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Abstract 

 
This paper proposes a class of locally stationary diffusion processes. The model 
has a time varying but locally linear drift and a volatility coefficient that is allowed to 
vary over time and space. We propose estimators of all the unknown quantities 
based on long span data. Our estimation method makes use of the local 
stationarity. We establish asymptotic theory for the proposed estimators as the 
time span increases. We apply this method to the real financial data to illustrate the 
validity of our model. Finally, we present a simulation study to provide the finite-
sample performance of the proposed estimators. 
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1 Introduction

The theory of asset pricing has been one of the fastest growing �elds of study over the past decades.

Since the seminal papers written by Black and Scholes (1973) and Merton (1973), the di¤usion

process has lain at the heart of modeling the dynamics of economic variables, including the term

structure of interest rates. This de�nes Xt as the strong solution to

dXt = �tdt+ �tdWt; (1)

where fWt : t � 0g is a standard Brownian motion de�ned on the �ltered probability space
(
;FW ; (FWt ); P ), FW is a �-algebra, FWt is a �ltration. Here, �t and �

2
t are commonly referred to

as the conditional drift or instantaneous return function, and the conditional di¤usion or volatility

function of the process respectively. They can depend on Xt and time.

In line with the remarkable progress in asset pricing theory, the estimation methodologies con-

cerning continuous-time stochastic processes have improved immensely over the most recent decade.

Because one of the main goals of �nancial econometrics is to investigate the expected returns and

volatilities of the underlying dynamics of economic variables such as stocks, interest rates, exchange

rates, and their derivatives, the econometric treatment of estimating the above two functions of

interest has advanced quite signi�cantly and become more sophisticated.

In spite of the progress on various fronts of econometric theory on continuous-time stochastic

processes, quite a few challenges still remain to be addressed. For instance, identi�cation, estimation

and studies of the asymptotic properties of the continuous-time processes have turned out to be quite

demanding, mainly because we only have discretely sampled observations drawn from processes

whose dynamics are continuous in time. Moreover, while the di¤usion process in (1) is quite

extensively used, asset pricing theory doesn�t narrow down the number of possible speci�cations

for the drift and volatility terms, let alone pin down their exact forms. For example, an array

of di¤erent speci�cations have been proposed for the term structure dynamics (see Aït-Sahalia

(1996)).

As a result, many stochastic models have been chosen simply due to mathematical manipu-

lability and simplicity of statistical inferences. One salient example could be the assumption of

stationarity, i.e., the assumption of the existence of a time invariant stationary distribution for Xt.

Indeed, most of the �nancial econometrics theories depend on the assumption of stationarity of the

observed process. Undoubtedly, this is because a stationarity assumption provides a powerful device

for identi�cation and estimation of the underlying continuous-time data generating process. More

speci�cally, there are conspicuous bene�ts attributed to this assumption. Among them, most im-

portantly, it enables us to avoid the serious identi�cation issue known as the aliasing problem, since

cross-restrictions can be imposed. It is worth mentioning that in general, there is no one-to-one

correspondence (bijection) between the parameters or functionals of the continuous-time model and

its corresponding discrete time model, see Phillips (1973). Moreover, under suitable conditions, a

strict stationarity assumption guarantees that the distribution of the di¤usion process is completely

characterized by two functionals of our concern. Aït-Sahalia (1996) and Jiang and Knight (1997)
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used this property to substantiate their arguments. Another compelling reason for the stationarity

assumption is because well-established asymptotic results are readily available. Therefore, it makes

establishment of estimation and inference procedures much simpler.

Nevertheless, there are a plethora of cases in which an assumption of stationarity is unrealistic

and unjusti�able. For example, irregularity of the trade at the beginning or the end of �nancial

markets, volatility clustering, and ruptures arising from shocks or structural changes are among

those (see Campbell, Lo and Mackinlay (1997)). In truth, nonstationary properties of �nancial data

are often found in many problems of interest in economics and �nance. In addition, time series in

economic and �nancial markets have an inherently dynamic and time-varying nature. Therefore,

the stationarity assumption is unlikely to hold in many cases. Consequently, it would be desirable

that nonstationarity could be allowed for. Not only does this relaxation enable us to �t the data

better, but may also allow us to augment the model built upon the assumption of stationarity to

a more general model with nonstationary characteristics.

This paper proposes a semiparametric model that generalizes the usual time-inhomogeneous dif-

fusion processes along the line of an important class of nonstationarity, local stationarity, Dahlhaus

(1996). This type of nonstationarity is relatively easy to deal with since, in a neighborhood of a

chosen time point the process behaves like a stationary di¤usion process. We use this structure

to devise an estimation method. More speci�cally, our approach is based on the density matching

method of Aït-Sahalia (1996) suitably generalized to this nonstationary framework. We will discuss

relevant papers in the Section 2 in more detail.

We establish the asymptotic properties of our estimators under the long span assumption only,

namely we do not require that the time between observations goes to zero, rather we assume that it

is �xed but the horizon under consideration expands. This seems like an appropriate framework for

certain types of data. We show that our proposed estimators of the drift and volatility of processes

are consistent and asymptotically normal. In addition, we obtain the uniform rate of convergence of

the estimators of the drift and the volatility functions. Finally, we present a simulation study and

an application to weekly interest rate data to illustrate the �nite sample properties of the proposed

estimators of the drift and di¤usion.

The remainder of this paper is organized as follows. Section 2 brie�y reviews related studies

in the literature. Section 3 introduces the model and the related framework. Section 4 suggests

estimators of the drift and volatility functions. Section 5 develops several asymptotic theories in

relation to our proposed estimators. Also, an real application of our methodology is given in Section

6. Simulation results are discussed in section 7. Section 8 concludes. All proofs and our application

and simulation results are found in Appendix.

Throughout this paper, the following notations are used. The integral
R
is taken over (�1;1)

unless speci�ed otherwise. jj � jj denotes any norm over the relevant space: Let g be any function.

jjgjj1 = sup
x
jg(x)j, jjgjj2 =

�R
jg(x)j2dx

�1=2 and jjgjj22 =
�R
jg(x)j2dx

�
: C2 (b) denotes the space of

twice continuously di¤erentiable real valued functions with �rst and second partial derivatives of

all of their arguments bounded by b and jjgjj1 < b: In particular, in the real valued function of two

variables, say g (u; x) ; u denotes a time index. If there is no confusion, terms like g(u; x) will often
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be written as gu(x) to emphasize our focus on the neighborhood of a time point u: Meanwhile, a

subscript, 0 denotes the true value or functional form of the corresponding parameters or functions.

g(m) (u) denotes the mth derivative with respect to u and g(m)(u; x) denotes the mth derivative

with respect to x whereas _g (u; x) and �g (u; x) denote the �rst and second derivative with respect

to u. All convergences are considered when T !1.

2 Related Literature

2.1 Non- and semi-parametric estimation methods

Given that an array of speci�cations can be compatible with asset pricing theory with no arbitrage

condition, a fully parametric model is more likely to be subject to misspeci�cation. To prevent pos-

sible misspeci�cation problems, a larger family of parametric models with some degree of �exibility

is required. Nonparametric and semiparametric estimation methods are suitable to ensure a high

�exibility since any restriction on functional forms of objects of interest is kept to a minimum. In

addition, given that kernel estimators are data-driven estimation methods, the rapid development

of capacity of computing and the availability of immense amount of �nancial data make this method

more attractive.

Consequently, these methods have become more popular and played an increasingly important

role in estimation and inference of the di¤usion processes. For instance, fully nonparametric es-

timation methods are used in Jiang and Knight (1997), Stanton (1997), and Bandi and Phillips

(2003). Meanwhile, Aït-Sahalia (1996) and Kristensen (2004) considered semiparametric methods

(see Kristensen (2004) for an overview). Among those, we focus on semiparametric methods along

the line of density matching.

Aït-Sahalia (1996) and Jiang and Knight (1997) used density matching to estimate both func-

tionals semiparametrically and nonparametrically respectively. Density matching implies the one to

one mapping between the drift and di¤usion functions and the marginal and transitional densities.

More speci�cally, Aït-Sahalia (1996) starts with realization of the equivalence between (�; �2) and

marginal and transitional densities of the process. He proposed the asymptotic theory with respect

to the nonparametric estimator of di¤usion function under the context of stationarity and long

span asymptotic. However, to make use of this methodology, strong stationarity of the underlying

process is required since it utilizes the Kolmogorov forward equation which is only valid under the

assumption of stationarity. Later, Kristensen (2004) extended this work further with respect to

more general classes of semiparametric di¤usion models. These papers, however, are dependent

upon the assumption of the stationarity in the sampled di¤usion process. Without it, the results

are likely to break down.

2.2 Estimation of Nonstationary di¤usion processes

It is worth mentioning that there are too many classes of nonstationary processes to construct a

valid econometric argument without restricting attention to a speci�c type of nonstationarity. One
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way of dealing with nonstationarity is to restrict ourselves to a class of processes, for which we can

specify how they are di¤erent from stationarity without losing much generality.

There are a few attempts on the class of nonstationary di¤usion processes. Bandi and Phillips

(2003) lead one strand of literature in which the recurrence assumption plays an essential role in

addressing one class of nonstationarity processes. This recurrence assumption implies the continu-

ous trajectory of the process visits any level in its range an in�nite number of times over time. It

guarantees enough visits in the neighborhood of a certain points in the range of the process that an

in�nite number of di¤erences can be averaged asymptotically, which ensures consistent estimators

can be acquired in the limit. Under this scheme, consistency of the estimators of both functional

forms of the drift and di¤usion could be obtained under the joint implementation of in�ll and long

span asymptotics. More speci�cally, these asymptotics require that the distance between observa-

tions � goes to zero in the limit (in�ll) while the time span T goes to in�nity (long span). The basic

idea in their paper is that long span asymptotics enables us to make use of recurrence properties

of the process whereas in�ll asymptotics ensures in�nitesimal characteristics of both the drift and

di¤usion. Bandi and Nguyen (2003) extended this idea to the estimation of a Jump-di¤usion model.

In another strand of literature on nonstationary processes, Fan et al (2003) introduce a family of

time-dependent di¤usion processes to allow for time-changing nature of economic variables. They

assumed that the two functionals of interest are time-varying and smoothly evolving. Their idea

is based on local smoothness in the time domain. They make use of in�ll asymptotics in their

analysis.

Our approach is mainly di¤erent from Bandi and Phillips (2003) in that whereas Bandi and

Phillips (2003) make use of in�ll and long-span, we look closely at the limiting behaviour of the

time span T , i.e. long-span only, to establish the consistency of the proposed estimators and obtain

their limit distributions thanks to the assumption of local smoothness of functions of both the drift

and the di¤usion. In addition, our method is di¤erent from Fan et al (2003) in that we make use

of the concept of density matching to derive our estimators and establish asymptotic theories of

them. To the best of our knowledge, this is the �rst local stationarity treatment of establishing

asymptotics of both the drift and the di¤usion of time-inhomogeneous di¤usion processes.

2.3 Local stationarity

Although econometric treatment of continuous-time nonstationary processes has a relatively short

history, the analyses of the class of time-varying processes in discrete time have evolved quite

extensively both in the frequency and time domain. However, since we approach the di¤usion

processes in the time-domain, we will focus our attention on time-domain analysis. In particular,

we limit our focus to a family of evolutionary or locally stationary processes in continuous time.

Local stationarity, one kind of local time concept, will serve as an important identifying condition.

Heuristically, local stationarity implies that a process behaves in a stationary manner only in a

neighbourhood of a given time point but is nonstationary over the whole horizon.

The early treatment of time varying coe¢ cients of multiple regression models in discrete time can
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be found in Robinson (1989). In his paper, the asymptotics is fully developed showing asymptotic

normality and consistency of nonparametric estimators for time varying parameters. In his model,

however, parameters of interest depend solely on time and the main results are based on stationary

state variables Xt. As a result, the nonstationarity only comes from time varying coe¢ cients.

The statistical treatment of this type of nonstationarity has undergone signi�cant breakthroughs

following a series of papers by Dahlhaus (1996, 1997) and Dahlhaus and Polonik (2009). These

papers provided a more rigorous de�nition and treatment of locally stationary processes. Moreover,

whereas most early works of these types were mainly concerned with the analysis in the frequency

domain, his papers were mainly interested in parametric inference for nonstationary models de�ned

purely in the time domain. Given that many models in economics and �nance are designed in

the time domain framework, his theory could be the most relevant to our e¤orts to capture the

asymptotic behaviour of our estimators in the di¤usion processes as a solution to SDE widely used

in the literature.

However, there are several limitations that are worth mentioning. Dahlhaus�theories were not

general enough to be applicable to our model directly. He proposed a statistical inference procedure

in univariate autoregression model. He relied on a theory of evolutionary spectra and therefore, his

theories are applicable only to a class of simple AR models. In addition, he took a fully parametric

approach and assumed speci�c functional forms for time-varying processes. Later, Kim (1999)

extended it to multiple regression models using nonparametric kernel methods. Orbe et al (2000)

wrote a series of papers on time varying estimation as well. Quite recently, Dahlhaus and Subba

Rao (2006) and Fryzlewicz et al (2008) studied a time-varying ARCH processes via local Maximum

Likelihood method and local Least squares method respectively.

Since we are concerned with continuous-time di¤usion processes as in (1), the results of the

above papers should be appropriately adjusted since they are based on discrete time processes.

Whereas some important concepts could still go through analogously, there are complications arising

from the fact that we are dealing with the continuous-time processes based on discretely sampled

observations since, in reality, the continuous account of observations are unattainable.

