function of (rescaled) time and εt i.i.d. can perform as well as the GARCH(1,1) over

some datasets. Rodriguez-Poo and Linton (2001) considered the multivariate generalization of this

model in another context in which yt = Σ(t/T )1/2εt. In this model the conditional and unconditional

variance of yt are both equal to σ2(t/T ). If one finds time varying local autocorrelation, this would

be inconsistent with this model too.

3 Efficient Estimation

We discuss here the question of efficient estimation of the nonparametric part and the parametric

part of the model.

2If Σ(u) is diagonal, then there is an invariance property that can be exploited [specifically the invariance of

autocorrelation to transformations xt 
→ b+Axt, where A is diagonal] to show that Ψ(t, j) ≃ Ψ(j) for any fixed j. In

the bivariate example this means that σ12(u) = 0 and so ρ|y|α(t, j) = ρ|u|α(t, j) = ρ|u|α(j).
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3.1 The Parameters φ

Here we consider the question of semiparametric efficiency, and our treatment follows a little the

style of Bickel, Klaassen, Ritov, and Wellner (1993). See also Severini and Wong (1992). Consider

the univariate model where

σ2t (φ, h) = h(t/T )gt(φ) (5)

for some unknown function h(.) and εt ∼ N(0, 1). We suppose that

log h(t/T ) =
∞∑

j=0

θjψj(t/T )

for some orthonormal basis {ψj}∞j=0 with ψ0(u) ≡ 1, and

1

T

T∑

t=1

ψj(t/T )ψk(t/T )→ δjk,

where δjk = 1 if j = k and 0 if j �= k. Thus
∫ 1
0
ψj(u)du = 0 for all j ≥ 1 (which identifies

θ0 as the average value of log h). Then consider some finite order approximating model where

σ2t (φ, θ) = hθ(t/T )gt(φ) with log hθ(t/T ) =
∑J

j=0 θjψj(t/T ), and define the normalized likelihood

function ℓT (φ, θ) = −T−1∑T
t=1 ln σ

2
t (φ, θ) + y2t /σ

2
t (φ, θ). We have:

∂ log hθ(t/T )

∂θj
= ψj(t/T )

Iθθ = lim
T→∞

E

[
∂ℓT (φ0, θ0)

∂θ

∂ℓT (φ0, θ0)

∂θ⊤

]
= 2 lim

T→∞

1

T

T∑

t=1

[
ψj(t/T )ψk(t/T )

]
j,k

= 2IJ

Iφθ = 2E

[
∂ log gt
∂φ

]
lim
T→∞

1

T

T∑

t=1

[
ψj(t/T )

]
j
= 2E

[
∂ log gt
∂φ

]
(1, 0, . . . , 0)

√
T
∂ℓT (φ0, θ0)

∂θj
= − 1√

T

T∑

t=1

(ε2t − 1)ψj(t/T ),

because E[(ε2t − 1)2] = 2 for the normal distribution. From this we can obtain the efficient score

function for φ within the parametric model

∂ℓ∗T (φ0, θ0)

∂φ
=

∂ℓT (φ0, θ0)

∂φ
− IφθI

−1
θθ

∂ℓT (φ0, θ0)

∂θ

=
1

T

T∑

t=1

(ε2t − 1)
∂ log gt
∂φ

− E

[
∂ log gt
∂φ

]
(1, 0, . . . , 0)

1√
T

T∑

t=1

(ε2t − 1)
[
ψj(t/T )

]
j

=
1

T

T∑

t=1

(ε2t − 1)

[
∂ log gt
∂φ

− E

[
∂ log gt
∂φ

]]
.
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The simple structure allows us to pass J to infinity and obtain the semiparametric efficient score

function and efficient information:

∂ℓ∗T (φ0)

∂φ
=

1

T

T∑

t=1

(ε2t − 1)

[
∂ log gt
∂φ

− E

(
∂ log gt
∂φ

)]
(6)

I∗φφ = E

[(
∂ log gt
∂φ

−E

(
∂ log gt
∂φ

))(
∂ log gt
∂φ

−E

(
∂ log gt
∂φ

))⊤]
, (7)

see Bickel, Klaassen, Ritov, and Wellner (1993) for discussion of these concepts. This says that an

efficient estimator in the semiparametric model would have asymptotic variance given by 2I∗−1φφ . If

we compare this with the parametric estimator that knows σ2(.), we see that the information loss is

E

[
∂ log gt
∂φ

∂ log gt

∂φ⊤

]
− E

[(
∂ log gt
∂φ

− E

(
∂ log gt
∂φ

))(
∂ log gt
∂φ

−E

(
∂ log gt
∂φ

))⊤]

= E

(
∂ log gt
∂φ

)
E

(
∂ log gt

∂φ⊤

)
> 0.

Therefore, the best one can do in the semiparametric model is strictly worse than the best one can

do in the parametric model.

In the multivariate case, the semiparametric efficient score function and efficient information are

given by:

∂ℓ∗T (φ0)

∂φi
=

1√
T

T∑

t=1

vec

(
G
−1/2
t

∂Gt

∂φi
G
−1/2
t −E

[
G
−1/2
t

∂Gt

∂φi
G
−1/2
t

])⊤
vec

(
εtε

⊤
t − IN

)

I∗φiφj = 2E

[
vec

(
G
−1/2
t

∂Gt

∂φi
G
−1/2
t − E

[
G
−1/2
t

∂Gt

∂φi
G
−1/2
t

])⊤
DND

+
N

×vec

(
G
−1/2
t

∂Gt

∂φj
G
−1/2
t − E

[
G
−1/2
t

∂Gt

∂φj
G
−1/2
t

])]

as we next show. Consider the following likelihood function

ℓT (φ) =
T∑

t=1

l(Ωt(φ); yt)

yt = Σ(t/T )1/2G
1/2
t (φ)εt

Ωt(φ) = Σ(t/T )1/2Gt(φ)Σ(t/T )1/2.

where φ ⊂ Φ ∈ RK . The score with respect to φ is given by

∂lt
∂φ

= ρt(εtε
⊤
t − IN)

ρt =
∂Gt

∂φ⊤
(G−1/2

t ⊗G−1/2
t )

6



The matrix function Σ(t/T ) is nonparametric. Consider a parametric submodel, Σθ(t/T ), where

θ ⊂ Θ ∈ RJ is the nuisance parameter. The tangent set T is defined as the mean square closure of

A(∂lt/∂θ), where A ∈ RK×J . The score with respect to the nuisance parameter θ is given by

∂lt
∂θ

= −∂vech(Σ
1/2
θ )⊤

∂θ
D⊤
N

(
Σ(t/T )−1/2G

−1/2
t ⊗G

1/2
t

)
vec(εtε

⊤
t − IN).

Due to the properties of ∂lt/∂θ, the tangent set can be defined as

T = {f : RN → R
K | E[f(x)] = 0,E[f(x)f(x)⊤] <∞}

The projection of ∂lt/∂φ on T is given by

Pt = E [ρt] (εtε
⊤
t − IN)

To see this, note first that Pt ∈ T as it has mean zero and finite variance, due to the independence

of ρt and (εtε
⊤
t − IN). Then, the orthogonal complement of the projection,

∂l∗t
∂φ

=
∂lt
∂φ
− Pt = (ρt − E[ρt])(εtε

⊤
t − IN )

is orthogonal to all elements of T , since ρt − E(ρt) has mean zero and is independent of (εtε
⊤
t − IN)

and, hence, of all elements of T . The uniqueness of the projection completes the proof. �

Following the approach explained in Bickel, Klaassen, Ritov, andWellner (1993), we can construct

an efficient estimator of φ from the two-step estimator

φ̂ = φ̃− Ĩ∗−1φφ (φ̃)
∂ℓ̃∗T
∂φ

(φ̃), (8)

where ∂ℓ̃∗T/∂φ and Ĩ∗φφ are estimates of ∂ℓ∗T/∂φ and I∗φφ, and φ̃ is an initial root-T consistent estimator

of φ. To construct estimates of ∂ℓ∗T/∂φ and I∗φφ we also need preliminary estimates of Σ(.).

3.2 The Function Σ(.)

We now discuss efficient estimation of Σ(.). Efficient estimation of nonparametric functions is not as

clear cut as in the parametric case since mean squared error typically only induces a partial ordering

on different estimators. However, one can make some comparisons according to variance as we shall

see.

Consider the following two nonparametric regressions:

ỹ2t =
y2t
gt

= σ2(t/T ) + σ2(t/T )(ε2t − 1) (9)

y2t = σ2(t/T ) + σ2(t/T )(gtε
2
t − 1). (10)
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In both cases the error term is mean zero so that smoothing on time will yield consistent estimates of

σ2(t/T ) in both cases. However, in the first case, the error is a martingale difference sequence, while

in the second it is not. Also, the variance of the error term in the second equation is larger than in the

first. Specifically, var(gtε
2
t−1) = E[(gtε

2
t−1)2] = E(g2t ε

4
t )−1 = E(ε4t )Eg2t−1. Since var(gt) = Eg2t−1,

we have Eg2t ≥ 1 and so var(gtε
2
t −1) ≥ var(ε2t −1). The process ε2t −1 is uncorrelated but gtε

2
t −1 is

autocorrelated, and in particular cov(gtε
2
t − 1, gt−jε

2
t−j − 1) = E(gtgt−jε

2
t−j)− 1 �= 0. In fact, gtε

2
t − 1

is positively autocorrelated so that the long run variance exceeds the short run variance. This is

one intuition why the improved estimator of Σ(.) is likely to be more efficient than the original one.

Another way of seeing the value of this transformation is to observe that the local likelihood function

for y2t with known gt and unknown σ2(t/T ) can be written

LT (τ ;u) =
T∑

t=1

Kh(u− t/T )

[
ln τ +

y2t
gtτ

]
,

which yields the estimator

τ̂(u) =

∑T
t=1Kh(u− t/T )y

2

t

gt∑T
t=1Kh(u− t/T )

,

which corresponds to a standard regression smoother from (9). The local likelihood method with

uniform kernel is efficient in the sense that it has the least variance amongst all estimators with the

same bias function, ref.

