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Abstract

Using a reduced rank regression framework as well as information criteria we investigate

the presence of commonalities in the intraday periodicity, a dominant feature in the return

volatility of most intraday financial time series. We find that the test has little size distortion and

reasonable power even in the presence of jumps. We also find that only three factors are needed to

describe the intraday periodicity of thirty US asset returns sampled at the 5-minute frequency.

Interestingly, we find that for most series the models imposing these commonalities deliver

better forecasts of the conditional intraday variance than those where the intraday periodicity

is estimated for each asset separately.
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1 Introduction

The returns of most intraday financial times (e.g. at the 5-minutes frequency) are characterised

by the presence of periodicity in their volatility. The behaviour of a time series is called intraday

periodic if it shows a periodic structure within a day. For instance, the foreign exchange (FX)

market exhibits strong periodic effects caused by the varying number of traders present during the

day in the three major markets.1 This translates into a U-shaped pattern in the ACF of absolute and

squared intraday returns. Standard volatility models (ARCH or SV models), implying a geometric

decay in the squared return autocorrelation structure, cannot accommodate strong regular cyclical

patterns of that sort.

These periodic movements can be captured by non-parametric techniques (see Taylor and Xu,

1997) or in a parametric approach by a set of dummy variables (see Baillie and Bollerslev, 1991)

or a bunch of trigonometric functions (see Andersen and Bollerslev, 1997). In the latter framework

however, the number of parameters to estimate is usually quite large. This number further inflates

when considering several assets in a multivariate modelling leading to a potential loss of efficiency.

However, this intraday periodic feature might be common to several series. Testing, discovering

and imposing these commonalities can be exploited to improve parameter efficiency and forecasts

accuracy. To this goal we first extend to intraday series the testing procedure proposed by Engle

and Hylleberg (1996) to extract common deterministic seasonal features in macroeconomic time

series.2 We propose to use a reduced rank approach to study the presence of commonalities in

the intraday periodic movements as well as multivariate information criteria to select the variables

explaining the common periodic features. The Monte Carlo simulations indicate that our proposed

strategy detects remarkably well both the number of periodic elements to be included and the

existence of commonalities. We illustrate our approach using thirty US stock returns observed

every five minutes in the period 2000-2008. Our approach shows that three common sources suffice

to describe the intraday periodicity of these thirty series and that imposing these commonalities

1The global FX market consists of three major markets, i.e., Asia, Europe and North America, and the major

movements of intradaily return volatility can be attributed to the passage of market activity around the globe.
2Note that this paper does not look at the co-movements in the volatility (Engle and Susmel, 1993; Engle and

Marcucci, 2006; Hecq et al., 2010) but at co-movements in the conditional mean equation for the logarithm of the

absolute value of standardised asset returns.
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improves prediction of not only the intraday periodicity but also the intraday conditional variance.

The approach adopted to extract and forecast the intraday periodicity in return volatility will

be useful for modelling intraday Value-at-Risk (IVaR) (see e.g. Dionne et al., 2009 and Giot, 2005)

and more generally intraday market risk measurement. The results of this paper are expected to

be useful to determine the linkage between markets and for the application of temporal intraday

trading rules as discussed by Goodhart and O’Hara (1997).

The remaining of the paper is structured as follows. Section 2 presents the model for univariate

high-frequency time series. In Section 3 we propose tools for detecting the existence of common

periodicity, the accuracy of which is evaluated in Section 4 with a set of Monte Carlo experiments.

Section 5 deals with the empirical analysis and Section 6 concludes.

2 The Model for Univariate High-frequency Time Series

We assume that the sample consists of T days of M equally-spaced and continuously compounded

intraday return observations rj,t,i (t = 1, . . . , T and i = 1, . . . ,M) of a financial asset j, j = 1, . . . , N .

Hence, rj,t,i equals the ith return on day t of series j. In their seminal papers Andersen and

Bollerslev (1997, 1998b), assume that the return rj,t,i is a normally distributed random variable with

zero mean and that the standard deviation σj,t,i can be rewritten as the product of a deterministic

component fj,t,i representing essentially the calendar features and sj,t,i capturing the remaining

volatility components (usually modelled using ARCH or stochastic volatility models), with fj,t,i

and sj,t,i > 0 ∀j, t, i. This leads to the univariate data generating process (DGP) for the high-

frequency return rj,t,i given in Assumption 1.

Assumption 1 (Conditional normality of intraday returns)

rj,t,i = σj,t,i uj,t,i with uj,t,i
i.i.d.∼ N(0, 1) (1)

σj,t,i = sj,t,i fj,t,i. (2)

The periodic factor fj,t,i is assumed to be a deterministic function of periodic variables such as

the time of the day and the day of the week. To ensure identifiability of both the periodicity and
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the stochastic volatility sj,t,i, we impose (see Assumption 2) that f2
j,t,i has mean one over the day.3

Assumption 2 (Normalization of fj,t,i)

1

M

M
∑

i=1

f2
j,t,i = 1 ∀j, t. (3)

The returns in (1) can be seen as discrete changes of an underlying continuous-time log-price

process. Model (1) is motivated by the idea that this log-price process follows a Brownian Semi-

Martingale (BSM) diffusion. Under the BSM model the log-price follows a diffusion consisting of

the sum of a conditionally normal random process with mean µ(s)ds and variance σ2(s)ds. Let w(s)

be a standard Brownian motion, then a BSM log-price diffusion admits the following representation

dp(s) = µ(s)ds + σ(s)dw(s).