3 Model

The underlying data generating process of interest fXt;T ; t; T � 0g is a time-inhomogeneous Itô
di¤usion process represented by the following traingular array of stochastic di¤erential equations

dXt;T = �(t=T;Xt;T )dt+ �(t=T;Xt;T )dWt; X0;T = x0; (2)

where � (u; x) = � (u) (� (u)� x) and �(�), �2(�) and fWtg are de�ned as in (1). x0 is a given
random variable. fXt;T g de�ned above is a one-dimensional process and has a domain I= [l ; r ]
where �1 � l < r � 1: Note that (2) de�nes a triangular array of observations Xt;T ; but we shall
on occasions use the simpler notation that dispenses with the T subscript.
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We will approximate the above process by a family of stationary processes indexed by u;

d ~Xu;t = �(u; ~Xu;t)dt+ �(u; ~Xu;t)dWt; ~Xu;0 = xu;0 (3)

where, in the vicinity of each �xed time point u 2 [0; 1], (C1) both drift and di¤usion func-

tions have at least twice bounded and continuous derivatives; (C2) �2(u; x) > 0 for 8x 2 I;

(C3) for 8x 2 I, 9" > 0 such that
Z x+"

x�"

j�(u; y)jdy
�2(u; y)

< 1: (C4) the scale function de�ned as

S(u; x) =

Z x

c
s(u; �)d� where s(u; �) = exp

�
�2
Z �

c

�(u; �)d�

�2(u; �)

�
for x 2 I, satis�es the following:R c

l s(u; �)d� ! �1;
R r
c s(u; �)d� !1 for some �xed number c 2 I. (C5) the speed measure de�ned

as
R r
l

�
s (u; x)�2 (u; x)

��1
dx is bounded. It is worth noting that under C1-C5, for each time point

u 2 [0; 1] ; f ~Xu;t; t � 0g are strictly stationary and weakly dependent with a stationary density
f0(u; x). (See Karatzas and Shreve (2000).) Moreover, f ~Xu;t; t � 0g are �-mixing. (See Chen et al.
(2008).)

Equations (2) and (3) can be equivalently written as

Xt;T = X0 +

Z t

0
�
� s
T
;Xs;T

�
ds+

Z t

0
�
� s
T
;Xs;T

�
dWs; (4)

~Xu;t = ~X0 +

Z t

0
�
�
u; ~Xu;s

�
ds+

Z t

0
�
�
u; ~Xu;s

�
dWs: (5)

Also, we can think of f ~Xt=T;tg for t=T in a neighborhood of u as follows.

~Xt=T;t = ~X0 +

Z t

0
�

�
t

T
; ~Xt=T;s

�
ds+

Z t

0
�

�
t

T
; ~Xt=T;s

�
dWs: (6)

For t=T in a neighborhood of u; we can approximate Xt;T by ~Xu;t in the sense that local moments

calculated under the distribution of Xt;T are close to the same moments calculated under the

distribution of ~Xu;t: To this end, we de�ne a locally stationary stochastic process as follows.

De�nition 1 The stochastic process fXt;T g represented by (2) is called locally stationary if there
exists a stochastic process f ~Xu;tg represented by (3), which is the time-homogeneous Itô di¤usion
process associated with fXt;T g at a given time point u for 8u 2 (0; 1) such that

Pr

�
max
1�t�T

���Xt;T (!)� ~Xt=T;t (!)
��� � DTT�1=2� = 1 (7)

for all T; where fDT g is a well-de�ned positive process satisfying for some � > 0;

E
�
jDT j4+�

�
<1:

If the underlying process is stationary locally in time, Xt;T and ~Xt=T;t should be close on
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a time segment around a given time point where the assumption of stationarity holds. In our

de�nition, the convergence rate between Xt;T and ~Xt=T;t is given as Op
�
T�1=2

�
and it is worth

noting that this rate is not exact but rather conservative. We show this rate under our smoothness

assumption in Appendix A even though the exact convergence rate of the above condition (7) is

hard to obtain mainly because those stochastic processes are not fully parameterized. However,

heuristically, it seems plausible that if Xt;T is locally stationary, Xt;T and ~Xt=T;t should be close

and the degree of approximation should depend on the rescaling factor T: In this regard, we assume

the absolute value of the di¤erences between two processes can be uniformly bounded by DTT�1=2

where the moment of jDT j4+� is uniformly bounded. This moment condition is required mainly for
asymptotic normality. Comparing (5) and (6), due to di¤erentiability and Talyor expansion, the

degree of approximation between ~Xu;t and ~Xt=T;t should rely on the di¤erence between t=T and u:

These will be explored shortly and be used frequently in Section 5.

Throughout the paper, our attention focuses on the locally stationary di¤usion processes.

Assumption 1 We observe realizations fXt;T gTt=1 from a locally stationary process represented by

(2).

It is worth noting several features of our model. Firstly, the speci�cation (2) is analogous to

the local �t of the usual nonparametric estimation methods especially in the nonparametric curve

�tting literature. This ensures the amount of local information increases appropriately when T

increases. It also highlights that we are concerned with the vicinity of a given time point, u.

Note that this is not the case in which the sampling of observations occurs on (0,1) nor the case

in which the interval between two contiguous time points goes to zero (see Robinson (1989) and

Dahlhaus (1997)). This estimation method is built upon the assumption of local stationarity. In

more detail, let gt (x) and fu (x) be the density functions of fXt;T g and f ~Xu;tg respectively. We
assume that for each given u 2 (0; 1), f ~Xu;tg is the stationary di¤usion process which has the same
�nite-dimensional distributions as fXt;T g in the vicinity of a corresponding time point u and hence,
there exists a mapping from u to a density function, i.e. u 7�! fu (x) where fu (x) is the density

function associated with gt (x) at a given time point u. Each time point has a possibly di¤erent

distribution and therefore there exists a family of density functions ffu : u 2 (0; 1)g. For a �xed
time point u, we can estimate a density function from which the drift and the di¤usion functions

can be derived using stationarity properties. That is, we imagine we choose a tiny region around u

and treat the process of interest as stationary on that region with the drift and the di¤usion. To

this end, we assume the drift and the di¤usion don�t change much in the vicinity of a time point

of interest since the smoothness of � and � in (2) ensures that fXt;T ; t � 0g is locally stationary at
least asymptotically. In other words, both � and � are smooth functions which allow for a certain

level of di¤erentiability.

Next, our parameterized drift term takes the form

�(u; x; �(u)) = �(u)(�(u)� x); (8)
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where �(�); �(�) are unknown functions. That is to say, our focus in this paper is mainly on

the di¤usion process in which the drift term is parameterized locally in time up to an unknown

parameter function vector � = [�; �]> 2 � where � is a parameter function space and the volatility
term with no restriction. Such a parameterization of the drift function ensures that we can identify

both the drift and the di¤usion functions based on discretely sampled observations. This is due to

the well-known fact that identifying both the drift and di¤usion functions is unattainable without

su¢ cient restrictions. Also, it allows us to adopt a local least squares estimation method for the

drift. Especially in this paper, along the line with Aït-Sahalia (1996), we parameterize the drift in a

way that the drift captures several features of movement of interest rates such as a mean-reverting

property as seen in the following Figure 1.

FIGURE 1 ABOUT HERE

Our parameterization is coherent with various spot interest rates models widely used in the

literature. Throughout the paper, we will focus on this form for the drift term. However, we

think our approach can be extended to a more general speci�cation as in Fan et al (2003) with a

local quasi-maximum likelihood estimation under additional regularity conditions as in Kristensen

(2004).

Last but not least, note that our approach is based on discretely sampled observations. Recall

that we consider a triangular array of random variables fXt;T g ; t = 0; 1; : : : ; T +�; T = 1; 2; : : : :
Suppose we conduct the following sampling. We observe the process of Xt;T at time t = 0; 1; : : : ; T

over the time span [0; T ] while the underlying process evolves continuously in time. We assume we

can�t observe the continuous evolvement between two sampling points. In particular, the data is

sampled at equally spaced time, say � � 1. Most importantly, the distance between two sampling
points, �, won�t shrink but remains �xed. We will be looking closely at the limiting behaviour

of our estimators of both functions of interest as the sampling period T tends to in�nity while �

is constant. In the following, Xt represents Xt;T unless otherwise speci�ed for the simplicity of

notation.

Under this framework, the following propositions ensure the validity of our econometric treat-

ment.

Proposition 1 Suppose Assumption 1 holds. Then, due to De�nition 1,���Xt � ~Xu;t

��� = Op����� tT � u
����+ T�1=2� (9)

The proposed estimators and model are de�ned with the data, fXtgTt=1 while our asymptotic
analysis is based on the collection of locally stationary processes with f ~Xu;t; t � 0g. Proposition 1
allows us to approximate fXtg by a group of f ~Xu;tg as T !1 since it implies that in the vicinity

of a time point u; we can replace Xt by ~Xu;t for our asymptotic analysis since the local moments

from the distribution of Xt can be approximated by those from the distribution of ~Xu;t.
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Proposition 2 Let gt (x) and fu (x) be the density functions of fXtg and f ~Xu;tg respectively.
Suppose Assumption 1 holds. Then, due to De�nition 1, density functions gt (x) and fu (x) are

twice boundedly continuously di¤erentiable and have the following relationship.

kgt (x)� fu (x)k1 =

���� tT � u
���� 


 _fu (x)


1 + 12

���� tT � u
����2 


 �fu (x)


1 + o

 ���� tT � u
����2 + T�2=5

!
: (10)

Let gt (x) and fu (x) be the density functions of fXtg and f ~Xu;tg respectively. Under Assumption
1 and De�nition 1, there exists a mapping from u to a corresponding density function associated

with gt (x) at a given time point u, i.e. M : u 7�! fu (x). Since fXtg and f ~Xu;tg are completely
characterized by � and � or the transition density and the marginal density, from De�nition 1,

density functions gt (x) and fu (x) associated with Xt and ~Xu;t respectively are closely related

shown in Proposition 2.

4 Semiparametric Estimation

4.1 Preliminaries

4.1.1 Local Stationarity and Nonparametric Estimation

The di¢ culty in dealing with nonstationary processes lies in establishing the desirable asymptotic

theory. Since each observation doesn�t have any meaningful information on another one, letting

the time span T go to in�nity doesn�t su¢ ce. One way of avoiding this di¢ culty is to localize in

time and assume that the processes of interest are stationary in the vicinity of a given time point

even though it is not stationary overall.

Also, it is shown that the local stationarity assumption is milder than stationarity. All stationary

processes are locally stationary but locally stationary processes do not have to be stationary. More

speci�cally, a process is locally stationary if the process is smoothly time varying.

It is worth mentioning that in the limiting case, by construction, kernel methods focus on local

properties of the process of interest. Recall that a locally stationary process behaves like a stationary

process in the neighborhood of a given time point. Therefore, well established results for stationary

processes can be utilized in deriving the asymptotics of the kernel estimates. The structure of the

nonparametric estimates makes the derivation of the limiting theory relatively uncomplicated since

the statistical tools for stationarity can be readily used in deriving the asymptotics of the proposed

estimators. Speci�cally, under the assumption of local stationarity, kernel methods allow us to

make use of Kolmogorov forward/backward equation to obtain two functionals of interest in the

di¤usion processes.

4.1.2 Density Matching

Density matching approach is based on realization of the equivalence between the drift and the

volatility functions in one direction and marginal and transitional densities in the other. Whereas

9



the former can not be estimated directly, the latter can be estimated directly from the data.

Therefore, estimating the densities �rst and then �nding two plausible functions of interest which

correspond to the obtained densities would be a natural way to go about analyzing the di¤usion

processes. The Kolmogorov forward/backward equations play a crucial role in estimation of both

functionals of interest under the assumption of stationarity. Density matching utilizes these equa-

tions to identify both the drift and the di¤usion. In our paper, we will make an analogous argument

under the context of local stationarity. The Kolmogorov backward equation is used to identify the

drift term. The Kolmogorov forward equation can be generally used for computing the probabil-

ity densities of stochastic di¤erential equations. Thanks to the Kolmogorov forward equation, the

density can be expressed in terms of the drift and di¤usion we would like to estimate. Therefore,

we can express the drift (or di¤usion) term as a function of marginal density and di¤usion (or

drift) by inverting the equation. In our paper, due to the assumption of local stationarity and a

parameterization of the drift term, we can generalize the estimation method used in Aït-Sahalia

to the time-inhomogeneous di¤usion processes which behave in a locally stationary manner. We

replace the density function with the local analogue version. Most of the results in Aït-Sahalia

(1996) can be carried over to the generality in this paper with slight modi�cation.

In this paper, since we are concerned with time-dependent di¤usion processes under the scheme

of local stationarity, we consider the following argument to provide the asymptotic justi�cation for

our estimators. We localize the process in the time domain so that the above kernel estimation

method enables us to restrict our attention to the range where the process behaves in a stationary

manner. Against this backdrop, over the range where the process is stationary, we can general-

ize the methodology in Aït-Sahalia (1996) and Kristensen (2004) with slight modi�cation. More

speci�cally, in the vicinity of a given time point u, the process is assumed to be strict stationary.

As a result, we can treat the time varying coe¢ cient roughly constant over the suitable range

[u�h; u+h] around a given time point u. It is worth emphasizing that thanks to Proposition 1, we
focus on (3) rather than (2) directly and therefore most important results under the assumption of

stationarity can be carried over to our pursuit for estimators of two functionals in locally station-

ary time-dependent di¤usion process. Throughout this section, we are mainly concerned with the

vicinity of a certain time point u to set out our argument.