In the multivariate case suppose that one knew the random variable Gt, how would you proceed

to improve the estimate of Σ(t/T ) and hence of φ? In the scalar case considered by Engle and Rangel

(2008), one can just divide through by gt, using yt/g
1/2
t = σ(t/T )εt and then form local averages of

y2t /g̃t. However, in the multivariate case one cannot just "divide through" by G
1/2
t , since

G
−1/2
t yt = G

−1/2
t Σ(t/T )1/2G

1/2
t εt �= Σ(t/T )1/2εt.

Our approach instead is to treat Gt as fixed known numbers inside the local likelihood. In particular,

suppose that εt is normally distributed (this is not maintained in the distribution theory) with mean

zero and identity covariance matrix. Then we have conditional on Gt that yt is normally distributed

with conditional mean zero and conditional variance matrix

Ωt = E
[
yty

⊤
t |Ft−1

]
= Σ(t/T )1/2GtΣ(t/T )1/2.

In the sequel we treat Σ(t/T )1/2 as an unknown parameter and replace it by Θ. Let θ = vech(Θ) ∈
R
N(N+1)/2 be the unique elements of Θ. Consider the local likelihood function

LT (θ;u) =
T∑

t=1

Kh(u− t/T )l(Ωt(θ); yt),

as before but where Ωt(θ) = ΘGtΘ. Then minimize LT (θ; u) with respect to θ ∈ Θ. The resulting

estimator is denoted θ̂(u) and hence Σ̂(u) = Θ̂2(u). In the case where εt is i.i.d. normal, Σ̂(u) has

smaller variance than Σ̃(u).
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4 Estimation

In the sequel we propose an estimation method for the parameters φ along with the function Σ(.).

The estimation method is designed to be efficient under the assumption that εt is i.i.d. normal with

mean zero and covariance matrix IN but to be consistent and asymptotically normal for a much

broader range of circumstances.

The estimation strategy is in several steps. First, we obtain consistent initial estimators of the

unknown quantities, then we improve these using the (Gaussian) likelihood that takes full account

of the dependence and non-stationarity structure.

4.1 Step 1 Initial Estimation of Σ

Under the model assumptions,

E[yty
⊤
t ] = Σ(t/T )

for all t with t = 1, . . . , T. Therefore, one can estimate Σ(u) by the estimator of Rodriguez-Poo and

Linton (2001)

Σ̃(u) =

∑T
t=1Kh(u− t/T )yty

⊤
t∑T

t=1Kh(u− t/T )
, (11)

where K is a kernel function, h is a bandwidth, and Kh(.) = K(./h)/h. Rodriguez-Poo and Linton

(2001) established the consistency and asymptotic normality of Σ̃(u) under general conditions on

{yt}.
This estimator can be interpreted as the minimizer of the local log-likelihood (upto constants)

criterion

LT (Ω;u) =
T∑

t=1

Kh(u− t/T )l(Ω; yt),

l(Ω; yt) = − log det(Ω)− y⊤t Ω−1yt.

Letting ω = vech(Ω), we have

∂l

∂ω
= −D⊤

Nvec(Ω−1 − Ω−1yty
⊤
t Ω−1) = −D⊤

N(Ω−1 ⊗ Ω−1)DNvech(Ω− yty
⊤
t ),

which, solving for Ω, yields (11) exactly.

4.2 Step 2 Initial Estimation of φ

First, one computes the profiled G process, i.e., for each φ, let

G̃t(φ) = Γ(ũt−1, ũt−2, . . . , ũp+1, 0, . . . ;φ), (12)

where ũs = Σ̃(s/T )−1/2ys. For example in the BEKK case we might compute the simple recursion

G̃t(φ) = IN −AA⊤ −BB⊤ +Aũt−1ũ
⊤
t−1A

⊤ +BG̃t−1(φ)B
⊤ (13)
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for t = 2, . . . , T, where some initialization G̃1(φ) is chosen. One then computes the profiled global

likelihood function

ℓ̃T (φ) =
T∑

t=1

l(Ω̃t(φ); yt)

Ω̃t(φ) = Σ̃(t/T )1/2G̃t(φ)Σ̃(t/T )1/2.

Minimize ℓ̃T (φ) with respect to φ to give φ̃. Actually, since Σ̃(t/T ) does not depend on φ, we can

replace ℓ̃T (φ) by

ℓ̃T (φ) =
T∑

t=1

l(G̃t(φ); ũt).

This estimator is expected to be consistent and asymptotically normal but inefficient.

4.3 Step 3 Improved Estimation

In the sequel we treat Σ(t/T )1/2 as an unknown parameter and replace it by Θ. Let θ = vech(Θ) ∈
R
N(N+1)/2 be the unique elements of Θ. Consider the local likelihood function

L̃T (θ; u) =
T∑

t=1

Kh(u− t/T )l(Ω̃t(θ, φ̃); yt), (14)

where Ω̃t(θ, φ̃) = ΘG̃t(φ̃)Θ and for any φ, G̃t(φ) is given in (12). Then let

θ̂(u) = θ̃(u)−
[
∂2L̃T (θ̃; u)

∂θ∂θ⊤

]−1
∂L̃T (θ̃;u)

∂θ
(15)

and let Σ̂(u) = Θ̂2(u).

Next one computes a new profiled G, i.e., for each φ, let

Ĝt(φ) = Γ(ût−1, ût−2, . . . , ûp+1, 0, . . . ;φ), (16)

for example

Ĝt(φ) = IN − AA⊤ −BB⊤ +Aût−1û
⊤
t−1A

⊤ +BĜt−1(φ)B
⊤, (17)

where ûs = Σ̂(s/T )−1/2ys and some initialization Ĝ1(φ) is chosen. Then compute the two-step

estimator

φ̂ = φ̃−
[
∂2ℓ̂∗T (φ̃)

∂φ∂φ⊤

]−1
∂ℓ̂∗T (φ̃)

∂φ
, (18)

where the estimated efficient score function is

∂ℓ̂∗T (φ̃)

∂φi
=

1

T

T∑

t=1

vec

(
Ĝ
−1/2
t (φ̃)

∂Ĝt

∂φi
(φ̃)Ĝ

−1/2
t (φ̃)− 1

T

T∑

t=1

Ĝ
−1/2
t (φ̃)

∂Ĝt

∂φi
(φ̃)Ĝ

−1/2
t (φ̃)

)⊤

×vec
(
ε̂t(φ̃)ε̂

⊤
t (φ̃)− IN

)
,
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and ε̂t(φ̃) = Ĝt(φ̃)
−1/2Σ̂(t/T )−1/2yt.

One can iterate this procedure by updating the local likelihood using the new estimator of φ and

so on, but asymptotically this will not affect the variances of the procedures.

5 Distribution Theory

In this section we give the asymptotic distribution theory of the various estimators considered above.

We first introduce some notation. Consider zt defined in (4), which is a stationary mixing process

with unconditional mean zero, and let

Γj = E[ztz
⊤
t−j ], j = 0, 1, . . . (19)

Then let:

Vσ(u) = ‖K‖22DN

[
Σ(u)1/2 ⊗ Σ(u)1/2

]
DNM∞DN

[
Σ(u)1/2 ⊗ Σ(u)1/2

]
DN (20)

M∞ = lrvar(zt) = Γ0 +
∞∑

j=1

(Γj + Γ⊤j ).

Vφ = J−1QJ−1 (21)

J = E
[
ρtρ

⊤
t

]
,

ρt =
∂vec(Gt)

⊤

∂φ
(G

−1/2
t ⊗G

−1/2
t ), (22)

and where the matrix Q is defined in (44) in the appendix. Let σ(u) = vech(Σ(u)) and σ̃(u) =

vech(Σ̃(u)).

T������ 1. Under our conditions, there exist bounded continuous functions bσ(u) such that

√
Th(σ̃(u)− σ(u)− h2bσ(u)) =⇒ N(0, Vσ(u)) (23)

√
T (φ̃− φ) =⇒ N(0, Vφ). (24)

The result in (23) corrects the asymptotic variance of Rodriguez-Poo and Linton (2001). In

particular, Vσ(u) depends on the correlation structure of the error term zt. The bias function is

proportional to σ′′(u). Clearly, the asymptotic distributions of these estimators are very complicated

and practically unusable. The estimators are also inefficient in the leading Gaussian case. The result

in Theorem 1 (24) is also specific only to the BEKK special case (3), whereas the Theorem 3 below

holds in principle more generally along the lines of Bollerslev and Wooldridge (1992).

Define

ζt = vec(εtε
⊤
t − IN), (25)
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which is a vector martingale difference sequence, and let

Ξt = E[ζtζ
⊤
t |Ft−1]. (26)

Then let

V e
σ (u) = ‖K‖22∆(u)Λ(u)−1Ψ(u)Λ(u)−1∆(u)⊤ (27)

∆(u) = D+
N

[(
IN ⊗ Σ1/2(u)

)
+
(
Σ1/2(u)⊗ IN

)]
DN

Λ(u) = E
[
Wt(u)Wt(u)

⊤
]
= 4D⊤

N

(
Σ−1/2(u)⊗ IN

)
E(G−1

t ⊗Gt)
(
Σ−1/2(u)⊗ IN

)
DN

Ψ(u) = E
[
W⊤

t (u)ΞtWt(u)
]

Wt(u) = 2D⊤
N(Σ(u)−1/2G−1/2

t ⊗G1/2
t ).

Note that E(G−1
t ⊗Gt) �= IN except in the scalar case.

T������ 2. Let σ̂(u) = vech(Σ̂(u)). Under our conditions, there exist bounded continuous

functions beσ(u) such that

√
Th(σ̂(u)− σ(u)− h2beσ(u)) =⇒ N(0, V e

σ (u)). (28)

When εt are i.i.d. standard normal, Ξt = 2DND
+
N a.s. and one can show that V e

σ (u) ≤ Vσ(u).

Let

V e
φ = Je−1QeJe−1 (29)

Je = E
[
(ρt − E[ρt])(ρt − E[ρt])

⊤
]

Qe = E
[
(ρt − E[ρt])Ξt(ρt −E[ρt])

⊤
]
.

T������ 3. Under our conditions

√
T (φ̂− φ) =⇒ N(0, V e

φ ). (30)

When εt are i.i.d. standard normal, Ξt = 2DND
+
N a.s. and V e

φ = 2Je−1. In this case, V e
φ ≤ Vφ.

Our distribution theory can be used to conduct inference and to select bandwidth. The standard

errors can be obtained from the estimated matrices:

V̂ e
σ (u) = ‖K‖22 ∆̂(u)Λ̂(u)−1Ψ̂(u)Λ̂(u)−1∆̂(u)⊤

V̂ e
φ = Ĵe−1Q̂eĴe−1

∆̂(u) = D+
N

[(
IN ⊗ Σ̂1/2(u)

)
+
(
Σ̂1/2(u)⊗ IN

)]
DN

Λ̂(u) = 4D⊤
N

(
Σ̂−1/2(u)⊗ IN

) 1

T

T∑

t=1

(Ĝ−1
t ⊗ Ĝt)

(
Σ̂−1/2(u)⊗ IN

)
DN

12



Ψ̂(u) = 4D⊤
N

(
Σ̂−1/2(u)⊗ IN

) 1

T

T∑

t=1

(Ĝ
−1/2
t ⊗ Ĝ

1/2
t )ζ̂tζ̂

⊤

t (Ĝ
−1/2
t ⊗ Ĝ

1/2
t )

(
Σ̂−1/2(u)⊗ IN

)
DN

Ĵ e =
1

T

T∑

t=1

(
ρ̂t −

1

T

T∑

t=1

ρ̂t

)(
ρ̂t −

1

T

T∑

t=1

ρ̂t

)⊤

Q̂e =
1

T

T∑

t=1

(
ρ̂t −

1

T

T∑

t=1

ρ̂t

)
ζ̂tζ̂

⊤

t

(
ρ̂t −

1

T

T∑

t=1

ρ̂t

)⊤
,

where the hatted quantities have φ̂ and σ̂(.) replacing the unknown quantities. Under our conditions

V̂ e
φ and V̂ e

σ (u) are consistent estimators of V e
φ and V e

σ (u) respectively.

Regarding bandwidth choice, let a(σ) be a scalar function of Σ such as the trace or determinant,

and let a0(u) = ∂a(σ(u))/∂σ. Then the pointwise mean squared error is

s(u) =
1

Th
a⊤0 (u)V

e
σ (u)a0(u) + h4a⊤0 (u)b

e
σ(u)b

e
σ(u)

⊤a0(u)

and the integrated mean squared error is
∫
s(u)w(u)du for some non-negative weighting function w.

The optimal global bandwidth sequence is

hopt(T ) =

[ ∫
a⊤0 (u)V

e
σ (u)a0(u)w(u)du

4
∫
a⊤0 (u)b

e
σ(u)b

e
σ(u)

⊤a0(u)w(u)du

]
T−1/5 (31)

and likewise for the optimal pointwise bandwidth. In practice we should estimate the unknown

quantities consistently.

6 Application

We apply the proposed estimator to the bivariate series of daily Dow Jones and NASDAQ index

returns, January 2, 1990 to January 7, 2009, giving a sample size of T = 4795. A shorter series has

been analysed in Engle (2002) and Boswijk and van der Weide (2006). Table 2 provides summary

statistics of the two series, and Figure 1 shows the price and return series. The return distributions

are slightly negatively skewed and highly leptokurtic. For both series, the Jarque-Bera test clearly

rejects normality at the 1% significance level. Figure 2 presents the autocorrelation function for the

return series and for the absolute return series along with the so-called Bartlett confidence bands (at

95%) computed under the assumption of independence. The ACF for absolute returns shows very

strong evidence of dependence and quite long memory effects.

We next present our estimates of the sample first order local autocorrelation function. We esti-

mated the LACF of order one by the following

ρ̂|y|(u, 1) =

∑T
t=1wut|yst ||yst−1|∑T

t=1wutys2t
,
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where yst = yt−
∑T

t=1 wutyt and wut are kernel weights. In Figures 3 and 4 we present these estimates

for the NASDAQ and Dow Jones over the full sample period along with the local Bartlett bands.

There is strong evidence of time variation, which is also supported by higher order correlations.

Indeed we also computed (not shown here) the time varying first four cumulants of the data and

they show substantial time variation consistent with our discussions above.

Stock index autocorrelation is a well-document empirical feature, see e.g. Table 2.4 of Campbell

et. al. (1997), where for CRSP data typical first order autocorrelations of daily index returns range

from 10 to 40 percent and can be explained, for example, by time varying risk premia or illiquid

trading. The latter is confirmed by the observation that equally weighted indices, putting more

weight on illiquid assets, show higher autocorrelation than value-weighted indices. The Dow Jones

IA is a price-weighted index, the NASDAQ a market valued index. As reported in Table 2, the

autocorrelations are closer to zero, but many coefficients are significant. For example, the first order

autocorrelation of the Dow Jones index using the full sample is -0.039, significant at the 5% level.

In order to whiten the series for the subsequent modelling of volatility, we have considered vector

autoregressions (VAR) with a maximum order 10, and selected the optimal one using the Schwarz

information criterion (SIC). According to the SIC, a VAR(1) was chosen. The estimated VAR(1)

model is given by given by

DJt = ν1 + Φ11DJt−1 + Φ12NQt−1 + y1t

NQt = ν2 + Φ21DJt−1 + Φ22NQt−1 + y2t,

and parameter estimates are reported in Table 3 together with heteroskedasticity consistent standard

errors. At the five percent significant level, the coefficients Φ21 is significant for the full sample, which

indicates a possible causality or spillover from the Dow Jones to the NASDAQ index. In the following,

we model the volatility of the residuals of the VAR(1) model, yt.

For the nonparametric estimation of Σ(u) we use the estimator of Rodriguez-Poo and Linton

(2001) with quartic kernel function. The bandwidth of the first stage estimator is set to 0.05, such

that about 5 % of the data are used for local averaging. The second stage bandwidth is chosen

according to (31), where the unknown quantities V e
σ (u), a0(u) and beσ(u) are estimated using the first

stage estimates and the weight function w(u) is set to one, which gives a bandwidth of 0.056. The

estimated unconditional volatilities are depicted as the solid lines in Figure 5, and the estimated

unconditional correlation is the solid line in Figure 6.

To test for constancy of the estimated Σ(u), we use the test statistic

Th
5∑

j=1

(σ̂(uj)− σ̄)⊤(V̂ e
σ (uj))

−1(σ̂(uj)− σ̄)

mwhere uj = 0.1, 0.3, 0.5, 0.7, 0.9, which under the null converges to a χ25 distribution. For our data,

the statistic takes the value 30.34, which is significant at 1%, so that the null hypothesis of a constant

Σ function is clearly rejected.
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We now turn to the parametric part of the model which describes the conditional volatilities

and correlation. To take into account the asymmetry of positive and negative news, we specify the

parametric part of the volatility model as

Gt = IN − AA⊤ −BB⊤ − CC⊤/2 +Aut−1u
⊤
t−1A

⊤ +BGt−1B
⊤ + Cu∗t−1u

∗⊤
t−1C

⊤,

where ut = Σ(t/T )−1/2yt and u∗t = ut ⊙ I(yt < 0) and where C = diag(γ1, γ2), see Cappiello, Engle,

and Sheppard (2006). Parameter estimates are given in Tables 3-5 for the full sample and for two

subsamples.

As a specification test, we estimate the model for two subsamples, obtain parameter estimates φ̂1
and φ̂2, and then test H0 : φ1 = φ2 using the Wald statistic

W = (T/2)(φ̂1 − φ̂2)
⊤V̂ −1(φ̂1 − φ̂2)→ χ2p

under H0, where V̂ = V̂1 + V̂2, V̂1 and V̂2 being the asymptotic variances of φ̂1 and φ̂2, respectively,

and where p = dim(φ). We compare our locally stationary model with a stationary asymmetric

BEKK model given by

Gt = IN − ASA⊤ −BSB⊤ − CSC⊤/2 +Aut−1u
⊤
t−1A

⊤ +BGt−1B
⊤ + Cu∗t−1u

∗⊤
t−1C

⊤,

where S is the sample covariance matrix of the residuals of the VAR(1) model. For the stationary

BEKK model, W = 62.30 which clearly rejects H0 for all reasonable significance levels. For the

locally stationary model, W = 32.05, which is much closer to the 1% critical value of 23.2 of a

χ210 distribution. Hence, there is less statistical evidence against stationarity of Gt in the locally

stationary model than in the stationary model, which corroborates our model specification.

To understand the impact of the nonparametric part on the parameter estimates, consider a

measure of persistence of volatilities and correlations, which in the BEKK model is often defined as

the largest eigenvalue of the matrix A ⊗ A + B ⊗ B + C ⊗ C/2, given in Tables 4 and 5. For the

model that ignores the presence of long term trends (Table 4), these measures are very close to one,

indicating an extremely high persistence of shocks in volatilities and correlations. The half-life of a

shock in this stationary model is about 157 days. On the other hand, for the locally stationary model

in Table 5, persistence is measured much smaller, about 93 % for the full sample, and the half-life is

only about ten days. This shows the strong impact of the presence of long term trends in the model

on the parameter estimates of the conditional volatilities.

The estimated conditional and unconditional standard deviation and correlation plots are shown

in Figures 5 and 6. The decline in correlations around the year 2000, due to the decoupling of

technology and brick and mortar stocks during the new economy boom, is more pronounced in

our case than it is using DCC or OGARCH models. Note the steep increase in volatilities and

correlations towards the end of the sample, due to the financial crisis. The unconditional volatility of

the NASDAQ is about as high as around the new economy boom, whereas the Dow Jones, although

at the same level as the NASDAQ, shows a much higher unconditional volatility than in 2000.
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The eigenvalues of the efficient estimator of Σ(u) were computed. Especially at the beginning of

the sample, the smaller eigenvalue is close to zero. In higher dimensions this may occur for a number

of eigenvalues, in which case one may want to use tests for zero eigenvalues as in Rodriguez-Poo and

Linton (2001) and impose factor-type restrictions as discussed in Section 7.3. The largest eigenvalue

explodes towards the end of 2008 reflecting the big increase in volatility.