Under the assumption of local stationarity and Proposition 2, we turn to a time-localized kernel

estimator to estimate the distribution around a �xed time u. In this regard, a plausible estimator

for the density function can be

f̂(u; x) =
1

Th1h2

TX
t=1

K

�
u� t=T
h1

�
K

�
x�Xt
h2

�
;

where K is a real-valued kernel function concentrated around the origin and hi, i 2 f1; 2g is a
bandwidth parameter. In particular, h1 is closely related to the size of the neighborhood of the

rescaled grid point.
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4.2 Estimators

4.2.1 The Drift

For the estimator of the drift function, we propose the following procedure.1 It is worth noting that

our estimation methods make use of local stationarity properties of the underlying process and the

asymptotic properties of the above estimator will be analyzed based on the local approximation

by the stationary process f ~Xu;tg around the given time point u: Theoretically, since the drift term
is parameterized as in (8), its discretized regression speci�cation associated with the stationary

process f ~Xu;tg can be expressed as

E[ ~Yu;tj ~Xu;t] = a(u) + b(u) ~Xu;t (11)

where ~Yu;t = ~Xu;t+� � ~Xu;t. In this regard, we use the local regression method to obtain the

parameterized drift. With the suitably chosen bandwidth, kernel estimation method allows us to

obtain locally weighted least square estimators for a(u) and b(u). Let the kernel function used for

the estimation of the drift term be

Kut = K

�
u� t=T
h

�
:

Given the speci�cation (11), we can estimate [a (u) ; b (u)]> by minimizing the following objective

function
TX
t=1

( ~Yu;t � a� b ~Xu;t)2K
�
u� t=T
h

�
;

with respect to a; b: The �rst-order conditions are

TX
t=1

Kut ~Zu;t( ~Yu;t � ~Z
>
u;t
~#(u)) = 0: (12)

~#(u) =

"
TX
t=1

Kut ~Zu;t ~Z
>
u;t

#�1 TX
t=1

Kut ~Zu;t ~Yu;t;

1This method is a modi�cation of what Aït-Sahalia (1996) proposed in an attempt to address time-varying nature
of the di¤usion process of interest. As suggested in Aït-Sahalia (1996), this method doesn�t guarantee full e¢ ciency.
However, Aït-Sahalia (1996) suggested a method to improve e¢ ciency. That method can also be applied here. In
addition, there is an alternative way. Kristensen (2004) proposed a procedure of estimation of more general form
of the drift term. We believe his method could be used as well. However, since we restrict our attention to the
speci�cation (8), his method is not discussed here.
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where ~#(u) = [~a;~b]
>
; ~Zu;t =[1; ~Xu;t]. Meanwhile, in the neighborhood of a �xed time point u, the

Kolmogorov backward equation yields 2

E
h
~Xu;t+�j ~Xu;t

i
= �+ e���

�
~Xu;t � �

�
: (13)

Comparing the above equation (13) with the previous equation (11) shows the following relation-

ships; ~� = [~�; ~�]> where ~� = �~a
~b
and ~� = � ln(~b + 1)=�: Likewise, the corresponding estimator

from available data generated from the process fXtg can be

#̂(u) =

"
TX
t=1

KutZtZ
>
t

#�1 TX
t=1

KutZtYt; where #̂ = [â; b̂]
>
: (14)

where Yt = Xt+� � Xt. Let # = [a; b]
>
and Zt = [1; Xt]

>
. We propose our estimators of � as

�̂ = � â
b̂
and �̂ = � ln(b̂ + 1)=�: Therefore, from #̂, we can indirectly acquire �̂ = [�̂; �̂]>. Due to

Proposition 1, ~#(u) and #̂(u) share the same asymptotic properties and so do �̂ and ~�. Consequently,

the estimator of the drift term can be expressed as

�̂(u;Xu;t; �̂) = b�(u)(b�(u)�Xu;t):
4.2.2 The Di¤usion

The following argument is based on our discussion in section (4.1.2), and analogous to that in Aït-

Sahalia (1996). To begin with, let fu(�) and pu(�) denote the marginal density of the spot rate and
the transitional density between two contiguous ~Xu;t; ~Xu;t+� respectively. Under the assumption

of local stationarity, the Kolmogorov forward equation can be modi�ed as

@pu( ~Xu;t+�;�j ~Xu;t; u)
@�

= � @

@ ~Xu;t+�
(�u( ~Xu;t+�; �)pu( ~Xu;t+�;�j ~Xu;t; u))

+
1

2

@2

@ ~X2
u;t+�

(�2u(
~Xu;t+�)pu( ~Xu;t+�;�j ~Xu;t; u)):

2Let 'u( ~X; t) be the solution of the backward Kolmogorov equation @'u( ~X; t)=@t = A'u(
~X; t) with initial con-

dition '( ~X; 0) = ~X0 = X0, where A is the backward Kolmogorov operator: A'u( ~X; t) � �u(
~X; t; �)=@'u(

~X; t)@X +
(1=2)�2u( ~X; t)@

2'u(
~X; t)=@ ~X2: This partial di¤erential equation has the unique solution 'u( ~X; t) = Eu[ ~Xtj ~X0], by

Dynkin�s formula. Also, the function  u( ~X; t) � �+ e���
�
~Xt � �

�
also satis�es the equation with the same initial

equation. Thus  = '. Since we assume local stationarity, we get the result (13).
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Multiplying fu( ~Xu;t;�) on both sides and integrating both sides over [0;1),Z 1

0

@pu( ~Xu;t+�;�j ~Xu;t; u)
@�

fu( ~Xu;t;�)d ~Xu;t =Z 1

0
� @

@ ~Xu;t+�
(�u( ~Xu;t+�; �)pu( ~Xu;t+�;�j ~Xu;t; u))fu( ~Xu;t;�)d ~Xu;t +

1

2

Z 1

0

@2

@ ~X2
u;t+�

(�2u( ~Xu;t+�)pu( ~Xu;t+�;�j ~Xu;t; u))fu( ~Xu;t;�)d ~Xu;t:

(15)

Since a partial derivative of the equation (16) with respect to time is zero in the vicinity of u due

to local stationarity, the left hand side of (15) is zero, andZ 1

0
pu( ~Xu;t+�; u+�j ~Xu;t; u)fu( ~Xu;t)d ~Xu;t = fu( ~Xu;t+�;�): (16)

As a result, we obtain
1

2

@2

@ ~X2
(�2u( ~X)fu( ~X)) =

@

@ ~X
(�u( ~X; �)fu( ~X)): (17)

The above equation is valid over a range in which the process behaves in a stationary manner, say

in the neighborhood of a given time point u. Finally, from (17) and Proposition 1, the di¤usion

term can be obtained as

�̂2u(x; �̂; f̂u(x)) =
2

f̂u(x)

Z x

�1
�̂u(y; �̂)f̂u(y)dy:

5 Asymptotics

This section establishes asymptotic properties of our estimators proposed in the previous section.

It is important to bear in mind that Proposition 1 and Proposition 2 allows us to analyze the

asymptotic properties of our estimators in the vicinity of the time point u: We show that our

estimators are pointwise consistent and asymptotically normal. To this end, we show our estimators

are weak and mean square error consistent. Furthermore, we provide the uniform convergence rate

of our estimators of the drift and the di¤usion function. In the following, �0; �
2
0; g0; and f0 denote

the true drift, di¤usion, the density function of fXtg and the density function of f ~Xu;tg:
Given that the di¤usion function is obtained from density matching method, our asymptotic

analysis starts from that of kernel estimator of the pdf in the vicinity of a certain time point u:

Since we obtain our estimator of the density nonparametrically, we set out regularity conditions for

a kernel function and bandwidths as well as those for the existence of the density function f0(u; x)

before we proceed with asymptotic theory of our estimators.

Assumption 2 (i) For 8x 2 I and 8u 2 [0; 1] ; �0(u; x); �20 (u; x) 2 C2 (C0) with �20(u; x) > 0; (ii)
inf

u2[0;1]
� (u) > 0.

Assumption 2 is required to ensure the existence of a unique solution to (3), the validity of the

relationship among the density, the drift and the di¤usion, and the existence of a strictly stationary
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density function associated with f ~Xu;tg. In particular, Assumption 2 implies C1 - C5 under our
parameterization of the drift function as in (8) (see Kristensen (2004)). For our asymptotic analysis,

we only require that f ~Xu;tg are �-mixing. Note that �-mixing is stronger than �-mixing.

Assumption 3 (Kernel) The kernel K(�) is a bounded symmetric around zero function such that:
(i) it is continuously di¤erentiable up to order r on R with 2 � r; (ii) it belongs to L2,

Z
jK(x)jdx <

1 ,
Z
K(x)dx = 1, and the support of K is contained in [�1; 1]; (iii) �i(K) =

Z
xiK(x)dx = 0,

i = 1; : : : ; r � 1, and:
Z
xrK(x)dx 6= 0,

Z
jxjrjK(x)jdx < 1, lim

jjujj!1
jjujjK (u) = 0; (iv) K(�) is

Lipschitz continuous, i.e. jK(u)�K(u0)j � C3ju� u0j for all u; u
0 2 R2.

The bigger is r; the more smooth is the density f . Also, a higher order kernel is ideal when it

comes to obtaining the better rates of convergence. For our asymptotic analysis, we assume r = 2.

Only K for the time index u needs to be con�ned to [�1; 1].
The above Assumption 3 is standard in much of the nonparametric literature.3

Assumption 4 (Bandwidth Choices) Let h be the bandwidth for the drift estimation and h1
and h2 be the bandwidths for the density and volatility estimation. Also, note that h1 is used for

the time point argument u whereas h2 is used for the state variable argument x. (i) to estimate

�: as T ! 1; h ! 0, and Th ! 1; (ii) to estimate f , �2: as T ! 1, max (h1; h2) ! 0 and

Th1h2 !1:

Theoretical optimal bandwidths should re�ect the local segment length of time on which as-

sumption of stationarity is valid. In particular, the bandwidth, h1;opt is important since it is closely

related with the vicinity of a time point where stationarity holds true. This is because the interval

of time homogeneity of unknown size possibly varies over time and therefore di¤erent bandwidths

could be used for di¤erent time points. In particular, it can be shown that hopt = �(t=T; �)T�1=5

in MSE/IMSE sense. Similar argument applies to h1;opt and h2;opt. See Müller and Stadtmüller

(1987) and Cai (2007). Therefore, it is natural that we should consider time varying bandwidths

since � (�) depends on time let alone the unknown parameters. However, we don�t delve into the
optimal bandwidth selection theoretically in this paper.

5.1 Consistency

In this section, we show weak consistency results of our estimators.

3Hansen (2008) and Kristensen (2009) showed that the following can be assumed for uniform convergence instead
of Lipschitz continuity of K.

jK(1) (u) j � Cjjujj�v for some v > 1:
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Theorem 1 Suppose that Assumptions 1 - 4 hold. Let u and x be interior points over their domain.
Then, �̂; �̂2, the nonparametric estimators of the drift and the di¤usion functions of the underlying

process as well as the density estimator f̂ are weakly consistent. Speci�cally, as T !1 :

f̂ (u; x)
p�!g0 (u; x) (18)

�̂(u; x; �̂)
p�!�0 (u; x; �0) (19)

�̂2(u; x; �̂; f̂)
p�!�20 (u; x;�0; f0) : (20)

As is the case with density estimators with dependent data, our approach to MSE of f̂(u; x)

involves a breakdown into short range and long range to bound covariances. On the other hand,

recall that the drift, � is parameterized up to an unknown parameter function vector �; which can

be derived from # by the Kolmogorov backward equation. Given # is estimated by local regression

method, we can show the consistency result of � by showing that of # due to the Slutsky theorem.

In addition, the di¤usion estimator, �̂2 has the same rate of pointwise convergence as the marginal

density estimator f̂ .

5.2 Asymptotic Normality

In this section, we present the asymptotic normality of the estimators for the drift and di¤usion

functions. To begin with, we assume the following assumptions hold for asymptotic normality

results.

Assumption 5 The density fu;t1;t2;t3;t4 of
�
~Xu;t1 ; : : : ;

~Xu;t4

�
exists whenever t1 < t2 < t3 < t4 and

supt1<t2<t3<t4 jjfu;t1;t2;t3;t4 jj1 <1.

Assumption 6 supt�1E[Xt]4+� <1 for some positive �.

To present the asymptotic normality, we require some additional notation. Let x1; : : : ; xk be

distinct points, and let

bias�̂(u) = �2(K)��(u)M
�1
u E

24 ~Zu;t ~Z>u;t
8<:#(1)0 (u)

24 _f0
�
u; ~Xu;t

�
f0

�
u; ~Xu;t

�
35+ 1

2
#
(2)
0 (u)

9=;
35 ;

where ~Zu;t = [1; ~Xu;t]; Mu := E[ ~Zu;t ~Z
>
u;t]; and 
u := E[ ~Zu;t ~Z

>
u;t�

2
u(
~Xu;t)], while:

bias1
�̂2
(u; xi) =

�2(K)

2
�20 (u; xi)

�f0(u; xi)

f0(u; xi)

bias2
�̂2
(u; xi) =

�2(K)

2
�20 (u; xi)

f
(2)
0 (u; xi)

f0(u; xi)

V�(u) = jjKjj22��(u)M�1
u 
uM

�1
u �>� (u)
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V� = diag fV�(u; xi); i = 1; : : : ; kg ; V�(u; xi) = jjKjj42
�40(u; xi)

f0(u; xi)
:

��(u) =
@�

@#
=

0B@ � 1

b(u)

a(u)

b(u)2

0 � 1

b(u) + 1

1CA ;
where � = [�; �]> and # = [a; b]>.