As a diagnostic test, we use the multivariate Portmanteau statistic given by (see e.g. Lütkepohl,

2005)

Pr = T 2
r∑

i=1

(T − i)−1Tr(Ĉ⊤
i Ĉ

−1
0 ĈiĈ

−1
0 ), Ĉi =

1

T

T∑

t=i+1

ε̂tε̂
⊤
t−i. (32)

If εt were the original data, the statistic Pr would have an asymptotic χ2 distribution with rN2

degrees of freedom. We use Pr as a measure for residual autocorrelation rather than as a formal test

statistic, as to our knowledge the asymptotic theory for the present model framework has not been

worked out, and we choose the order r = 10. The values for the P10 statistics are also reported in

Tables 4 and 5. Except for the second half of the sample, they would reject correct specification at

5% if the standard χ2rN2 critical values were used. However, note that the statistics have improved

for the locally stationary model compared with the stationary one.

We conclude with some further diagnostics on our model. In Figure 7 we present the ACF of the

residual series and of the absolute value of the residuals. Evidently the model has greatly reduced

the amount of dependence in both series. In Figure 8 and 9 we present the first order LACF along

with corresponding Bartlett bands. Although there are some violations of the bands in the case of

the NASDAQ, this might be explained by sampling error, since the confidence bands do not allow

for estimated parameters and functions and so would likely be quite a lot larger. In the case of the

Dow Jones, there is only one violation of the bands over the whole sample. Finally, we present the

bivariate density plots of the data and the residuals showing how the model has almost sphered the

data.

7 Extensions

In this section we discuss some possible extensions of the model.

7.1 Discontinuities or Regime shifts

One can allow Σ to have a finite number of discontinuities by using only one sided kernels. Suppose

that our model is that for some known union of intervals U = ∪Lℓ=1[uℓ−, uℓ+] ⊂ [0, 1],

Σ(u) = Σc(u) + Σd1(u ∈ U),

where Σc(·) is a smooth unknown function and Σd is an unknown matrix. This model is potentially

useful for studying the effect of business cycles on volatility in which case U might correspond to
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recession periods. The continuous part Σc(·) is estimated as before. We now show how to estimate

Σd. Let

Σ̃−(u) =

∑T
t=1K

−
h (u− t/T )yty

⊤
t∑T

t=1K
−
h (u− t/T )

Σ̃+(u) =

∑T
t=1K

+
h (u− t/T )yty

⊤
t∑T

t=1K
+
h (u− t/T )

,

where K−, K+ are respectively left and right sided kernels defined on [−1, 0] and [0, 1] respectively,

say. We then propose the estimator

Σ̃d =
L∑

ℓ=1

wℓ−

(
Σ̃+(u−)− Σ̃−(u−)

)
+ wℓ+

(
Σ̃−(u+)− Σ̃+(u+)

)

for some weighting sequence {wℓ−, wℓ+}Lℓ=1 with
∑L

ℓ=1 wℓ− + wℓ+ = 1. See Pelletier (2006) for an

alternative approach.

7.2 Exogenous covariates

One could suppose also that Σ depends on strictly exogenous covariates. For example, suppose that

Σ(t/T,Xt) = Ψ1/2(t/T )Hη(Xt)Ψ
1/2(t/T ),

where Hη(Xt) is a unit covariance matrix determined by unknown parameters η. This is like in the

multiplicative model of Engle and Rangel (2008). It is straightforward to modify the estimation

algorithms to accommodate this case.

7.3 Reduced rank

One could also introduce reduced rank assumptions into Σ(t/T ) as in Rodriguez-Poo and Linton

(2001). Since Σ(t/T ) is a real symmetric matrix we have the decomposition

Σ(t/T ) = Q(t/T )Λ(t/T )Q(t/T )⊤,

where Q(t/T )Q(t/T )⊤ = I and Λ(t/T ) = diag{λ1(t/T ), . . . , λN(t/T )}. Now suppose that λj(.) ≡ 0

for j = K+1, . . . , N, whereK ≤ N.WhenK < N there is a reduction in the effective dimensionality

of the long run covariance matrix. One may be interested in identifying and testing restrictions on

the rank K. Such issues are discussed in detail in Rodriguez-Poo and Linton (2001).

8 Conclusions

We have introduced a new multivariate semiparametric volatility model that combines the idea of a

long term smoothly evolving component with a short term, more erratic one that fluctuates around
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the smooth component. This generalizes the model of Engle and Rangel (2008) to the multivariate

case. We provide estimation theory and suggest a semiparametric efficient estimator of the parametric

part. The application demonstrates the value of our multivariate model.

We have mentioned several extensions of the basic model, including exogenous variables, discon-

tinuities of the nonparametric functions and reduced rank of the parametric part of the model. Our

model can be used for any of the standard uses of multivariate GARCH models. For example, portfo-

lio selection using either the unconditional or conditional covariance matrix, see for example Bodnar

and Zabolotsky (2008). It can also be used for forecasting, although perhaps we should clarify how

that works here. First, let us accept that the model precludes long run forecasting because it does

not prescribe the future trajectory of Σ(.). However, it does permit short run forecasting where the

definition of short run is somewhat flexible. In particular, by a Taylor series expansion we have

Σ(1 + αh) ≃ Σ(1) + αhΣ′(1) +
α2h2

2
Σ′′(1)

for α ∈ [0, 1]. Therefore, the simplest forecast of Σ(1 + αh) is given by Σ(1), the next is by Σ(1) +

αhΣ′(1), etc. Therefore, to forecast Ω(1 + αh) = E[yT+αThy
⊤
T+αTh|FT ], we use

Ω1+αh|FT = Σ(1)1/2E[GT+αTh|FT ]Σ(1)1/2,

where E[GT+αTh|FT ] is a standard forecasting problem for parametric models (we assume without

loss of generality that T + αTh is an integer). In practice one replaces unknown quantities by their

estimates. Specifically, one can only use one-sided (or boundary) kernels for this purpose. Li and

Heckman (1997) have established some results in the purely nonparametric case.

A Appendix

A.1 Assumptions

(A1) The matrix function Σ(u) is uniformly positive definite and twice continuously differentiable

on [0, 1].

(A2) The centered random vectors {εt} have a positive lower semi-continuous density w.r.t. the

Lebesgue measure on the set {εt ∈ RN : ‖εt‖ ≤ η}, for some η > 0. The initial condition x0 is

independent of {εt}.

(A3) det(A) �= 0 and ρ(B) < 1, where ρ(B) is the spectral radius of B.

(A4) The parameter space Φ is compact.

(A5) The sequence {ut} is strictly stationary and ergodic and E‖ut‖6 <∞.

(A6) E‖εt‖4 <∞ and var(εt) = IN
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(A7) The BEKK model is identifiable: If for any φ, φ0 ∈ Φ, Gt(φ) = Gt(φ0) a.s., then φ = φ0.

(A8) The parameter φ0 is an interior point of Φ.

(A9) The function K is symmetric about zero with compact support and satisfies
∫
sK(s)ds = 0.

Let ‖K‖22 =
∫
K(s)2ds.

(A10)

(a) h(T )→ 0 as T →∞ such that Th2 →∞ and Th4 → 0.

(b) h(T ) = cTT
−1/5 with 0 < lim inf

T→∞
cT ≤ lim sup

T→∞
cT <∞.

The assumptions concerning the BEKKmodel are similar to those of Jeantheau (1998) and Comte

and Lieberman (2003). The assumptions A10(a) are used to derive the properties of the estimators

of φ, while assumptions A10(b) are used to derive the properties of the estimators of σ(u).

Define

ℓ(φ) = T−1EℓT (φ)

ℓT (φ) = −
T∑

t=1

log detGt(φ)−
T∑

t=1

y⊤t G
−1
t (φ)yt.

Assumption A7 implies that φ0 is the unique minimizer of ℓ(φ).

A.2 Proof of Theorem 1

Let VtT = Vt(t/T ) with Vt(u) = Σ(u)1/2[G
1/2
t εtε

⊤
t G

1/2
t − IN ]Σ(u)1/2 and vt(u) = vech(Vt(u)) =

DN

[
Σ(u)1/2 ⊗ Σ(u)1/2

]
D+
Nzt where zt = vech(G

1/2
t εtε

⊤
t G

1/2
t − IN ) is stationary and geometrically

mixing. To establish (23) we use the following lemma.

L���� 1. For some bounded continuous function b(u),

sup
u∈[0,1]

∥∥∥∥∥σ̃(u)− σ(u)− 1

T

T∑

t=1

Kh(u− t/T )vt(u)− h2b(u)

∥∥∥∥∥ = O

(
log T

Th

)
+ o

(
h2
)
a.s.

sup
u∈[0,1]

∥∥∥∥∥
1

T

T∑

t=1

Kh(u− t/T )vt(u)

∥∥∥∥∥ = O

(√
log T

Th

)
a.s.

It then follows by a CLT for mixing processes that

√
Th

1

T

T∑

t=1

Kh(u− t/T )vt(u) =⇒ N(0, Vσ(u)).

The bias function b(u) is µ2(K)σ′′(u)/2.
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We first establish consistency of φ̃. By the triangle inequality

sup
φ∈Φ

∣∣∣T−1ℓ̃T (φ)− ℓ(φ)
∣∣∣ ≤ sup

φ∈Φ

∣∣∣T−1ℓ̃T (φ)− T−1ℓT (φ)
∣∣∣+ sup

φ∈Φ

∣∣T−1ℓT (φ)− ℓ(φ)
∣∣ .

It follows from standard results that

sup
φ∈Φ

∣∣T−1ℓT (φ)− ℓ(φ)
∣∣ = op(1). (33)

We shall show that

sup
φ∈Φ

∣∣∣T−1ℓ̃T (φ)− T−1ℓT (φ)
∣∣∣ = op(1). (34)

This then implies consistency of φ̃ by the identifiability condition.