Theorem 2 Suppose that the Assumptions 1 - 6 hold. Let u and x be interior points over their
domain. Then �̂ and �̂2 are pointwise asymptotically normally distributed. In addition, for dis-

tinct time points u; x and u�; x�; we have �̂(u); �̂2(u; x) are asymptotically independent of �̂(u�),

�̂2(u�; x�) respectively. Speci�cally, we have:

p
Th
n
�̂ (u)� �0 (u)� h2bias�̂(u)

o
d�! N (0; V�(u)) ; (21)

p
Th1h2

�
�̂2(u; xi)� �20(u; xi)� h21bias1�̂2(u; xi)� h

2
2bias

2
�̂2
(u; xi)

	k
i=1

d�! N(0; V�): (22)

Consistent estimators of the asymptotic variance for �̂ (u) and �̂2(u; x) can be constructed

respectively as

V̂� (u) = jjKjj42�̂�(u)M̂�1
u 
̂uM̂

�1
u �̂>� (u)

V̂� (u; xi) = jjKjj42�̂4 (u; xi) =f̂ (u; xi) for i = 1; : : : ; k;

where M̂u = (Th)
�1PT

t=1 ZtZ
>
t Kut; 
̂u = (Th)

�1PT
t=1 ZtZ

>
t v̂

2
tK

2
ut and v̂t = yt � Z>t #̂ (u) ; while

�̂�(u) =

0BB@ � 1

b̂(u)

â(u)

b̂2(u)

0 � 1

b̂(u) + 1

1CCA :
Note that the overall optimal bandwidths are h = O(T�1=5); while h1; h2 = O(T�1=6) as mentioned

before in conjunction with Assumption 4 even though time varying bandwidths are much more

appropriate: This results in asymptotic mean squared errors of order T�4=5 and T�2=3 respectively.

5.3 Uniform Convergence Rates

This section proposes uniform convergence of our nonparametric estimators of the drift and the

di¤usion functions. Whereas most of papers whose focus was non- or semiparametric estimation of

the di¤usion processes showed the pointwise consistency and asymptotic normality of their proposed

estimators, a few sought after the uniform consistency results. Our approach to uniform convergence

is based on the methodologies of Hansen (2008) and Kristensen (2009). In previous sections, we

restrict our attention to the vicinity of a �xed time point, u: However, in this section, we deal with

heterogeneous dependent data over the whole span. In particular, we require the data to be strong
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mixing even if not identically distributed. The main idea is instead of assuming stationarity and

hence dividing the compact domain into with the same length, we bound the biggest sized cube of

appropriately divided cube set of compact domain. See Kristensen (2009).

Assumption 7 The triangular array fXtgTt=1 are strongly mixing with its mixing coe¢ cients �j;T
such that for � > 0,

�j;T = sup
=0<j�T

sup
A2Ft�1;B2F1t+j

jP (A \B)� P (A)P (B)j � Cj��

where �j;T ! 0 as T , j !1:

Assumption 8 The density of fXtg, gt (x) and joint densities of (Xt; Xt+j), gt;t+j (x; y) are uni-
formly bounded.

Theorem 3 Suppose Assumptions 1 - 8 hold. Furthermore, suppose that

r (T ) :=

�
lnT

Th1h2

�1=2
= o (1) ; r� (T ) :=

�
lnT

Th

�1=2
Then, for any sequence �T such that �T =h1 !1 and �T ! 0; we have

sup
x2I;u2[�T ;1��T ]

���f̂ (u; x)� g0 (u; x)��� = Op �h21 + h22�+Op (r (T ))
sup

u2[�T ;1��T ]
j�̂ (u)� �0 (u)j = Op

�
h2
�
+Op (r� (T ))

sup
u2[�T ;1��T ]

����̂ (u)� �0 (u)��� = Op �h2�+Op (r� (T ))
sup

x2I;u2[�T ;1��T ]

���̂2 (u; x)� �20 (u; x)�� = Op �h21 + h22�+Op (r (T )) :
As we noted before, we estimated the drift function via a local constant least squares method.

However, a local constant least squares method is known to be subject to boundary bias problems

and therefore, we avoid this di¢ culty by considering uniform convergence over the interval u 2
[�T ; 1� �T ] where �T is any sequence such that �T =h1 ! 1 and �T ! 0. In general, it is known

that the boundary bias problems can be avoided by adopting a local linear or polynomial least

squares method. Although we could use those methods here, it is not an issue of this paper.

Note that the uniform convergence rate of the di¤usion function is dominated by that of the

density function.

6 Application

In this section, we apply our estimation procedure to the real data in order to illustrate the validity

of our methodology. Moreover, we calculate prices of a zero coupon bond and its call option by
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using our estimates of functions of interest. Under the usual mathematical �nance, no-arbitrage

condition and hedging determines the price of derivatives associated with underlying assets. Given

the time varying di¤usion processes speci�ed as in (2), we provide estimates of option prices using

our estimates of the drift and di¤usion functions. We restrict our focus on interest-rate-derivative

securities. The time series plots of the underlying interest rates for option pricing are shown in the

following Figure 2.

FIGURE 2 ABOUT HERE

Throughout our application, the Epanechnikov kernel K(v) = 0:75(1� v2)I(jvj � 1) is used for
the time point argument, u and the Gaussian kernel for the state variable argument, x. For the

bandwidths, we used the Silverman�s rule of thumb i.e. h = ŜD(u)T�1=5 and h1; h2 = ŜD(u)T�1=6;

ŜD(Xt)T
�1=6 respectively. Application results are shown in Appendix.

In the application, we compare our results with those of Aït-Sahalia (1996) on the same data.4

In Aït-Sahalia (1996), due to the assumption of stationarity, while parameters � = [�; �]> are �xed,

the volatility function only depends on the state variable x. By contrast, in our model, � are time

varying and the volatility depends on time as well as the state variable, the interest rate, x.

6.1 Data

Even though Aït-Sahalia (1996) proposed nice methodology to estimate the drift and di¤usion func-

tions from discretely sampled data, there has been one important criticism regarding his method.

That is, the actual short run interest rates might not be stationary. It may well be nonstationary

which renders his method invalid. For example, it might contain a unit root and hence the method

based on stationarity assumption over the whole period might not go through. Quite a few papers

studied whether asset prices including interest rates follow unit root processes. Although a clear

cut answer on that issue has not been provided, it would be ideal if our method based on the local

argument could alleviate the degree of unit rootness embedded in the data to which the methodol-

ogy is applied. In this section, to shed some light on this issue, we provide the results of several unit

root tests on the data we used for our application. There are an array of unit root tests. However,

several celebrated unit root tests such as standard Dickey Fuller (ADF) and Phillips-Perron (PP)

don�t necessarily suit the short run interest rates data whose DGP is assumed to be continuous-time

di¤usion process. This is mainly because the conditional variance, possibly as a function of time

and its own state variable, tends to vary across time and display heteroscedasticity and therefore,

the constant variance assumption of those unit root tests is obviously unsatis�ed. A collection of

econometric literature has documented considerably low power of standard unit root tests against

stationary alternative when some of their assumptions are violated. Under such circumstances,

4For the data description, see Aït-Sahalia (1996). Kristensen and Aït-Sahalia gave advice on the data acquisition.
Especially, Kristensen gave advice on option pricing as well. We take this opportunity to thank them for their
support.
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those tests may well be unreliable, even though they are widely used in most of empirical literature

on asset prices. In the absence of pre-knowledge of the drift and di¤usion functions of the process,

there is high risk of misspeci�cation of variance and those widely used unit root tests are subject

to low power and might lead to a false conclusion. Quite recently though, a series of attempts have

been made to ensure robustness of tests against non-constant variance. Breitung (2002) proposed a

unit root test which does not require the speci�cation of the short-run dynamics or the estimation

of nuisance parameters along with tabulated critical values with selected signi�cant levels. Main

idea of his unit root test is the asymptotic theory for a unit root test based on ranks does not

involve the parameters involved by the short run dynamics of the process. It was shown that the

nonparametric test is robust to GARCH errors even under integrated or explosive volatility, which

could be made to converge to the di¤usion process. Cavaliere (2004) also delved into the unit root

tests under time varying variances. It is worth noting that several papers have considered the per-

formance of several unit root tests under various settings and suggested Breitung�s nonparametric

unit root test is more robust to misspeci�cation and time varying variance than any other unit root

tests. In this regard, we use Breitung�s nonparametric unit test (NP) in order to con�rm whether

the data has a unit root. We also provide PP for the comparison purpose. However, appropriate

caution should be exerted since to the best of our knowledge, there is no unit root test speci�cally

designed for the data generated from continuous time di¤usion processes even though unit root

tests for GARCH errors have been delved into.

To begin with, we use PP test statistic as

PP = (su=sT ) t� � (1=2)
�
s2T � s2u

�8<:sT
"
T�2

TX
t=1

�
Xt�1 � �X

�2#1=29=;
�1

;

where T�1
P
û2t + 2T

�1PT�1
j=1 K

�
j
h

�PT
t=j+1 ûtût�j and ûi = yi � �y and �y is the sample mean.

Meanwhile, NP test statistic is

NP =
T�2

PT
t=1 Û

2
tPT

t=1 û
2
t

where Ût =
Pt
i=1 ûi; ûi is de�ned above. The null of a unit root is rejected if the value of test

statistic is smaller than the corresponding critical value.

Table 1 shows results of two types of unit root tests described above over the di¤erent sample

period. We chose �ve di¤erent sub sample periods. Critical values associated with several selected

signi�cance levels are also provided. Table 1 shows local argument alleviates the unit rootness by

lowering values of test statistics for PP and NP.

TABLE 1 ABOUT HERE

6.2 Results of estimation of the drift and di¤usion

Recall that in our speci�cation of the drift term, � can be considered as the equilibrium level or

a steady state mean of the interest rate concerned and � represents the rate of mean reverting
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adjustment. In Figure 3.(a) and 3.(b), our estimates of �(u) and �(u) and those of � (=0.083082)

and � (=1.6088) in Aït-Sahalia (1996) are plotted together respectively for the purpose of com-

parison. It is worth noting that our estimation methodology is well suited for both stationary and

nonstationary, in particular time varying processes. More speci�cally, the estimators of the drift

and the di¤usion functions proposed by Aït-Sahalia (1996) can be easily obtained by setting the

bandwidth in relation to the time argument u in�nity in our methodology. Figures 3.(c) shows our

density estimates under the local stationarity. Meanwhile, the �rst two rows of Figure 4 explore

the change of density function and our di¤usion function over time. We can compare our estimates

of density and di¤usion functions at di¤erent times with those of Aït-Sahalia (1996) shown in the

�rst column of Figure 4. The second, third and the fourth columns of Figure 4 depict the estimated

curves of our density function f̂ and �̂2 at di¤erent times. Also, along with those estimated curves,

we plot their corresponding 99% pointwise con�dence intervals from the limit distribution given in

Section 5 without the bias correction.

Given that our time varying � and � are often out of the 99% con�dence interval of the �xed �

and � in Aït-Sahalia (1996), stationarity assumption with respect to the �xed � and � seems too

strong. Jagged shape shown in our estimate of � may indicate possible need of variable bandwidths.

The shape of the density function varies slightly at each di¤erent time but doesn�t change drastically

whereas the shape of the di¤usion function changes over time.5 In particular, changes of the shape

of the di¤usion function over time are noticeable. It is consistent with empirical literature which

argues that volatility changes over time. On balance, the drift and di¤usion functions are very

much time dependent and our methodology captures those properties so that it can complement

Aït-Sahalia (1996) quite well.

In sum, results of our real data application is consistent with the asymptotic results given in

Section 5. There are several things worth noting. As is known with other nonparametric estimation

methods, the choice of our kernel functions is not so relevant. Meanwhile, much more attention

should be paid to the choice of bandwidths, especially the one for a time argument u. For our

asymptotic analysis, we only require Assumption 4. However, for the �nite sample applications,

it would be better for the bandwidth of a time argument u to re�ect the local time interval in

which the process is stationary in order to obtain better results and optimal convergence rates as

we mentioned before. Moreover, it would be interesting to �nd an automatic data-driven algorithm

for the variable bandwidths which should be compatible with Assumption 1. This doesn�t seem to

be obvious but challenging. Therefore, we leave this topic to the future research.

5The change of shape of density functions may be partly due to the di¤erence of number of observations available
over a certain area of state value, X. Since we don�t have many data available for the high interest rate area, the
vertical section sliced at the time point in the high interest rate period might not show bell-shape density function
whereas in any other areas where enough data reside, bell shape density function emerges even though it is a bit
di¤erent from the normal density. Also, the change of those of volatility functions is also a¤ected by the number
of observations along with the change of the drift functions. We produced di¤erent pictures by slicing the three-
dimensional density and volatility estimates at 20 di¤erent time points. Overall, those pictures show qualitatively
similar patterns as in Figure 2.
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6.3 Option pricing

As seen from a number of papers, (For extensive review, see Kristensen (2008)) our estimation of the

drift and di¤usion functions in the locally stationary models can be applied to asset pricing theory,

in particular to the pricing of �nancial derivatives. In this section, we use our estimates of the

drift and di¤usion functions in the previous section in order to obtain implied prices of zero coupon

bond (ZCB) and its call option (ZBC).6 More speci�cally, we use the Feynman-Kac Representation

provided below. It is worth mentioning that the process (2) is measurable with respect to the

physical measure or real world measure P and therefore our estimators are measurable with respect

to P whereas Feynman-Kac Representation involves the risk free measure or martingale equivalent

measure Q.