We have

ℓ̃T (φ)− ℓT (φ) = −
T∑

t=1

log detGt(φ)G̃
−1
t (φ)−

T∑

t=1

y⊤t

(
G̃−1
t (φ)−G−1

t (φ)
)
yt,

so we obtain a representation forGt(φ)G̃
−1
t (φ) and G̃−1

t (φ)−G−1
t (φ). Note that G̃−1

t = G−1
t −G−1

t (G̃t−
Gt)G

−1
t + op(δT ), where we can show that δT = T−1/2. We have

G̃t(φ)−Gt(φ) = A∆t−1A
⊤ +B

[
G̃t−1 −Gt−1

]
B⊤

= A∆t−1A
⊤ +B

[
A∆t−2A

⊤
]
B⊤ +B2

[
G̃t−2 −Gt−2

]
B⊤2

=
t−1∑

j=1

Bj−1
[
A∆t−jA

⊤
]
(B⊤)j−1,

∆t−j = Σ̃(t− j/T )−1/2yt−jy
⊤
t−jΣ̃(t− j/T )−1/2 − Σ(t− j/T )−1/2yt−jy

⊤
t−jΣ(t− j/T )−1/2.

Then, since

Σ̃(u) = Σ1/2(u)
(
I + Σ−1/2(u)(Σ̃(u)− Σ(u))Σ−1/2(u)

)
Σ1/2(u) + op(δT )

for any u ∈ [0, 1], we have

Σ̃−1/2(u) = Σ−1/4(u)
(
I + Σ−1/2(u)(Σ̃(u)− Σ(u))Σ−1/2(u)

)−1/2
Σ−1/4(u) + op(δT )

= Σ−1/4(u)

(
I − 1

2
Σ−1/2(u)(Σ̃(u)− Σ(u))Σ−1/2(u)

)
Σ−1/4(u) + op(δT )

= Σ−1/2(u)− 1

2
Σ−3/4(u)(Σ̃(u)− Σ(u))Σ−3/4(u) + op(δT ).
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Therefore,

∆s =
[
Σ̃(s/T )−1/2 − Σ(s/T )−1/2

]
ysy

⊤
s Σ(s/T )−1/2

+Σ(s/T )−1/2ysy
⊤
s

[
Σ̃(s/T )−1/2 − Σ(s/T )−1/2

]

+
[
Σ̃(s/T )−1/2 − Σ(s/T )−1/2

]
ysy

⊤
s

[
Σ̃(s/T )−1/2 − Σ(s/T )−1/2

]

= −1

2
Σ−3/4(s/T ))(Σ̃(s/T ))− Σ(s/T ))Σ−3/4(s/T )ysy

⊤
s Σ(s/T )−1/2

−1

2
Σ(s/T )−1/2ysy

⊤
s Σ−3/4((s/T ))(Σ̃(s/T )− Σ(s/T ))Σ−3/4(s/T ) + op(δT ),

so that

G̃t(φ)−Gt(φ) = −1

2

t−1∑

j=1

Bj−1AΣ−3/4((t− j)/T ))
[
Σ̃((t− j)/T )− Σ((t− j)/T )

]

×Σ−3/4((t− j)/T )yt−jy
⊤
t−jΣ(t− j/T )−1/2A⊤(B⊤)j−1

+
t−1∑

j=1

Bj−1AΣ(t− j/T )−1/2yt−jy
⊤
t−jΣ

−3/4((t− j)/T ))

×
[
Σ̃((t− j)/T ))− Σ((t− j)/T )

]
Σ−3/4((t− j)/T )A⊤(B⊤)j−1

+op(δT ). (35)

We can bound this by the uniform convergence rate of Σ̃(·) times a factor that is Op(1).

Note that

1

T

T∑

t=1

y⊤t G̃
−1
t (φ)yt −

1

T

T∑

t=1

y⊤t G
−1
t (φ)yt = − 1

T

T∑

t=1

y⊤t G
−1
t (φ)

[
G̃t(φ)−Gt(φ)

]
G̃−1
t (φ)yt

1

T

T∑

t=1

log detGt(φ)G̃
−1
t (φ) ≃ 1

T

T∑

t=1

Tr
[
(G̃t(φ)−Gt(φ))G

−1
t (φ)

]
.

Therefore, it suffices to show that

max
1≤t≤T

sup
φ∈Φ

∥∥∥G̃t(φ)−Gt(φ)
∥∥∥ = op(1) (36)

min
1≤t≤T

inf
φ∈Φ

λmin(Gt(φ)) > 0. (37)

The first property follows from Lemma 1 and the mapping φ 
→ Gt(φ), and the second follows by

assumption on Φ.

We now turn to asymptotic normality of φ̃. The general strategy is to show the following:

√
T
(
φ̃− φ

)
= −

[
∂2ℓ̃T (φ0)

∂φ∂φ⊤

]−1√
T
∂ℓ̃T (φ0)

∂φ
+ op(1), (38)
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√
T
∂ℓ̃T (φ0)

∂φ
=⇒ N(0, Q) (39)

∂2ℓ̃T (φ0)

∂φ∂φ⊤
P−→ J. (40)

We will consider the quantities:

√
T
∂ℓT (φ0)

∂φi
=

1√
T

T∑

t=1

Tr

[
(IN − utu

⊤
t G

−1
t )

∂Gt

∂φi
G−1
t

]

√
T
∂ℓ̃T (φ0)

∂φi
=

1√
T

T∑

t=1

Tr

[
(IN − ũtũ

⊤
t G̃

−1
t )

∂G̃t

∂φi
G̃−1
t

]
.

We have

√
T
∂ℓ̃T (φ0)

∂φi
=

√
T
∂ℓT (φ0)

∂φi

+
1√
T

T∑

t=1

Tr

[
(IN − utu

⊤
t G

−1
t )

(
∂G̃t

∂φi
− ∂Gt

∂φi

)
G−1
t

]

− 1√
T

T∑

t=1

Tr

[
(IN − utu

⊤
t G

−1
t )

∂Gt

∂φi

(
G−1
t (G̃t −Gt)G

−1
t

)]

+
1√
T

T∑

t=1

Tr

[
utu

⊤
t

(
G−1
t (G̃t −Gt)G

−1
t

) ∂Gt

∂φi
G−1
t

]

− 1

2
√
T

T∑

t=1

Tr

[
Σ−3/4(Σ̃− Σ)Σ−1/4(t/T )

∂Gt

∂φi
G−1
t

]

− 1

2
√
T

T∑

t=1

Tr

[
Σ−1/4(Σ̃− Σ)Σ−3/4(t/T )G−1

t

∂Gt

∂φi

]
+ op(1)

=
√
T
∂ℓT (φ0)

∂φi

+
1√
T

T∑

t=1

Tr

[
Gt

(
G−1
t (G̃t −Gt)G

−1
t

) ∂Gt

∂φi
G−1
t

]

− 1

2
√
T

T∑

t=1

Tr

[
Σ−3/4(Σ̃− Σ)Σ−1/4(t/T )

∂Gt

∂φi
G−1
t

]

− 1

2
√
T

T∑

t=1

Tr

[
Σ−1/4(Σ̃− Σ)Σ−3/4(t/T )G−1

t

∂Gt

∂φi

]
+ op(1),

because IN − utu
⊤
t G

−1
t is a martingale difference sequence (∂G̃t/∂φi− ∂Gt/∂φi like G̃t−Gt depends

only on past). Then note that

Tr

[
Σ−1/4(Σ̃− Σ)Σ−3/4(t/T )G−1

t

∂Gt

∂φi

]
= Tr

[
Σ−3/4(Σ̃− Σ)Σ−1/4(t/T )

∂Gt

∂φi
G−1
t

]
,
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to obtain that

√
T
∂ℓ̃T (φ0)

∂φi
=

√
T
∂ℓT (φ0)

∂φi

+
1√
T

T∑

t=1

Tr

[
G−1
t

∂Gt

∂φi
G−1
t (G̃t −Gt)

]

− 1√
T

T∑

t=1

Tr

[
Σ−3/4(Σ̃− Σ)Σ−1/4(t/T )

∂Gt

∂φi
G−1
t

]
+ op(1),

Consider

1√
T

T∑

t=1

Tr

[
Σ−3/4(Σ̃− Σ)Σ−1/4(t/T )

∂Gt

∂φi
G−1
t

]

=
1√
T

T∑

t=1

Tr

[
Σ−3/4

1

T

T∑

s=1

Kh((t− s)/T )VsTΣ
−1/4(t/T )

∂Gt

∂φi
G−1
t

]
+ op(1)

=
1√
T

T∑

s=1

Tr

[
1

T

T∑

t=1

Kh((t− s)/T )Σ−3/4(t/T )VsTΣ
−1/4(t/T )

∂Gt

∂φi
G−1
t

]
+ op(1)

=
1√
T

T∑

s=1

1

T

T∑

t=1

Kh((t− s)/T )vec

(
G−1
t

∂Gt

∂φi

)⊤ [
Σ−1/4(t/T )⊗ Σ−3/4(t/T )

]
vec (VsT ) + op(1)

=
1√
T

T∑

s=1

vec

(
E

[
G−1
t

∂Gt

∂φi

])⊤ [
Σ−1/4(s/T )⊗ Σ−3/4(s/T )

]
vec (VsT ) + op(1)

= vec

(
E

[
G−1
t

∂Gt

∂φi

])⊤
1√
T

T∑

s=1

[
Σ1/4(s/T )⊗ Σ−1/4(s/T )

]
vec

[
(G1/2

s εsε
⊤
s G

1/2
s − IN)

]
+ op(1)(41)

using Tr(ABCD) = vec(D⊤)⊤(C⊤ ⊗ A)vec(B), and

1

T

T∑

t=1

Kh((t− s)/T )vec

(
G−1
t

∂Gt

∂φi

)⊤ [
Σ−1/4(t/T )⊗ Σ−3/4(t/T )

]

=
1

T

T∑

t=1

Kh((t− s)/T )vec

(
E

[
G−1
t

∂Gt

∂φi

])⊤ [
Σ−1/4(t/T )⊗ Σ−3/4(t/T )

]
+ op(1) (42)

= vec

(
E

[
G−1
t

∂Gt

∂φi

])⊤ [
Σ−1/4(s/T )⊗ Σ−3/4(s/T )

]
+ op(1). (43)
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The term (41) is asymptotically normal. Using (35), we obtain

1√
T

T∑

t=1

Tr

[
G−1
t (G̃t −Gt)G

−1
t

∂Gt

∂φi

]

=
1

2T
√
T

T∑

s=1

T∑

t=1

t−1∑

j=1

Kh

(
t− j − s

T

)
Tr

[
Bj−1AΣ−3/4VsTΣ

−1/4(t− j/T )Gt−jA
⊤(B⊤)j−1G−1

t

∂Gt

∂φi
G−1
t

]

+
1

2T
√
T

T∑

s=1

T∑

t=1

t−1∑

j=1

Kh

(
t− j − s

T

)
Tr

[
Bj−1AGt−jΣ

−1/4VsTΣ
−3/4(t− j/T )A⊤(B⊤)j−1G−1

t

∂Gt

∂φi
G−1
t

]

+op(1).