Let A be the derivative price at time t with maturity T and underlying variable Xt such as the
spot interest rate in our application.

A(t; x) = EQ
�
b (XT ) exp

�
�
Z T

t
Xsds

�
+

Z T

t
exp

�
�
Z T

t
Xsds

�
c (s;Xs) ds

����Xt = x� ; (23)

where b (XT ) is the payo¤ of the derivative at maturity, and c (s;Xs) is the cash �ow at time s.

Our estimation procedure for derivative prices is the Monte-Carlo simulations method as follows.

First, from historical interest rate data, we obtain estimates
�
�̂; �̂2

�
. Then, we are in a position to

simulate the sample paths of the following risk neutral process,

dXt = [� (t=T;Xt)� 
 (t=T;Xt)� (t=T;Xt)] dt+ � (t=T;Xt) dWt; (24)

where 
 (t) is the time varying market risk premium of interest rates. We plug the obtained

estimates into the drift and di¤usion in (24) along with the estimate of 
 in order to obtain the

sample paths of fXtg under the risk neutral measure. Using (23) and fXtg under Q, the price
A(t; x) can be estimated as a sample conditional mean over the simulated sample paths.

6.3.1 Market Price of Risk

It is important to estimate the market price of risk since we use the Feynman-Kac representation.

The market price of risk, 
 (�) is estimated nonparametrically along the lines of Stanton (1997).
More speci�cally, since the market price of risk, 
 (�) is thought of to be the extra compensation
per unit of risk for taking on �nancial derivatives, the following approximation holds.


u (Xt) �
1

�
[1]
u (Xt)� �[2]u (Xt)

h
Et

�
X
[1]
t;t+1 �X

[2]
t;t+1

����Xti ; (25)

6The rationale for our option pricing application is provided brie�y in the Appendix C. For extensive details, see
Hull and White (1990), Stanton (1997) and Kristensen (2008).
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where X [i]
t;t+1 denotes the interest rate of i asset for one unit of holding period. See Appendix C for

more details. (25) can be estimated as


̂ (u; x) =
1

�̂[1] (u; x)� �̂[2] (u; x)

PT�1
t=1

�
X
[1]
t;t+1 �X

[2]
t;t+1

�
K
�
u�t=T
h1

�
K
�
x�Xt
h2

�
PT�1
t=1 K

�
u�t=T
h1

�
K
�
x�Xt
h2

� :

Results are provided in the third row of Figure 4.

6.3.2 Zero coupon bond pricing (ZCB)

To begin with, we start with option pricing of zero coupon bond. We consider the price of a

discount bond whose underlying asset�s current value and the bond�s payo¤ is x and $1 at expiry,

T respectively. Consider the following function Au (t; x). Also, Initial and boundary conditions can
be given as follows.

Au (t; x) = EQt;x
�
exp

�
�
Z T

t
Xsds

��
; (26)

where EQt;x [�] = E [�jXt = x] under the risk neutral measure Q: Note that c (s;Xs) = 0 for 8s 2 [0; T ]
and b (XT ) = 1: Results are provided in Table 2.

6.3.3 European call option (ZBC)

As far as a European call option whose underlying asset is a zero coupon bond is concerned, we

consider the following.

Au (t; x) = EQt;x
�
max (0;B (x; S � T; S)�X ) exp

�
�
Z T

t
Xsds

��
;

where B is the price of underlying zero coupon bond at the maturity of the call option of interest
and X is the strike price. Results are provided in Table 3.

7 Simulation study

In this section, we provide simulation results to examine the �nite-sample performance of our

estimators. Simulation results are provided in Appendix. We consider four di¤erent models to

investigate the robustness of our estimators.

7.1 Simulated Models

In order to conduct a Monte-carlo experiment, we focus on the simpli�ed version of Hull and White

model (HW, 1990), the extended version of the Cox, Ingersoll, and Ross model (CIR model).

dXt = �(t)(�(t)�Xt)dt+ �(t)Xi
tdWt; i = 1=2:
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Whereas the CIR model doesn�t capture the time varying features of the drift and the di¤usion

we have a keen interest in, the HW model incorporates time-dependent properties of them. Fol-

lowing Euler discretization scheme, observations are created from each discretized version which

corresponds to its continuous one by leaving 100 realizations unobserved between observed ones.

The following speci�cations are what we simulated from. To begin with,

Example 1
dXt = � (u) (� (u)�Xt)dt+ �(0:5 cos(0:5�u) + 1)

p
XtdWt

Example 2

dXt = � (u) (� (u)�Xt)dt+ �0:5(cos(0:5�u) + (sin(0:5�u)))
p
XtdWt

Example 3
dXt = �(��Xt)dt+ �(0:25u+ 1)

p
XtdWt;

where u = t=T; � (u) = �u2 + u; � (u) = 0:2146; � = 0:0783 in all of the above examples.

Secondly, we include a time-homogeneous case (CIR model) to investigate whether our methods

contain an important trait of verifying the correct structure of the model. That is, it would be

good if the proposed methods in this paper could identify both quantities of interest, whether the

process is stationary or locally stationary. The fourth example will serve this purpose.

Example 4
dXt = �(��Xt)dt+ �

p
XtdWt;

where � = 0:0857, � = 0:2146, and � = 0:0783.

These values are taken from Chapman and Pearson (2000). For simplicity, � = 1. We conducted

500 simulations of each example with sample size T = 1000; 3000. If we presume we deal with weekly

data, for example, T=1000 corresponds to around 20 years. For the kernel function with respect

to u and x, we employ an Epanechnikov kernel where K(u) = 3
4(1 � u

2)I(juj � 1) where I is a

indicator function. For the bandwidths, we used the Silverman�s rule of thumb i.e. h = ŜD(u)T�1=5

and h1; h2 = ŜD(u)T�1=6; ŜD(Xt)T�1=6 respectively. Our selections of a kernel function and a

bandwidth satisfy the previous Assumptions 3 and 4 in Section 5 respectively. Also, given that

our simulated model is quite analogous to CIR model, we chose initial values from an appropriate

Gamma distribution.7

7.2 Simulation results

As is proven in Section 5, our simulation study lends evidence to our main results in Section 5.

Our results con�rm that the proposed estimators perform well with suitable sample size. More

7 Initial values have the Gamma distribution G(�; �) where � = 2��
�2

and � = �2

2�
.
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speci�cally, Tables 4 and 5 in Appendix show that our estimators of the drift term and di¤usion

term perform well in pointwise MSE and integrated MSE senses respectively. Table 4 shows the

pointwise performance of our estimators when x (= :24 or :08) and u (= 1=2) are �xed at a certain

value. Table 5 shows integrated MSE of our estimators. Even with a relatively reasonable sample

size, the estimates of � and � from the local constant least regression method show their consistency.

It is worth noting that there arises a boundary bias issue since we use the local constant regression

instead of local linear one. This is a standard problem of kernel estimation methods and it is

well-known that this boundary issue can be avoided by local linear implementation. Our di¤usion

estimator, �2 (u; x) also captures the true functional form of the simulated model quite well. The

time nature in drift and volatility in each example is well captured by our estimators. Also, our

method is robust to the change of the functional form of the di¤usion and enables us to verify

whether the structure of the underlying data generating process is stationary or locally stationary.

However, there are limitations we should be cautious about. With respect to the state variable

domain, for relatively too small or too big values the state variable can take, our estimators of the

volatility seem to perform less than the middle values which recur quite often. As we mentioned

before, this is due to a standard problem of kernel estimation methods.

8 Concluding Remarks

In this paper, we propose an estimation method in an attempt to capture the time varying properties

of the di¤usion processes. We indirectly obtain the estimator of the drift term via local constant

least squares, whereas we utilize the density matching method to obtain our estimator of the

volatility of the process. It was shown that our estimators of time-inhomogeneous di¤usion processes

are consistent and asymptotically normally distributed under the assumption of local stationarity.

Furthermore, those estimators uniformly converge to the true functions of the drift and the volatility.

We provide applications with the real data as well as simulation results to illustrate our estimation

procedure and validity of our theories. Our empirical results lend credence to our asymptotic

theories. Our estimation procedure broadens the pool of estimation methodology of the di¤usion

processes by augmenting various estimation procedures under the assumption of stationarity.

There are many other challenges lying ahead, however. To begin with, pure di¤usion processes

have been under scrutiny since they don�t seem to be compatible with several well-known stylized

facts such as discontinuities of asset prices movement. It would be an important extension if we

could allow for jump components under the similar setting. Possibility lies either in structural breaks

in the functions of interest in time varying di¤usion processes or in time varying jump-di¤usion

processes. Secondly, although the automated optimal variable bandwidth selection could be worth

investigating, it is not discussed in this paper. Thirdly, since it is shown that our estimators of

the drift and the di¤usion function are asymptotically normally distributed, we could propose a

test statistic for a nonparametric time-homogeneous di¤usion model against our semiparametric

time-inhomogeneous alternative among an array of possible tests. The corresponding theoretical

justi�cation could be worth delving into for a practical reason. Lastly, in this paper, we did not
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seek for e¢ ciency improvement, even though it could be an interesting topic. Those topics are left

as future research.
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Appendix A. Proofs of Propositions and Theorems

Condition of Locally Stationary Processes. Consider the following Itô process X =

fXt; t0 � t � Tg and ~X =
n
~Xu;t; t0 � t � T

o
:

dXt = �(t=T;Xt)dt+ �(t=T;Xt)dWt; Xt0 = x0

d ~Xu;t = �(u; ~Xu;t)dt+ �(u; ~Xu;t)dWt; ~Xu;t0 = x0:

We will show the following condition holds.

Pr

�
max
1�t�T

���Xt;T (!)� ~Xt=T;t (!)
��� � DTT�1=2� = 1.

Euler Approximation associated with the underlying DGP,

Yt = Yt�� + � (� t��; Yt��) (t� (t��)) + � (� t��; Yt��) "t; Y0 = x0;

where "t =Wt�Wt�� � N (0;�), t = 1; 2; : : : ; T and 0 = �0 < �1 < ::: < � t = t=T < ::: < �T = 1:
Also, for the

n
~Xu;t

o
; for u 2 [0; 1],

~Yt (u) = ~Yt�� (u) + �
�
u; ~Yt�� (u)

�
�+ �

�
u; ~Yt�� (u)

�
"t; Yu;0 = x0:

Therefore, for the
n
~Xt=T;t

o
~Yt (t=T ) = ~Yt�� (t=T ) + �

�
t=T; ~Yt�� (t=T )

�
�+ �

�
t=T; ~Yt�� (t=T )

�
"t

���Xt � ~Xt=T;t

��� � jXt � Y� t j+ ��� ~Xt=T;t � ~Y� t (t=T )
���+ ���Y� t � ~Y� t (t=T )

��� :
Note that it is well known that the euler approximation holds with negligible error. See Kloeden

and Platen (1992). We focus on the third term only. Note that our drift term is parameterized

as a mean reverting process locally in time. Also, since the di¤usion function is unrestricted and

therefore, it is di¢ cult to show the following relationship with exact convergence rate. Rather, we

provide conservative rate of convergence. In this regard, we restrict ourselves to a certain class of

di¤usion processes by parameterizing the di¤usion function in order to show our de�nition is not

void. It is worth mentioning the following model contains very general a¢ ne di¤usion processes in

Dai and Singleton (2000) among many others.

dXt = (a (t=T ) + b (t=T )Xt) dt+ (c (t=T ) + d (t=T )Xt) dWt

Yt = Yt�� + (a (� t��) + b (� t��)Yt��)� + (c (� t��) + d (� t��)Yt��) "t

~Yt (t=T ) = ~Yt�� (t=T ) + (a (t=T ) + b (t=T )Yt�� (t=T ))� + (c (t=T ) + d (t=T )Yt�� (t=T )) "t:
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We shall proceed by induction. For t = 1; due to Assumption 2,���Y1 � ~Y1 (�1)
���

= jY0 � ~Y0 (�1) + (a (�0)� a (�1))�

+
�
b (�0)Y0 � b (�1)Y0 + b (�1)Y0 � b (�1) ~Y0 (�1)

�
�

+ (c (�0)� c (�1)) "t +
�
d (�0)Y0 � d (�1)Y0 + d (�1)Y0 � d (�1) ~Y0 (�1)

�
"tj

= Op
�
T�1

�
: (27)

Therefore, condition (7) holds .

For t > 1; suppose the condition holds for t��. Then,���Yt � ~Yt (� t)
���

= jYt�� � ~Yt�� (� t) + (a (� t��)� a (� t))�

+
�
b (� t��)Yt�� � b (� t)Yt�� + b (� t)Yt�� � b (� t) ~Yt�� (� t)

�
�

+ (c (� t��)� c (� t)) "t

+
�
d (� t��)Yt�� � d (� t)Yt�� + d (� t)Yt�� � d (� t) ~Yt�� (� t)

�
"tj

�
���Yt�� � ~Yt�� (� t)

���+ ja (� t��)� a (� t)j�
+
��(b (� t��)� b (� t))Y� t�1���+ ���b (� t)�Yt�� � ~Yt�� (� t)

�����
+ jc (� t��)� c (� t)j j"tj

+
��(d (� t��)� d (� t))Y� t�1�� j"tj+ ���d (� t)�Yt�� � ~Yt�� (� t)

���� j"tj
= Op

�
T�1

�
;

due to Assumption 2 and (27). In addition, let Mt =
���Xt;T � ~Xt (t=T )

��� for t = 1; : : : ; T and Mmax

be max fM1; : : : ;MT g : For " = O
�
T�1=2

�
> 0;

P (Mmax � ") = P (M1 � ";M2 � "; : : : ;MT � ")

�
TY
t=1

P (Mt � ")

= exp

 
TX
t=1

log (1� (1� P (Mt � ")))
!

� exp
 
�

TX
t=1

(1� P (Mt � "))
!
! 1 as T !1;

since Mt = Op
�
T�1

�
for 8t: This implies (7).
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Proof of Proposition 1. Due to the triangle inequality,���Xt � ~Xu;t

��� � ���Xt � ~Xt=T;t

���+ ��� ~Xt=T;t � ~Xu;t

��� :
From the de�nition of local stationarity,

���Xt � ~Xt=T;t

��� = Op
�
T�1=2

�
. Therefore, we focus on��� ~Xt=T;t � ~Xu;t

��� : Using Talyor expansion, for t=T in a neighborhood of u0;
~Xt=T;t = ~Xu0;t +

�
t

T
� u0

�
@ ~Xu;t
@u

%
u=u0

+
1

2

�
t

T
� u
�2 @2 ~Xu;t

@u2

%
u=u0

+ op

 �
t

T
� u
�2!

:

Since �; � 2 C2 (C0) ; ��� ~Xt=T;t � ~Xu;t

��� � Op����� tT � u
����� .

Therefore, Proposition 1 follows.

Proof of Proposition 2. Due to the triangle inequality,

jfu (x)� gt (x)j �
��fu (x)� ft=T (x)��+ ��ft=T (x)� gt (x)�� :

Let�s start with the second term of the right hand side,
��ft=T (x)� gt (x)�� : For the sake of exposi-

tional simplicity, we consider densities g and f for two random variables X and ~X instead of two

stochastic processes. Suppose that

jX � ~Xj � �:

Then,

FX(x) = Pr [X � x] = Pr
h
~X +X � ~X � x

i
� Pr

h
~X � x+ �

i
= F ~X(x+ �):

Likewise, it can be shown that FX(x) � F ~X(x� �): By Taylor expansion, we have

F ~X(x)� �f ~X(x) +O(�
2) � FX(x) � F ~X(x) + �f ~X(x) +O(�

2)

Since,

gX(x) = lim
�!0

FX(x+ �)� FX(x)
�

and

FX(x+ �)� FX(x)
�

� FY (x+ �+ �)� FY (x+ �)
�

= fY (x) + �f
0
Y (x) +O(�

2) +O(�):

So, under smoothness conditions on the density of the approximating process, we have fX(x) exists
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and satis�es

fX(x) = fY (x) + �f
0
Y (x) +O(�

2)

as � ! 0: The argument is more complicated when X and ~X are stochastic processes but is

essentially the same. Therefore, due to the de�nition of local stationarity, with suitably chosen �

and �,
��ft=T (x)� gt (x)�� = o

�
T�2=5

�
. With respect to

��fu (x)� ft=T (x)�� ; due to di¤erentiability
and talyor expansion, Proposition 2 follows.

Proof of Theorem 1. To begin with, Lemmas we use for the proofs in this section are provided

in Appendix B. We begin with the consistency result of f̂(u; x), (18). As a result of Lemma 2,

(18) in Theorem 1 follows. Once we have the consistency of the kernel estimator of marginal

density function, we proceed to the consistency of the estimators of the drift, (19) and the di¤usion

functions, (20). For the proof of the statement (19), there is a strand of literature focusing on time

varying coe¢ cients. (See Robinson (1988), Orbe et al (2005) and Cai (2007)). We adjust their

proofs to our setting. Recall

#̂ (u) =

"
TX
t=1

KutZtZ
>
t

#�1 " TX
t=1

KutZtYt

#

~# (u) =

"
TX
t=1

Kut ~Zut ~Z
>
ut

#�1 " TX
t=1

Kut ~Zut ~Yut

#
:

Due to Proposition 1 with �-mixing fXtg, it is shown that in a neighbourhood of u, both 1
Th

PT
t=1KutZtZ

>
t

and 1
Th

PT
t=1Kut

~Zut ~Z
>
ut converge to Mu := E

h
~Zut ~Z

>
ut

i
where Mu denotes expectation of ~Zut ~Z>ut

in the vicinity of the �xed time u: Also, both 1
Th

PT
t=1KutZtYt and

1
Th

PT
t=1Kut

~Zut ~Yut converge

to E
�
~Zut ~Yut

�
by the same token: (See also Lemma A.5 in Dahlhaus and Subba Rao (2006) and

Lemma 2 of A.1 in Fryzlewicz et al. (2008) for more details.) Meanwhile, let ~Yut� ~Zut# (t=T ) = vut;
then

~# (u)� # (u) =
"
TX
t=1

Kut ~Zut ~Z
>
ut

#�1 " TX
t=1

Kut ~Zut ~Yut

#
� # (u)

=

"
TX
t=1

Kut ~Zut ~Z
>
ut

#�1 TX
t=1

Kut ~Zut

�
~Z>ut#

�
t

T

�
+ vut

�
� # (u)

=

"
TX
t=1

Kut ~Zut ~Z
>
ut

#�1 TX
t=1

Kut ~Zut

�
~Z>ut

�
#

�
t

T

�
� # (u)

��

+

"
TX
t=1

Kut ~Zut ~Z
>
ut

#�1 TX
t=1

Kut ~Zutvut

= [MT (u)]
�1 [I1T (u) + I2T (u)] : (28)
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Also, for B > 0; let
P0 =

P
juT�tj�BTh and

P00 =
P
juT�tj>BTh :

E

�



 1ThXKut ~Zut ~Z
>
ut

�
~#

�
t

T

�
� # (u)

�



�
� sup
jTu�tj�Bh





~#� tT
�
� # (u)





 1

Th

X0
jKutjtr (Mu) +

C

Th

X00
jKutjtr (M)

� C
"

sup
jTu�tj�Bh





~#� tT
�
� # (u)





+ Z
juj�B

jK(u)jdu
#
+ o(1):

Finally,

E

�



 1ThXKut ~Zutvt





� = 1

(Th)2

X
K2
uttr (M)�

2 = Op

�
1

Th

�
:

Therefore, ~# (u)
p�!# (u) ; which implies #̂ (u) p�!# (u) : Now, Slutsky theorem yields the consis-

tency result of �̂; given �̂ = � b̂
â
; �̂ = � ln(b̂ + 1): Hence, the statement (19) follows. For the

consistency result of �̂2; (20), recall that

�̂2(u; x)� �20(u; x) =
2

f̂(u; x)

Z x

�1
�̂(u; y; �̂)f̂(u; y)dy � 2

f0(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy

=
2

f̂(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy �

2

f̂(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy

+
2

f̂(u; x)

Z x

�1
�̂(u; y; �̂)f̂(u; y)dy � 2

f0(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy

= 2

xZ
�1

�(u; y; �)f0(u; y)dy

"
1

f̂(u; x)
� 1

f0(u; x)

#

+
2

f̂(u; x)

�Z x

�1
�̂(u; y; �̂)f̂(u; y)dy �

Z x

�1
�(u; y; �0)f0(u; y)dy

�
= I1 + I2:

For I1;

I1 = 2

xZ
�1

�(u; y; �)f0(u; y)dy

"
1

f̂(u; x)
� 1

f0(u; x)

#
:

Let H :=

"
1

f̂(u; x)
� 1

f0(u; x)

#
:

jHj = � 1

f̂ (u; x) f0 (u; x)

�
f̂ (u; x)� f0 (u; x)

�
+ op

�
jjf̂ (u; x)� f0 (u; x) jj

�
:

Given that fu (x) is bounded away from zero and f̂ (u; x)
p�!f0 (u; x), jHj

p�!0; which implies
jI1j

p�!0: On the other hand, it can be easily shown jI2j
p�!0 given the consistency of the marginal
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density and the drift shown before: Collecting the results, the statement (20) follows.

Proof of Theorem 2. Given the relationship between �̂ and #̂, we start with the asymptotic

normality of #̂. With Lemma 3, the asymptotic normality property of �̂ follows as soon as one

can notice that �(u;Xt)"t are martingale di¤erences with the assumption of existence of its �nite

(2 + �)th moment where � > 0. The statement (21) in Theorem 2 follows. For the part with

respect to �̂2, we start with the asymptotic normality of our kernel density estimator. Due to the

asymptotic normality of kernel estimator of marginal density functions (Lemma 4), we proceed

to prove the asymptotic normality of the di¤usion function. Let �20 be the true functional of the

di¤usion term. Note that the di¤usion consists of the drift and the marginal density. The drift �̂

are estimated at the relatively faster rate than kernel density estimator f̂u(x). Moreover, it is a part

of integrand of the di¤usion function. Consequently, the asymptotic distribution of �̂2 is a¤ected

only by the asymptotic distribution of f̂u(x), not by that of �̂ . Given the asymptotic distribution

of f̂(u; x),

�̂2(u; x)� �20(u; x) =
2

f̂(u; x)

Z x

�1
�̂(u; y; �̂)f̂(u; y)dy � 2

f0(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy

=
2

f̂(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy �

2

f̂(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy

+
2

f̂(u; x)

Z x

�1
�̂(u; y; �̂)f̂(u; y)dy � 2

f0(u; x)

Z x

�1
�(u; y; �0)f0(u; y)dy

= 2

xZ
�1

�(u; y; �)f0(u; y)dy

"
1

f̂(u; x)
� 1

f0(u; x)

#

+
2

f̂(u; x)

�Z x

�1
�̂(u; y; �̂)f̂(u; y)dy �

Z x

�1
�(u; y; �0)f0(u; y)dy

�
= I1 + I2:

For I1;

I1 = 2

xZ
�1

�(u; y; �)f0(u; y)dy

"
1

f̂(u; x)
� 1

f0(u; x)

#
;

while "
1

f̂(u; x)
� 1

f0(u; x)

#
=
�(f̂(u; x)� f0(u; x))
f̂(u; x)f0(u; x)

:

For I2;

I2 =
2

f̂(u; x)

�Z x

�1

h
�̂(u; y; �̂)f̂(u; y)dy � �(u; y; �0)f0(u; y)

i
dy

�
:

Since I2 consists of integration of estimate and the integrand has the same convergence rate as

f̂ (u; x), it can be easily shown that I2 is smoother and hence smaller order than I1: Therefore,

I2 = o
�
(Th1h2)

�1=2
�
:
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Therefore, due to Lemma 4 and continuous mapping theorem, The statement (22) in Theorem 2

follows. Moreover, due to Robinson (1983), for distinct time points u; x and u�; x�; we have �̂(u);

�̂2(u; x) are asymptotically independent of �̂(u�), �̂2(u�; x�) respectively. Collecting the results

thus far completes the proof of Theorem 2.

Proof of Theorem 3. Let�s start with the uniform convergence of the drift function. Because we

assume Xt is strongly mixing with geometrically decreasing mixing coe¢ cients and u can be con-

sidered from U [0; 1] with exponential decay. It could be considered as the straighforward extension

of Kristensen (2009). We introduce the following notation for our argument. For our triangular

array of interest,

B0 = sup
t;T
sup
x2R

gt;T (x)

BY;1 = sup
t;T
sup
x2R

E [Yt;T jXt;T = x] gt;T (x)

BY;2 = sup
T

sup
jt�jj�M

sup
x2R

E [Yt;TYj;T jXt;T = x; Xj;T = y] gt;j;T (x; y) ;

where gt;T (x) is the density of fXt;T g andM is some positive number and supt;T = supT�1 sup1�t�T :

Under Assumptions 1 - 8, conditions for Theorem 1 in Kristensen (2009) are met and application

of Theorem 1 in Kristensen can be used.

Recall that the proposed estimator of the drift function is

#̂ (u) =
hX

KutZtZ
>
t

i�1 hX
KutZtYt

i
:

We consider a and b separately. For example, let�s start with b̂: Let 1
Th

P
Kut

1
Th

P
KutX

2
t ��

1
Th

P
KutXt

�2
= �̂bd and

1
Th

P
Kut

1
Th

P
KutXtYt � 1

Th

P
KutXt

1
Th

P
KutYt = �̂

b
n: Note that �̂

b
d

and �̂bn are local demeaned values. All assumptions provided in Theorem 1 of Kristensen (2009)

are met with Yt;T = Xt;TXt�1;T and Yt;T = X2
t;T . In particular, B0, BY;1, BY;2 are all bounded.

Due to Kristensen (2009), we obtain:

sup
u2[�T ;1��T ]

j�̂bd � E
h
�̂bd

i
j = Op (r� (T ))

sup
u2[�T ;1��T ]

j�̂bn � E
h
�̂bn

i
j = Op (r� (T )) :

where r� (T ) :=
�
lnT
Th

�1=2
: Also, due to standard nonparametric estimation manipulation,

sup
u2[�T ;1��T ]

jE
h
�̂bd

i
� �bdj = Op

�
h2
�

sup
u2[�T ;1��T ]

jE
h
�̂bn

i
� �bnj = Op

�
h2
�
:
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Therefore,

sup
u2[�T ;1��T ]

j�̂bd � �bdj = Op (r� (T )) +O
�
h2
�

sup
u2[�T ;1��T ]

j�̂bn � �bnj = Op (r� (T )) +O
�
h2
�
:

By the Taylor expansion,

���b̂ (u)� b (u)��� = ����� �̂bn�̂bd � b (u)
����� =

����� �̂bn�̂bd � �
b
n

�bd

�����
� j�̂bn � �bnj

�bd
+
j�bnj�
�bd
�2 j�̂bd � �bdj:

Due to the same argument as in Kristensen (2009), the uniform convergence rate of the above

equation is determined by j�̂bn � �bnj and j�̂bd � �bdj: Therefore,

sup
u2[�T ;1��T ]

jb̂ (u)� b (u) j = Op (r� (T )) +O
�
h2
�
:

Also, as for â; the method in Hansen (2008) applies again with the previous result for b̂ and the

rate of uniform convergence of â is determined by that of b̂. Since � = [�; �]> is obtained from

the relation, � = �a
b and � = �ln(b + 1), the result follows. For the uniform convergence of the

di¤usion function, notice that the uniform convergence of the proposed estimator of the di¤usion

function is determined by that of the proposed estimator of the density function. Therefore, to

provide the uniform consistency result of �̂2, we start with the uniform consistency and rates for

f̂(x; u). Due to Lemma 5, the result follows.