Then

Tr

[
G−1
t

∂Gt

∂φi
G−1
t Bj−1AΣ−3/4(t− j/T )VsTΣ

−1/4(t− j/T )Gt−jA
⊤(B⊤)j−1

]

= vec
(
Bj−1A

)⊤
[
Gt−j ⊗G−1

t

∂Gt

∂φi
G−1
t

]
vec(Bj−1AΣ−3/4(t− j/T )VsTΣ

−1/4(t− j/T ))

= vec
(
Bj−1A

)⊤
[
Gt−j ⊗G−1

t

∂Gt

∂φi
G−1
t

] [
Σ−1/4(t− j/T )⊗Bj−1AΣ−3/4(t− j/T )

]
vec(VsT ),

Tr

[
Gt−jΣ

−1/4VsTΣ
−3/4(t− j/T )A⊤(B⊤)j−1G−1

t

∂Gt

∂φi
G−1
t Bj−1A

]

= vec
(
B⊤j−1A⊤

)⊤
[
G−1
t

∂Gt

∂φi
G−1
t ⊗Gt−j

]
vec(Σ−1/4VsTΣ

−3/4(t− j/T )A⊤(B⊤)j−1)

= vec
(
B⊤j−1A⊤

)⊤
[
G−1
t

∂Gt

∂φi
G−1
t ⊗Gt−j

] [
Bj−1AΣ−3/4(t− j/T )⊗ Σ−1/4

]
vec(VsT ).

So we need the probability limit of

1

T

T∑

t=1

t−1∑

j=1

Kh

(
t− j − s

T

)
vec

(
Bj−1A

)⊤
[
Gt−j ⊗G−1

t

∂Gt

∂φi
G−1
t

]

×
[
Σ−1/4

(
t− j

T

)
⊗Bj−1AΣ−3/4

(
t− j

T

)]

=
1

T

T∑

t=1

t−1∑

j=1

Kh

(
t− j − s

T

)
vec

(
Bj−1A

)⊤Mi
j

[
Σ−1/4

(
t− j

T

)
⊗Bj−1AΣ−3/4

(
t− j

T

)]
+ op(1)

=
∞∑

j=1

vec
(
Bj−1A

)⊤Mi
j

[
Σ−1/4(s/T )⊗Bj−1AΣ−3/4(s/T )

]
+ op(1),

where

Mi
j = E

[
Gt−j ⊗G−1

t

∂Gt

∂φi
G−1
t

]
.
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Then recalling that vec(VtT ) = [Σ(t/T )1/2 ⊗ Σ(t/T )1/2]vec(G
1/2
t εtε

⊤
t G

1/2
t − IN), we have

1√
T

T∑

t=1

Tr

[
(G̃t −Gt)G

−1
t

∂Gt

∂φi
G−1
t

]

=
1√
T

T∑

t=1

Ci(t/T )vec(G
1/2
t εtε

⊤
t G

1/2
t − IN ),

where

Ci(t/T ) =
∞∑

j=1

vec
(
Bj−1A

)⊤Mi
j

[
IN ⊗Bj−1A

] [
Σ1/4(s/T )⊗ Σ−1/4(s/T )

]

+

∞∑

j=1

vec
(
B⊤j−1A⊤

)⊤M∗i
j

[
Bj−1A⊗ IN

] [
Σ−1/4(s/T )⊗ Σ1/4(s/T )

]
,

where

M∗i
j = E

[
G−1
t

∂Gt

∂φi
G−1
t ⊗Gt−j

]
.

This term is also asymptotically normal. In conclusion we have

√
T
∂ℓ̃T (φ0)

∂φi
= − 1√

T

T∑

t=1

vec

(
G
−1/2
t

∂Gt

∂φi
G
−1/2
t

)⊤
vec

(
εtε

⊤
t − IN

)

+
1√
T

T∑

t=1

Ci(t/T )× vec(G
1/2
t εtε

⊤
t G

1/2
t − IN )

−vec

(
E

[
G−1
t

∂Gt

∂φi

])⊤
1√
T

T∑

s=1

[
Σ1/4(s/T )⊗ Σ−1/4(s/T )

]
vec

[
(G1/2

s εsε
⊤
s G

1/2
s − IN)

]

+op(1)

and

√
T
∂ℓ̃T (φ0)

∂φ
= − 1√

T

T∑

t=1

ζ̃t +
1√
T

T∑

t=1

C(t/T )zt

−E[ρt]
1√
T

T∑

s=1

[
Σ1/4(s/T )⊗ Σ−1/4(s/T )

]
zs + op(1)

≡ 1√
T

T∑

t=1

ℵt + op(1),

where ζ̃t = ρtvec
(
εtε

⊤
t − IN

)
is a martingale difference sequence. Furthermore, ρt is defined in (22),

zt in (4), C(t/T ) = (C1(t/T )⊤, . . . , Cp(t/T )⊤)⊤, and

ℵt = ζ̃ t + Υ(t/T )zt

Υ(t/T ) = C(t/T )− E[ρt]
[
Σ1/4(s/T )⊗ Σ−1/4(s/T )

]
.
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We have
1√
T

T∑

s=1

Υ(t/T )zt =⇒ N(0,Ψ),

Letting Γu = E[zsz
⊤
s+u] as defined in (19),

Ψ = lim
T→∞

1

T
E



(

T∑

s=1

Υ(s/T )zs

)(
T∑

s=1

Υ(s/T )zs

)⊤


= lim
T→∞

1

T




T∑

s=1

Υ(s/T )E
[
zsz

⊤
s

]
Υ(s/T )⊤ +

T∑

s=1

T∑

s′=1
s �=s′

Υ(s/T )E
[
zsz

⊤
s′

]
Υ(s′/T )⊤




= lim
T→∞

1

T

[
T∑

s=1

Υ(s/T )Γ0Υ(s/T )⊤ +
T−1∑

s=1

T∑

s′=s+1

Υ(s/T )(Γs′−s + Γ⊤s−s′)Υ(s′/T )⊤

]

= lim
T→∞

1

T

[
T∑

s=1

Υ(s/T )Γ0Υ(s/T )⊤ +
T−1∑

s=1

Υ(s/T )
T−s∑

u=1

(Γu + Γ⊤−u)Υ((s+ u)/T )⊤

]

= lim
T→∞

1

T

T∑

s=1

Υ(s/T )Γ0Υ(s/T )⊤ + lim
T→∞

1

T

T∑

s=1

Υ(s/T )
±T−1∑

u=±1

ΓuΥ(s/T )⊤

by a Taylor expansion provided
∑∞

u=−∞ u||Γu|| <∞, so that

vec(Ψ) =

∫ 1

0

[Υ(u)⊗Υ(u)] du
∞∑

u=−∞

vec(Γu).

Now define Γ̃u = E[ζ̃tz
⊤
t+u] and note that Γ̃u = 0 for u < 0. Then,

H = lim
T→∞

1

T
E



(

T∑

s=1

ζ̃s

)(
T∑

s=1

Υ(s/T )zs

)⊤


= lim
T→∞

1

T

[
T∑

s=1

E
[
ζ̃sz

⊤
s

]
Υ(s/T )⊤ +

T−1∑

s=1

T∑

s′=s+1

E
[
ζ̃sz

⊤
s′

]
Υ(s′/T )⊤

]

= lim
T→∞

1

T

[
T∑

s=1

Γ̃0Υ(s/T )⊤ +
T−1∑

s=1

T∑

s′=s+1

Γ̃s′−sΥ(s′/T )⊤

]

= lim
T→∞

1

T

[
T∑

s=1

Γ̃0Υ(s/T )⊤ +
T−1∑

s=1

T−s∑

u=1

Γ̃uΥ((s+ u)/T )⊤

]

= lim
T→∞

1

T

T∑

s=1

Γ̃0Υ(s/T )⊤ + lim
T→∞

1

T

T∑

s=1

±T−1∑

u=±1

Γ̃uΥ(s/T )⊤

by a Taylor expansion provided
∑∞

u=−∞ u||Γ̃u|| <∞, so that

vec(H) =

∫ 1

0

[Υ(u)⊗ Ip] du
∞∑

u=−∞

vec(Γ̃u).
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Finally, we obtain the asymptotic covariance matrix,

Q = lim
T→∞

var
1√
T

T∑

t=1

ℵt = Φ +H +H⊤ + E[ρtΞtρ
⊤
t ] (44)

where Ξt is defined in (26).

Note also that
∂2ℓ̂T (φ0)

∂φ∂φ⊤
=

1

T

T∑

t=1

E

[
∂2ℓt(φ0)

∂φ∂φ⊤

]
+ op(1),

where

∂2lt
∂φi∂φj

= Tr

[
∂2Gt

∂φi∂φj
G−1
t − utu

⊤
t G

−1
t

∂2Gt

∂φi∂φj
G−1
t − ∂Gt

∂φi
G−1
t

∂Gt

∂φj
G−1
t

+ utu
⊤
t G

−1
t

∂Gt

∂φj
G−1
t

∂Gt

∂φi
G−1
t + utu

⊤
t G

−1
t

∂Gt

∂φi
G−1
t

∂Gt

∂φj
G−1
t

]

with

E

[
∂2lt

∂φi∂φj
(φ0)

]
= Tr

[
E

(
G−1
t

∂Gt

∂φj
G−1
t

∂Gt

∂φi

)]

= E

[
vec

(
∂Gt

∂φi

)⊤ (
G−1
t ⊗G−1

t

)
vec

(
∂Gt

∂φj

)]
,

after cancellation. Q.E.D.

A.3 Proof of Theorem 2

For some θ(u) between θ̃(u) and θ(u) we have by Taylor expansion

θ̂(u)− θ(u) = θ̃(u)− θ(u)−
[
∂2L̃T (θ̃; u)

∂θ∂θ⊤

]−1 [
∂L̃T (θ; u)

∂θ
+

∂2L̃T (θ; u)

∂θ∂θ⊤
(θ̃(u)− θ(u))

]

= −
[
∂2LT (θ; u)

∂θ∂θ⊤

]−1
∂LT (θ; u)

∂θ
+ op

(∥∥∥θ̃(u)− θ(u)
∥∥∥
)
,

using φ̃ = φ0 +Op(T
−1/2) and supu∈[0,1] |σ̃(u)− σ(u)| = Op(h

2) +Op(
√

logT/Th).

The local score function is

∂LT (θ; u)

∂θ
= −

T∑

t=1

Kh(u− t/T )
∂vec(Ωt)

⊤

∂θ

(
Ω
−1/2
t ⊗ Ω

−1/2
t

)
DNvech

(
εtε

⊤
t − IN

)
.

This score function is a kernel weighted sum of martingale difference sequence errors with finite

variance and higher moments. The conditional variance process is mixing and satisfies a law of
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large numbers. Therefore, the score function satisfies a CLT, Hall and Heyde (1980, p11). As

Gt and Σ(t/T ) are symmetric, we have (Lütkepohl (1996), p.190, (5)) ∂vec(Ωt)
⊤/∂θ = 2D⊤

N(IN ⊗
Σ(t/T )1/2Gt)DND

+
N . Furthermore,

∂vec(Ωt)
⊤

∂θ

(
Ω
−1/2
t ⊗ Ω

−1/2
t

)
DN = 2D⊤

N(IN ⊗ Σ(t/T )1/2Gt)DND
+
N

(
Ω
−1/2
t ⊗ Ω

−1/2
t

)
DN

= 2D⊤
N(IN ⊗ Σ(t/T )1/2Gt)

(
Ω
−1/2
t ⊗ Ω

−1/2
t

)
DN

= 2D⊤
N(Ω

−1/2
t ⊗ Σ(t/T )1/2GtΩ

−1/2
t )DN

= 2D⊤
N(Σ(t/T )−1/2G

−1/2
t ⊗G

1/2
t )DN =: Wt(t/T )DN .

The second equality follows since for any A, DND
+
N(A⊗A)DN = (A⊗A)DN by Lütkepohl (1996),

p. 124, 9.5.4.(1d). Thus, we can write the score as

∂LT (θ;u)

∂θ
= −

T∑

t=1

Kh(u− t/T )Wt(u)vec
(
εtε

⊤
t − IN

)
.

We calculate the variance matrix

E

[
1

T

∂LT (θ; u)

∂θ

∂LT (θ;u)

∂θ⊤

]
=

1

T

T∑

t=1

Kh(u− t/T )E
[
Wt(u)vec

(
εtε

⊤
t − IN

)
vec

(
εtε

⊤
t − IN

)⊤
Wt(u)

⊤
]

=
1

T

T∑

t=1

Kh(u− t/T )E
[
Wt(u)ΞtWt(u)

⊤
]

= E
[
Wt(u)ΞtWt(u)

⊤
]
+ o(1).

At the true local parameter Θ0 = Σ1/2(u) we have apart from smoothing biases

E

[
1

T

∂2LT (θ; u)

∂θ∂θ⊤

]

Θ0=Σ1/2(u)

=
1

T

T∑

t=1

Kh(u− t/T )E

[
∂vec(Ωt)

⊤

∂θ

(
Ω−1t ⊗ Ω−1t

) ∂vec(Ωt)

∂θ⊤

]

=
1

T

T∑

t=1

Kh(u− t/T )E
[
Wt(u)Wt(u)

⊤
]

= E
[
Wt(u)Wt(u)

⊤
]
+ o(1)

= 4D⊤
NE(Ω−1t ⊗Gt)DN + o(1)

= Λ(u) + o(1).

In conclusion, √
Th

(
θ̂(u)− θ(u)

)
=⇒ N(0, ‖K‖22 Λ(u)−1Ψ(u)Λ(u)−1).

Then note that

vec(Σ(u)) = (IN ⊗Θ(u)) vec(Θ(u)) = (Θ(u)⊗ IN) vec(Θ(u)).
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Therefore, √
Th(σ̂(u)− σ(u)) = ∆(u)

√
Th

(
θ̂(u)− θ(u)

)
+ op(1)

and so (28) follows. Q.E.D.

A.4 Proof of Theorem 3

For some φ between φ and φ0 we have by Taylor expansion

φ̂− φ0 = φ̃− φ0 −
[
∂2ℓ̂∗T (φ̃)

∂φ∂φ⊤

]−1 [
∂ℓ̂∗T (φ0)

∂φ
+

∂2ℓ̂∗T (φ)

∂φ∂φ⊤
(φ̃− φ0)

]

= −
[
∂2ℓ̂∗T (φ0)

∂φ∂φ⊤

]−1
∂ℓ̂∗T (φ0)

∂φ
+ op(T

−1/2)

= −
[
∂2ℓ∗T (φ0)

∂φ∂φ⊤

]−1
∂ℓ∗T (φ0)

∂φ
+ op(T

−1/2)

because for any sequence φT → φ0

∂2ℓ̂∗T (φT )

∂φ∂φ⊤
− ∂2ℓ∗T (φ0)

∂φ∂φ⊤
P−→ 0.

For asymptotic normality of φ̂ we show the following:

√
T
∂ℓ∗T (φ0)

∂φ
=⇒ N(0, Qe) (45)

∂2ℓ∗T (φ0)

∂φ∂φ⊤
P−→ Je. (46)

We apply a CLT for martingale differences, Hall and Heyde (1980, p11), and an LLN for mixing

processes. Q.E.D.

A.5 Proof of Lemmas

Here we give proofs of Lemmas 1-2.

P���
 �
 L���� 1. We have

Σ̃(u)− Σ(u) =

∑T
t=1Kh(u− t/T )

[
yty

⊤
t − Σ(t/T )

]
∑T

t=1Kh(u− t/T )
+

∑T
t=1Kh(u− t/T ) [Σ(t/T )− Σ(u)]

∑T
t=1Kh(u− t/T )

=
1

Th

T∑

t=1

Kh(u− t/T )VtT +
h2

2
Σ′′(u)

∫
s2K(s)ds+ o(h2) + op(T

−1/2h−1/2)

=
1

Th

T∑

t=1

Kh(u− t/T )Vt(u) +
h2

2
Σ′′(u)

∫
s2K(s)ds+ o(h2) + op(T

−1/2h−1/2)(47)
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by standard kernel arguments using the smoothness of Σ(.) and the fact that

1

Th

T∑

t=1

Kh(u− t/T ) = 1 +O(T−1h−1).

The error term in (47) is uniform in u, applying results from, for example, Masry (1996).3

Q.E.D.

P���
 �
 L���� 2. The proof of Lemma 2 follows from the arguments given in Theorem 2

and Lemma 1. Q.E.D.

B Appendix

B.1 Derivatives w.r.t. φ and σ

ℓt(φ) = log |Gt(φ)|+ u⊤t G
−1
t (φ)ut, φ = (vec(A)⊤, vec(B)⊤)⊤

ut = Σ(t/T )−1/2yt (48)

Gt(φ) =
t−1∑

j=0

Bj
(
IN −AA⊤ −BB⊤ +Aut−ju

⊤
t−jA

⊤
)
(Bj)⊤

gt = vech(Gt) =
t−1∑

j=0

D⊤
N (B ⊗B)jDNvech(IN − AA⊤ −BB⊤ +Aut−ju

⊤
t−jA

⊤)

B.1.1 First derivatives

Notation: φi is the i-th element of φ = (vec(A)⊤, vec(B)⊤)⊤, Aij and Bkl are the ij-th and kl-th

elements of A and B, respectively. Then:

3Actually, he considered a stochastic covariate process, but the arguments are even simpler in our case of deter-

ministic covariate t/T.
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∂ℓt
∂φi

= Tr

[
(IN − utu

⊤
t G

−1
t )

∂Gt

∂φi
G−1
t

]

= vec

(
∂Gt

∂φi

)⊤
vec

(
G−1
t −G−1

t utu
⊤
t G

−1
t

)

= −vec

(
G
−1/2
t

∂Gt

∂φi
G
−1/2
t

)⊤
vec

(
εtε

⊤
t − IN

)

∂Gt

∂Aij
=

t−1∑

m=0

Bm
{
Jij(ut−mu

⊤
t−m − IN)A⊤ +A(ut−mu

⊤
t−m − IN )Jji

}
(B⊤)m

∂Gt

∂Bij
=

t−1∑

m=0

∂Bm

∂Bij

(
IN −AA⊤ −BB⊤ +Aut−mu

⊤
t−mA

⊤
)
Bm

+ Bm
(
IN −AA⊤ −BB⊤ +Aut−mu

⊤
t−mA

⊤
) ∂(B⊤)m

∂Bij

− BmJij(B
⊤)m+1 −Bm+1Jji(B

⊤)m

∂Bm

∂Bij
=

m−1∑

n=0

BnJijB
m−1−n,

where Jij is an N ×N matrix with zeros everywhere except for a one at the ij-th position.