Appendix B. Lemmas

Lemma 1 (Benedetti, 1977) Suppose K is continuous, and is such that K(u) is nonincreasing

for u > 0, and nondecreasing for u < 0, and suppose
R
Kr(u)du <1. If there exists some �� such

that �=n � max(xi � xi�1) for all n, where x0 = 0; xn+1 = 1, and if nhn !1, then for x 2 (0; 1)

h�1n

nX
i=1

(xi � xi�1)Kr

�
x� xi
hn

�
=

Z
Kr(u)du+O

�
(nhn)

�1� : (29)

Proof of Lemma 1. See Orbe et al (2000).

36



Lemma 2 Under the Assumptions 2, 3 and 4, then

E
h
f̂(u; x)� g0(u; x)

i2
=

" 
h22f

(2)
0 (u; x) + h21

�f0 (u; x)

2

!
�2 (K) + o

�
h21 + h

2
2 + T

�1=2
�#2

+
f0 (u; x)

Th1h2
jjKjj42 + o((Th1h2)

�1):

Proof of Lemma 2. The terms in square bracket of E
h
f̂(u; x)� g0(u; x)

i2
come from the bias

of f̂(u; x), while the last two terms come from variance of f̂(u; x). Note that as is the case with

standard nonparametric density estimation methods, our density estimator is subject to some bias

and shares most of the basic statistical properties with the standard ones in the nonparametric

literature. Note that if the underlying process is stationary, then �f0 (u; x) = 0:The proof is built

upon the approach of Bosq (1998). We modify it slightly according to our locally stationary case.

Let�s begin with Bias term of f̂(u; x): Following Lemma 1 by slight modi�cation,

h�1
TX
t=1

(
t

T
� t� 1

T
)Kr

�
x� t=T
h

�
= (Th)�1

TX
t=1

Kr

�
x� t=T
h

�
=

Z
Kr(u)du+O

�
(Th)�1

�
:

Using the standard methods of kernel estimators combined with the assumption of local stationarity,

E(f̂(u; x))� g0(u; x) = h22
f
(2)
0 (u; x)

2
�2 (K) + o

�
h22
�

+ h21
�f0 (u; x)

2
�2 (K) + o

�
h21
�
; (30)
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due to the assumption of f(u; x) 2 C2 (b). More speci�cally, due to Proposition 2,

E(f̂u(x))� gu(x) = E
�
f̂u (x)

�
� E

�
1

Th1

X
K

�
u� t=T
h1

�
fu (x)

�
+ E

�
1

Th1

X
K

�
u� t=T
h1

�
fu (x)

�
� gu(x)

=
1

Th1

X
K

�
u� t=T
h1

��
1

h2
E

�
K

�
Xt � x
h2

��
� fu (x)

�
+ E

�
1

Th1

X
K

�
u� t=T
h1

�
(fu (x)� gu (x))

�
+O

�
(Th1)

�1
�

=
h
1 +O

�
(Th1)

�1
�i"

h22
f
(2)
u (x)

2

Z
w2K (w) dw + o

�
h22
�#

+ E

�
1

Th1

X
K

�
u� t=T
h1

� ���� tT � u
���� _f0 (u; x)�

+ E

 
1

Th1

X
K

�
u� t=T
h1

�
1

2

���� tT � u
����2 �f0 (u; x)

!
+ op

 ���� tT � u
����2 + T�2=5

!

= h22
f
(2)
0 (u; x)

2
�2 (K) + h

2
1

�f0 (u; x)

2
�2 (K) + op

�
h21 + h

2
2 + T

�2=5
�
:

Now, we turn to variance part of Mean Squared Error of f̂(u; x): By de�nition,

var(f̂(u; x)) = (Th1h2)
�2var

 
TX
t=1

K

�
u� t=T
h1

�
K

�
x�Xt
h2

�!

= (Th1h2)
�2

24 PT
t=1 var

�
K
�
u�t=T
h1

�
K
�
x�Xt
h2

��
+P

s 6=t cov
�
K
�
u�t=T
h1

�
K
�
x�Xt
h2

�
;K
�
u�s=T
h1

�
K
�
x�Xs
h2

�� 35
= I1 + I2:

Since we deal with dependent data, we introduce the following local measure of dependence for our

asymptotic analysis.

&t;s = f(Xu;t;Xu;s)(y; z)� f(Xu;t) (y)
 f(Xu;t) (z) : (31)

For each couple (t; s) ; t 6= s; f(Xt;u;Xs;u)(y; z) denotes the joint PDF of (Xt;u; Xs;u) in the vicinity
of a �xed time point u. Also, &t;s satis�es one of the following conditions:

Condition A-1
1. �p = supjt�sj�1 jj&t;sjjp <1; for some p 2 (2;1)
2. j&t;s (x)� &t;s (u)j � Cjjx� ujj� for some constant C:
First, we start with I1. Using the standard methods,

jI1j
p�! fu (x)

Th1h2

�Z
K2(r)dr

� �Z
K2 (w) dw

�
= Op((Th1h2)

�1): (32)
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The above value goes to zero as Th1h2 ! 1 and max(h1; h2) ! 0; provided that T ! 1, using
the standard Bochner�s theorem for i.i.d. case. Meanwhile,

jI2j =
����� 2

(Th1h2)2

T�1X
s=1

T�tX
t=1

K

�
u� t=T
h1

�
K

�
u� s=T
h1

�
cov

�
K

�
x�Xt
h2

�
;K

�
x�Xs
h2

�������
� 2(Th1)�2

T�1X
s=1

T�tX
t=1

����K �u� t=Th1

�
K

�
u� s=T
h1

����� jI3j ;
where jI3j =

����cov� 1h2K
�
x�Xt;u
h2

�
;
1

h2
K

�
x�Xs;u
h2

������ :
Note that the following relations hold.

jI3j �
����cov� 1h2K

�
x�Xt;u
h2

�
;
1

h2
K

�
x�Xs;u
h2

������
= h�22

����E�K �x�Xt;uh2

�
K

�
x�Xs;u
h2

��
� EK

�
x�Xt;u
h2

�
EK

�
x�Xs;u
h2

�����
� h�22

Z Z ����K �x� yh2

�
K

�
x� z
h2

����� jfu(y; z)� fu (y) fu (z)j dydz
= h�22

Z Z ����K �x� yh2

�
K

�
x� z
h2

����� j&t;sj dydz;
where &t;s is de�ned in (31).

In order to proceed further, we need to choose an appropriate bound on the above value by

using �-mixing coe¢ cient. For �-mixing (strong mixing), if Condition A�1-1 holds, due to Hölder

inequality,

jI3j � sup
js�tj�1

jj&t;sjjph�2=p2 jjKjj2q ; (33)

where
1

p
+
1

q
= 1:

On the other hand, due to Billingsley�s inequality,8

jI3j � h�22 4 (sup jK(v)j)
2
���js�tj�� :

Therefore,

jI3j � min
�
�ph

�2=p
2 jjKjj2q ; h�22 4 (sup jK(v)j)

2
���js�tj��� :

8 (Billingsley�s inequality) If Y 2 L1(� (Xs; s � t)) and Z 2 L1(� (Xs; s � t+ k)); then

jCov (Y;Z)j � 4jjY jj1jjXjj1�k
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Consequently,

jI2j �
2

(Th1)�2

T�1X
s=1

T�tX
t=1

����K �u� t=Th1

�
K

�
u� s=T
h1

�����
�
���min��ph�2=p2 jjKjj2q ; h�22 4 (sup jK(v)j)

2
���jt�sj������

� 2

(Th1)�2

T�1X
j=1

bT=2cX
t=1

����K �u� t=Th1

�
K

�
u� (t+ j) =T

h1

�����
�
���min��ph�2=p2 jjKjj2q ; h�22 4 (sup jK(v)j)

2
���jjj������ where j = js� tj

= I4 + I5: (34)

Since K is Lipschitz continuous and has a bounded support,

1

(Th1)2

bT=2cX
t=1

����K �u� t=Th1

��
K

�
u� (t+ j) =T

h1

�
�K

�
u� t=T
h1

������ = o� 1

Th1

�
: (35)

We can consider two cases:

1. min
�
�ph

�2=p
2 jjKjj2q ; h�22 4 (sup jK(v)j)

2
���jt�sj��� = �ph

�2=p
2 jjKjj2q ; i.e. 1 � js� tj � �T where

�T ' h
�2=q�
2 ; then

jI4j =
2

(Th1)2

�TX
j=1

����ph�2=p2 jjKjj2q
��� bT=2cX
t=1

����K �u� t=Th1

�
K

�
u� (t+ j) =T

h1

����� :
From (35)

jI4j =
�TX
j=1

����ph�2=p2 jjKjj2q
���
24 1

(Th1)2

bT=2cX
t=1

K2

�
u� t=T
h1

�
+ o

�
1

Th1

�35
� 1

Th1

�TX
j=1

����ph�2=p2 jjKjj2q
��� 1

Th1

TX
t=1

K2

�
u� t=T
h1

�
+ o (1)

!
:

For jI4j, Th1h2jI4j = o
�
h
(�(p�2)�2(p�1))=�p
2

�
. Since we assume � >

2 (p� 1)
p� 2 ; Th1h2jI4j =

o (1) :

2. min
�
�ph

�2=p
2 jjKjj2q ; h�22 4 (sup jK(v)j)

2
���jt�sj��� = h�22 4 (sup jK(v)j)2 ���jt�sj�� ; i.e. js� tj � �T
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where �T ' h
�2=q�
2 ; then

jI5j =
2

(Th1)2

X
j>�T

bT=2cX
t=1

����K �u� t=Th1

�
K

�
u� (t+ j) =T

h1

�����h�22 4 (sup jK(v)j)2 ���jjj��
� 8 (sup jK(v)j)2

T 2h21h
2
2

X
j>�T


j��
bT=2cX
t=1

����K �u� t=Th1

�
K

�
u� (t+ j) =T

h1

����� :
From (35),

jI5j �
const:

h22

X
j>�T


j��

24 1

(Th1)2

bT=2cX
t=1

K2

�
u� t=T
h1

�
+ o

�
1

Th1

�35
� const:

Th1h2

24 1
h2

X
j>�T


j��

35 1

Th1

TX
t=1

K2

�
u� t=T
h1

�
+ o (1)

!
:

For jI5j; Th1h2jI5j = o (1) :Therefore,

Th1h2jI2j = o (1) : (36)

From (30), (32) and (36), Lemma 2 is proved. If Condition A�1-2 holds, the proof is almost the

same except that (33) should be changed as follows.

jI3j � C
�
�js�tj

�1=3
:

Lemma 3 Under the Assumption 2 - 6, #̂ is pointwise asymptotically normally distributed as

follows.
p
Th
n
#̂ (u)� #0 (u)� h2bias�̂

o
d�! N

�
0; jjKjj22M�1

u 
uM
�1
u

�
(37)

where Mu := Eu

h
~Zut ~Z

>
ut

i
; 
u := Eu

�
~Zut ~Z

>
ut�

2
u

�
~Xu;t

��
and

bias#̂ = [�2 (K)]M
�1
u Eu

h
~Zut ~Z

>
ut

n
#
(1)
0 (u) _f0

�
u; ~Xu;t

�
=f0

�
u; ~Xu;t

�
+ 1

2#
(2)
0 (u)

oi
:

Proof of Lemma 3. Our approach is based on Robinson (1989) and Cai (2007) on top of the

previous argument for consistency results of #̂ (u). Continuing from (28),

#̂ (u) = # (u) + [MT (u)]
�1 [I1T (u) + I2T (u)]
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where

MT (u) :=
1

Th

TX
t=1

Kut ~Zut ~Z
>
ut (38)

I1T (u) :=
1

Th

TX
t=1

Kut ~Zut ~Z
>
ut

�
#

�
t

T

�
� # (u)

�
(39)

I2T (u) :=
1

Th

TX
t=1

Kut ~Zutvut: (40)

For (38), MT (u) =Mu + o(1) where Mu := Eu0

h
~Zut ~Z

>
ut

i
as before. For (39),

E [I1T (u)] = E

�
Kut ~Zut ~Z

>
ut

�
#

�
t

T

�
� # (u)

��
=

Z Z
z1z

>
1 (# (u+ hv)� # (u)) f0 (u+ hv; x)K (v) dxdv

=

Z Z
z1z

>
1

h
hv#(1) (u) + 1=2h2v2#(2) (u)

i h
f0(u; x) + _f0 (u; x)hv

i
K (v) dxdv

=

Z Z
z1z

>
1

h
_f0 (u; x)#

(1) (u)h2v2 + 1=2f0(u; x)#
(2) (u)h2v2

i
K (v) dxdv + o

�
h2
�

= h2
Z
v2K (v) dv

Z
z1z

>
1

"
_f0 (u; x)#

(1) (u)

f0 (u; x)
+ 1=2#(2) (u)

#
f0(u; x)dx+ o

�
h2
�

= h2 [�2 (K)]Eu

�
~Zut ~Z

>
ut

�
#
(1)
0 (u) _f0

�
u; ~Xu;t

�
=f0

�
u; ~Xu;t

�
+
1

2
#
(2)
0 (u)

��
+ o

�
h2
�
:

For (40), note that fvutg is a martingale di¤erence sequence.

p
ThI2T (u)

d�!N
�
0; jjKjj22
u

�
;

where 
u := Eu
�
~Zut ~Z

>
ut�

2
u

�
~Xu;t

��
: Collecting all of the results above, Lemma 3 follows.