B.1.2 Second derivatives

Notation: σj is the j-th element of vech{Σ(t/T )}.
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∂2lt
∂φi∂φj

= Tr

[
∂2Gt

∂φi∂φj
G−1
t − utu

⊤
t G

−1
t

∂2Gt

∂φi∂φj
G−1
t − ∂Gt

∂φi
G−1
t

∂Gt

∂φj
G−1
t

+ utu
⊤
t G

−1
t

∂Gt

∂φj
G−1
t

∂Gt

∂φi
G−1
t + utu

⊤
t G

−1
t

∂Gt

∂φi
G−1
t

∂Gt

∂φj
G−1
t

]

∂2lt
∂φi∂σj

= Tr

[
∂2Gt

∂φi∂σj
G−1
t − utu

⊤
t G

−1
t

∂2Gt

∂φi∂σj
G−1
t − ∂Gt

∂φi
G−1
t

∂Gt

∂σj
G−1
t

+ utu
⊤
t G

−1
t

∂Gt

∂σj
G−1
t

∂Gt

∂φi
G−1
t + utu

⊤
t G

−1
t

∂Gt

∂φi
G−1
t

∂Gt

∂σj
G−1
t

− ∂Σ−1/2(t/T )

∂σj
yty

⊤
t Σ−1/2(t/T )G−1

t

∂Gt

∂φi
G−1
t − Σ−1/2(t/T )yty

⊤
t

∂Σ−1/2(t/T )

∂σj
G−1
t

∂Gt

∂φi
G−1
t

]

∂2Gt

∂Aij∂Akl

=
t−1∑

m=0

Bm
{
Jij(ut−mu

⊤
t−m − IN)Jlk + Jkl(ut−mu

⊤
t−m − IN)Jji

}
(B⊤)m

∂2Gt

∂Aij∂Bkl

=
t−1∑

m=0

∂Bm

∂Bkl

{
Jij(ut−mu

⊤
t−m − IN)A⊤ +A(ut−mu

⊤
t−m − IN)Jji

}
(B⊤)m

+
t−1∑

m=0

Bm
{
Jij(ut−mu

⊤
t−m − IN)A⊤ +A(ut−mu

⊤
t−m − IN )Jji

} ∂(B⊤)m

∂Bij

∂2Gt

∂Bij∂Bkl
=

5∑

q=1

(Iq + I⊤q )

I1 =
t−1∑

m=0

∂2Bm

∂Bij∂Bkl

(
IN − AA⊤ −BB⊤ +Aut−mu

⊤
t−mA

⊤
)
(B⊤)m

I2 =
t−1∑

m=0

∂Bm

∂Bij

(
IN −AA⊤ −BB⊤ +Aut−mu

⊤
t−mA

⊤
) ∂(B⊤)m

∂Bkl

I3 =
t−1∑

m=0

∂Bm

∂Bij

(
−JklB⊤ −BJlk

)
(B⊤)m

I4 =
t−1∑

m=0

∂Bm

∂Bkl

(
−JijB⊤ −BJji

)
(B⊤)m

I5 = −BmJijJlk(B
⊤)m
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∂2Gt

∂Aij∂σk
=

t−1∑

m=0

Bm

{
Jij

∂Σ−1/2(t−m/T )

∂σk
yt−mu

⊤
t−mA

⊤ + Jijut−my
⊤
t−m

∂Σ−1/2(t−m/T )

∂σk
A⊤

+ A
∂Σ−1/2(t−m/T )

∂σk
yt−mu

⊤
t−mJji +Aut−my

⊤
t−m

∂Σ−1/2(t−m/T )

∂σk
Jji

}
(B⊤)m

∂2Gt

∂Bij∂σk
=

t−1∑

m=0

∂Bm

∂Bij

(
A
∂Σ−1/2(t−m/T )

∂σk
yt−mu

⊤
t−mA

⊤ +Aut−my
⊤
t−m

∂Σ−1/2(t−m/T )

∂σk
A⊤
)
Bm

+ Bm

(
A
∂Σ−1/2(t−m/T )

∂σk
yt−mu

⊤
t−mA

⊤ +Aut−my
⊤
t−m

∂Σ−1/2(t−m/T )

∂σk
A⊤
)
∂(B⊤)m

∂Bij

,

where:
∂2Bm

∂Bij∂Bkl
=

m−1∑

n=0

∂Bn

∂Bkl
JijB

m−1−n +BnJij
∂Bm−1−n

∂Bij
,

∂vechΣ−1/2(t/T )

∂σk
= −D+

N

{
Σ−1/2(t/T )⊗ Σ−1/2(t/T )

}
DN

∂vechΣ1/2(t/T )

∂σk
,

and where ∂vechΣ1/2(t/T )/∂σk depends on the particular definition used for the matrix square root.
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C Tables

50-60 60-70 70-80 80-90 90-00 00-09

c 0.0213 0.0019 -0.0106 0.0111 0.0043 -0.0234

ρ1 0.1584 0.2229 0.2429 0.0635 0.0603 -0.0814

ρ2 -0.0977 -0.0288 -0.0563 -0.0033 0.0120 -0.0445

ω 0.0425 0.0166 0.0039 0.0605 0.0132 0.0121

β 0.8330 0.8086 0.9543 0.8620 0.9230 0.9416

γ 0.0584 0.0574 0.0073 0.0362 0.0016 -0.0179

δ 0.0692 0.2031 0.0691 0.0980 0.1264 0.1278

R2 0.0165 0.0320 0.0515 0.0025 0.0000 0.0171

mper 0.0607 0.1941 0.1866 0.0602 0.0723 -0.1259

vper 0.9260 0.9676 0.9962 0.9472 0.9878 0.9876

µyear 0.1199 0.0714 0.0346 0.0939 0.0768 0.0161

σyear 0.1144 0.1080 0.1520 0.1616 0.1571 0.1492
Table 1. Daily S&P500 total returns

yt = c+ ρ1yt−1 + ρ2yt−2 + εtσt

σ2t = ω + βσ2t−1 + γu2t−1 + δu2t−11(ut−1 < 0)
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Figure 1. Stock price and total return

full sample first half second half

DJ NQ DJ NQ DJ NQ

mean 2.37E-04 2.60E-04 5.56E-04 7.24E-04 -8.12E-05 -1.95E-04

std.dev. 0.0110 0.0156 0.0088 0.0108 0.0127 0.0192

skew -0.1483 -0.0562 -0.4354 -0.6099 0.0127 0.0979

kurt 12.20 9.24 8.57 8.2901 11.45 7.2277

ρ(1) -0.039 0.009 0.029 0.115 -0.074 -0.026

ρ(2) -0.063 -0.055 -0.030 -0.005 -0.081 -0.073

ρ(3) 0.033 0.022 -0.036 0.015 0.066 0.023

ρ(4) -0.019 0.000 -0.013 -0.011 -0.023 0.002

ρ(5) -0.033 -0.025 -0.003 -0.007 -0.049 -0.032

Table 2. Summary statistics for Dow Jones and NASDAQ returns
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Figure 2. Autocorrelations of returns and absolute returns.
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Figure 3. NASDAQ Local first order autocorrelation function
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Figure 4. DOW local first order autocorrelation function
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full sample first half second half

est. s.e. est. s.e. est. s.e.

ν1 0.000247 0.000160 0.000530 0.000187 -8.58E-05 0.000259

ν2 0.000268 0.000227 0.000644 0.000229 -0.000204 0.000391

Φ11 -0.047210 0.033287 -0.012809 0.036635 -0.076121 0.047746

Φ12 0.007684 0.019976 0.046989 0.028675 0.002380 0.025823

Φ21 -0.102697 0.050832 -0.034100 0.049310 -0.158907 0.073014

Φ22 0.063595 0.038714 0.136019 0.044622 0.054652 0.050555

Table 3. Estimation results of VAR(1) with heteroskedasicity consistent standard errors.

full sample first half second half

est. s.e. est. s.e. est. s.e.

A11 0.1870 0.0428 0.0053 0.0386 0.1957 0.1027

A12 -0.0266 0.0483 0.1337 0.0293 -0.0725 0.0491

A21 0.0137 0.0431 -0.1673 0.0647 0.0288 0.0982

A22 0.1812 0.0468 0.3694 0.0459 0.1270 0.0651

B11 0.9627 0.0118 1.0071 0.0081 0.9568 0.0165

B12 0.0063 0.0105 -0.0404 0.0123 0.0114 0.0079

B21 -0.0028 0.0097 0.0460 0.0157 -0.0032 0.0196

B22 0.9704 0.0086 0.9083 0.0251 0.9763 0.0116

γ1 0.2389 0.0236 0.2019 0.0386 0.2814 0.0271

γ2 0.2062 0.0261 0.2088 0.0608 0.2299 0.0244

pers 0.9956 0.9901 0.9967

port 180.88 372.29 27.79

Table 4. Results for stationary BEKK. The value pers is the maximum eigenvalue of the matrix

A⊗A+B ⊗B + C ⊗ C/2, and port is the value of the multivariate portmanteau statistic of order

10.
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full sample first half second half

est. s.e. est. s.e. est. s.e.

A11 0.0586 0.0430 0.0301 0.0478 0.1567 0.0632

A12 0.0497 0.0613 -0.1312 0.1332 -0.0785 0.0485

A21 -0.1935 0.0273 -0.2007 0.0454 -0.1397 0.0901

A22 0.0524 0.0544 -0.0918 0.0610 -0.0565 0.0608

B11 0.9537 0.0146 0.8481 0.1073 0.9068 0.0484

B12 -0.0226 0.0175 0.0522 0.0626 0.0324 0.0702

B21 0.0694 0.0180 -0.1582 0.1812 0.1039 0.0503

B22 0.8565 0.0330 0.7799 0.1032 0.8229 0.0904

γ1 0.2757 0.0333 0.1731 0.0997 0.3137 0.0466

γ2 0.3661 0.0378 0.4468 0.0615 0.2383 0.0465

pers 0.9317 0.7602 0.9253

port 134.01 303.69 19.13

Table 5. Results for local stationary model. The value pers is the maximum eigenvalue of the matrix

A⊗A+B ⊗B +C ⊗C/2, and port is the value of the multivariate portmanteau statistic of order 10.
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Figure 5. Estimates of conditional and unconditional standard deviations
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Figure 6. Estimates of conditional and unconditional correlation
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Figure 7. Autocorrelation function of residuals and absolute residuals

46



Figure 8. NASDAQ Residual first order local autocorrelation function
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Figure 9. DOW Residual first order local autocorrelation function
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Figure 10. Bivariate density plot of data

Figure 11. Bivariate density plot of residuals
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