Lemma 4 Under the same setting as Theorem 1 with Assumption 5, in the neighborhood of a

certain time point u, for ju� t=T j ! 0; we have biasf̂ = O
�
h21 + h

2
2

�
and

p
Th1h2

n
f̂(u; xi)� g0(u; xi)� biasf̂ (u; xi)

ok
i=1

d�!N(0; Vf ), (41)

where Vf = diag fVf (u; xi)g ; i = 1; : : : ; k, Vf (u; xi) = jjKjj42f(u; xi) and

biasf̂ (u; xi) =

 
h22f

(2)
0 (u; xi) + h

2
1
�f0 (u; xi)

2

!
�2 (K) :
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Moreover, under the conditions of the above Lemma, Vf (u; xi) is consistently estimated by

jjKjj42f̂(u; xi) for i = 1; : : : ; k: (42)

Proof of Lemma 4.
Our method is a slight modi�cation of Bosq (1998). To begin with, we need to prove that for

� =(�1; �2; : : : ; �k) 6= 0;

(Th1h2)
1=2

kX
i=1

�i
f̂ (u; xi)� Ef̂ (u; xi)�
f0 (u; xi) fjjKjj22g2

�1=2 d�!
kX
i=1

�iNi; (43)

where Ni denotes a standard normal random variable. Let ST be de�ned as follows.

ST =

TX
t=1

ZT (t) ;

where

ZT (t) =
kX
i=1

�i�
fu (xi) jjKjj22

�1=2 �K �u� t=Th1

�
K

�
xi �Xt
h2

�
� EK

�
u� t=T
h1

�
K

�
xi �Xt
h2

��
;

where t = 1; : : : ; T: We can consider the following blocks to make use of Bradley�s theorem (1983).

VT (j) =
Pp
i=1 ZT ((j � 1)(p+ q) + i) ; V 0T (j) =

Pq
i=1 ZT (jp+ (j � 1)q + i) ; �T =

PT
t=r(p+q)+1

ZT (t) where j = 1; : : : ; r and r(p + q) � T < r (p+ q + 1) : It is obvious that the contribution of
�T is negligible and thus neglected afterwards when T !1: Due to Bradley�s theorem, there exist
independent random variablesWT (j), j = 1; : : : ; r such that the probability distributions ofWT (j)

and VT (j) are identical and P (jVT (j)�WT (j) j > �T ) � 18 (jjVT (j) jj=�T )� (q) ; j = 1; : : : ; r; with
�T = " (rph1h2)

1=2 for some " > 0:

P

0@������
rX
j=1

VT (j) = (rph1h2)
1=2

������ > "
1A � P

0@������
rX
j=1

(VT (j)�WT (j)) = (rph1h2)
1=2

������ > "
1A

+ P

0@������
rX
j=1

WT (j) = (rph1h2)
1=2

������ > "
1A :

Then if we choose r; p; and q such that P
����Pr

j=1 (VT (j)�WT (j)) = (rph1h2)
1=2
��� > "� ! 0, for

example, r ' T a; p ' T 1�a; q ' T c; 0 < a < 1; 0 < c < 1;

rX
j=1

(VT (j)�WT (j)) = (rph1h2)
1=2 p�!0:
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For the part
���Pr

j=1WT (j) = (rph1h2)
1=2
��� ; we show the asymptotic normality as follows. We need

to show the following Lyapunov condition.

L =

rP
j=1

EjWT (j) j3

(rvar (WT (j)))
3=2

p�!0:

First, using the result of Lemma 2, it can be shown

var (WT (j)) = var (VT (j)) � ph1h2
kX
i=1

�2i :

On the other hand, A.5 implies EW 4
T (j) = O

�
p4h41h

4
2

�
:Then, L = O

�
r�1=2ph1h2

�
which tends to

zero with appropriate choices of r and p: Also,
Pr
j=1 V

0
T (j) = (rph1h2)

1=2 can be shown easily to

tend to zero in probability. Collecting the results thus far yields (43). With (30), this completes the

proof. Additionally, since f̂u (xi)�fu (xi)
p�!0 for i = 1; : : : ; k: fu (xi) fjjKjj22g2 can be consistently

estimated by f̂u (xi) fjjKjj22g2:

Lemma 5 Let I be any compact subset of R: Assume that bandwidth h1; h2 are chosen such that
(lnT ) = (Th1h2) = o (1) as T !1: Then,

sup
x2I;u2[�T ;1��T ]

���f̂ (u; x)� g0 (u; x)��� = Op �h21 + h22�+O
"�

lnT

Th1h2

�1=2#
:

Proof of Lemma 5. See Hansen (2008) with Lemma 2 and Theorem 1 of Kristensen (2009).

Appendix C. Option pricing application

Analogous to Aït-Sahalia (1996), we could develop option pricing estimation method in the vicinity

of a time point, u. In the neighbourhood of a time point, u, let Au (t; x) be the price of the derivative
of interest with current time t and maturity date T where x is the underlying asset price. Also,

de�ne 
u (x), cu (t; x) and bu (x) be the market price of interest rate risk, the cash �ow rate from

the corresponding derivative security per unit of time, and the payo¤ of the derivative at maturity

T respectively.

LAu (t; x) = �cu (t; x)

where L is the parabolic di¤erential operator.
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Due to Itô-Lemma,

dAu (t; x) =
@Au
@t

dt+
@Au
@x

dx+
1

2

@2Au
@x2

(dx)2

=
@Au
@t

dt+
@Au
@x

(� (�) dt+ � (�) dWt) +
1

2

@2Au
@x2

�2 (�) dt

=

�
@Au
@t

+
@Au
@x

(� (�) (� (�)� x))) + 1
2

@2Au
@x2

�2 (�)
�
dt+

@Au
@x

� (�) dWt

On the other hand, due to martingale property, no arbitrage condition yields

dAu
Au

= m (t;Au) dt+ s (t;Au) dWt;

where m (t;Au) = x� c(t;x)
A(t;x) + 
 (t; x) s (t;Au) ; s (t;Au)Au =

@Au
@x � (�) and 
 (�) is the market price

of interest rate risk. Therefore, the following relationship holds.�
@Au
@t

+
@Au
@x

(� (�) (� (�)� x))) + 1
2

@2Au
@x2

�2 (�)
�
= Au

�
x� c (t; x)

Au (t; x)
+ 
 (t; x)

@Au
@x

� (�)
�
:

(44)

It is worth noting that (44) holds for any asset Au. 9

Since the left hand side of the above equation can be written as

LAu � �@Au=@t+
�
�2u (x) =2

� �
@A2u=@x2

�
+ [�u (x; �)� 
u (x)�u (x)] (@Au=@x)� xAu:

Obviously, LAu (x; T ) = bu (x). In mathematics term, this is a Cauchy problem and therefore,

there exists a unique solution for the following linear parabolic partial di¤erential equation under

certain conditions.

LAu (x; T ) = bu (x) for all x 2 (0;1)
LAu (t; x) = �cu (t; x) :

Numerical solutions for the above equation could be calculated via the �nite-di¤erence method but

this method is rather restrictive. Instead, given that Feynman-Kac representation links solutions

to the above equation with the conditional moment involving the underlying fXtg. In this regard,
with appropriate modi�cation and additional assumptions, our estimation of prices of �nancial

derivatives can be valid as long as the corresponding assumptions in Hull and White (1990) and

Kristensen (2008) are met. For more theoretical and empirical details, see Hull and White (1990),

Stanton (1997) and Kristensen (2008).

9 In fact, (44) holds under certain conditions. For example, the price of a derivative security of an underlying asset
is determined by only the underlying asset itself. For more details, see Vasicek, CIR, and HW.
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Appendix D. Tables and Figures

Table 1: Unit root tests

Period, Global Sep.75-Aug.77 Dec.78-Dec.80 Jun.82-Jun.84 Feb.86-Feb.88 Jun.92-May.94
Type of Tests

PPy -2.9265 -6.9862�� -3.003 -5.1148�� -3.2746� -3.1597�

(-3.4106)z

NP 0.0252 0.00857�� 0.01420� 0.01236� 0.01391� 0.01389�

(0.0199 )

�Statistically signi�cant at the 5 percent level.
��Statistically signi�cant at the 1 percent level.
� Statistically signi�cant at the 10 percent level.

y Constant and linear Trend, Bartlett kernel and Newey-West Bandwidth are used.
z Values in parentheses denote critical values corresponding to 5 % signi�cance level
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Table 2: Option pricing - Nonparametric Underlying Bond Prices

Maturity Annualized Spot Rate (%)
(Years) 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.5 0.9829 0.9746 0.9664 0.9585 0.9507 0.9432 0.9358

0.9807 0.9749 0.9693 0.9635 0.9579 0.9527 0.9471
0.9712 0.9649 0.9586 0.9525 0.9466 0.9407 0.9346
0.9799 0.9725 0.9652 0.9583 0.9515 0.9447 0.9380

1 0.9583 0.9448 0.9315 0.9191 0.9075 0.8965 0.8857
0.9551 0.9478 0.9405 0.9336 0.9269 0.9199 0.9132
0.9163 0.9075 0.8992 0.8912 0.8834 0.8751 0.8669
0.9478 0.9367 0.9261 0.9159 0.9059 0.8966 0.8874

3 0.8029 0.7839 0.7662 0.7500 0.7348 0.7195 0.7032
0.8434 0.8364 0.8295 0.8228 0.8160 0.8094 0.8028
0.6870 0.6791 0.6712 0.6636 0.6557 0.6480 0.6406
0.7868 0.7752 0.7639 0.7528 0.7424 0.7320 0.7220

5 0.6590 0.6419 0.6261 0.6122 0.5995 0.5865 0.5743
0.7473 0.7413 0.7353 0.7292 0.7236 0.7181 0.7126
0.5107 0.5051 0.4994 0.4937 0.4882 0.4827 0.4773
0.6387 0.6292 0.6200 0.6113 0.6027 0.5943 0.5859

10 0.3982 0.3887 0.3798 0.3716 0.3634 0.3559 0.3484
0.5495 0.5449 0.5404 0.5359 0.5316 0.5274 0.5231
0.2438 0.2412 0.2383 0.2358 0.2333 0.2308 0.2282
0.4038 0.3977 0.3917 0.3860 0.3808 0.3755 0.3703

1) The face value of the bond of interest is $1.

2) Time t is normalised to 0 so that Time to maturity can be used appropriately. .
3) The four elements in each cell are, from top to bottom, nonparametric call option

prices based on estimates of stationary di¤usion model, estimates around May 77,

estimates around Jul. 80, and estimates around Feb. 93 respectively.
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Table 3: Option pricing - Nonparametric Call Option Prices on a 5-year zero coupon Bond

Annualized Option Strike Price
Spot Rate Expiration 0.98 0.99 1.00 1.01 1.02

0.05 0.5 3.0526 2.4396 1.8267 1.2137 0.6008
3.4755 2.7607 2.0458 1.3310 0.6161
2.9206 2.4334 1.9462 1.4590 0.9717
3.1674 2.5589 1.9503 1.3418 0.7333

0.05 1 5.2589 4.6665 4.0741 3.4817 2.8893
5.5186 4.8114 4.1042 3.3970 2.6897
5.8095 5.3521 4.8947 4.4372 3.9798
5.3913 4.8015 4.2118 3.6221 3.0323

0.10 0.5 4.0509 3.4879 2.9248 2.3618 1.7987
4.3928 3.7044 3.0159 2.3275 1.6390
3.7410 3.2713 2.8016 2.3319 1.8622
4.0513 3.4665 2.8816 2.2968 1.7120

0.10 1 6.6773 6.1246 5.5719 5.0192 4.4665
6.5994 5.9336 5.2679 4.6022 3.9365
6.8125 6.3665 5.9206 5.4746 5.0287
6.7942 6.2415 5.6888 5.1361 4.5835

0.15 0.5 4.8303 4.3019 3.7735 3.2452 2.7168
5.2179 4.5484 3.8789 3.2094 2.5399
4.1633 3.7258 3.2884 2.8509 2.4135
4.9417 4.3917 3.8417 3.2917 2.7417

0.15 1 8.0288 7.5271 7.0255 6.5239 6.0222
7.7171 7.0754 6.4338 5.7921 5.1504
7.7594 7.3449 6.9304 6.5158 6.1013
8.0377 7.5225 7.0073 6.4921 5.9768

1) All of the above values correspond to the prices of call options whose remaining

expiration, the spot interest rate at the time of selling and strike prices are denoted

in the table. The strike price is expressed as a proportion of the corresponding

underlying bond price at the time of selling.

2) The four elements in each cell are, from top to bottom, nonparametric call option

prices based on estimates of stationary di¤usion model, estimates around May 77,

estimates around Jul. 80, and estimates around Feb. 93 respectively.
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Figure 1: Movement on the US Treasury Bill (1955.7 - 2008.12)
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Figure 2: Movement of Eurodollar Deposit Rate (1973.6 - 1995.2)
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