Throughout, we will study return series observed with a sufficiently high frequency such that

the drift can be ignored. Model (1) is thus a discrete time version of the above BSM model where

the drift is set to 0.

As mentioned above, Andersen and Bollerslev (1998a) also assume (see Assumption 3) that sj,t,i

is constant over the day but can vary from day to day.

Assumption 3 (Constant stochastic volatility over the day)

sj,t,i =
sj,t√
M

∀i, j. (4)

Visser (2010) recently used Assumption 3 in a GARCH context where sj,t is the conditional

standard deviation of a GARCH(1, 1) on daily returns rj,t ≡
∑M

i=1 rj,t,i.

Under Assumptions 1 and 3, a consistent and very efficient estimator of sj,t,i is given by the

square root of 1
M

times the realized volatility of day t, i.e.

ŝj,t,i =

√

1

M
RVj,t, (5)

with RVj,t =

M
∑

i=1

r2
j,t,i. (6)

3Note that Andersen and Bollerslev (1997) use a slightly different normalization condition, i.e. that fj,t,i has mean

one over the day.
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To estimate the periodicity factor fj,t,i, Andersen and Bollerslev (1997) use the result that,

under this model, the standardised returns rj,t,i = rj,t,i/ŝj,t,i are normally distributed with mean

zero and variance f2
j,t,i. Furthermore, they consider the regression equation

log |rj,t,i| = log f∗
j,t,i + εj,t,i, (7)

where f∗
j,t,i differs from fj,t,i because it does not necessarily satisfies Assumption 2, the error term

εj,t,i is i.i.d. distributed with mean zero and having the density function of the centered absolute

value of the log of a standard normal random variable, i.e. g(z) =
√

2/π exp[z+c−0.5 exp(2(z+c))].

The parameter c = −0.63518 equals the mean of the log of the absolute value of a standard normal

random variable.

Andersen and Bollerslev (1997) model log f∗
j,t,i as a linear function of a m∗

j ×1 vector of variables

xj,t,i (such as sinusoid and polynomial transformations of the time of the day), i.e.

log f∗
j,t,i = ωj + γ′

jxj,t,i, (8)

where γj is a column vector with mj parameters.

Combining (7) with (8), we obtain the following regression equation

log |rj,t,i| = ωj + γ′
jxj,t,i + εj,t,i. (9)

Despite the fact that εj,t,i has a known and non-normal distribution, Andersen and Bollerslev

(1997) propose to estimate model (9) by OLS, which corresponds to a Gaussian QML estimator

under model (1). Monte Carlo simulation results reported by Boudt et al. (2010) suggest that

the loss of efficiency in the estimation of fj,t,i by OLS compared to that of the efficient MLE is

not dramatic under this model. Furthermore they also show that the OLS estimator is much less

sensitive to jumps in the DGP than the MLE (see also Section 4.3).

Given consistent estimates of ω̂j and γ̂j, log f̂∗
j,t,i is obtained using Equation (8). Furthermore,

following Andersen and Bollerslev (1997), an estimator for fj,t,i that satisfies Assumption 2 is given

by

f̂j,t,i =
exp(log f̂∗

j,t,i)
√

1
M

∑M
l=1[exp(log f̂∗

j,t,i)]
2
, (10)
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where exp(log f̂∗
j,t,i) is a consistent estimate of the conditional median of model (7), not of its

conditional mean.4

3 Testing for Common Intraday Periodic Features

Let us now assume that we observe a N × 1 vector of returns rt,i whose elements are rj,t,i (for

j = 1, . . . , N, t = 1, . . . , T and i = 1, . . . ,M). Denote by r̄t,i = (r1,t,i/ŝ1,t,i, . . . , rN,t,i/ŝN,t,i)
′ the

vector of standardised returns. Under the assumption that the m∗
j × 1 vectors xj,t,i are identical

across j, i.e. xj,t,i = xt,i with m∗
j = m∗, the multivariate counterpart of model (9) is

yt,i ≡ log |̄rt,i| = ω + Γxt,i + εt,i, (11)

where ω and Γ are respectively a N ×1 vector and a N ×m∗ matrix of parameters. The j-th row of

Γ is given by γ′
j in (9). For the MT observations, (11) can be rewritten more compactly as follows

y ≡ log |̄r| = ι ⊗ ω′ + xΓ′ + ε, (12)

where y is a MT ×N matrix, ι is a MT column vector of ones and ⊗ denotes the Kroneker product.

Notice that the multivariate regression model (12) is in fact a system of seemingly unrelated re-

gressions with identical regressors in each equation. For such a system the generalised least squares

estimator is identical to the OLS estimator equation by equation.

In our framework, testing the presence of common periodic features in volatility is equivalent to

testing for the rank of the matrix Γ, namely investigating rank(Γ) = k, with 0 ≤ k ≤ min(N,m∗).

For instance, when the true number of factors k∗ equals 1 there is a unique source of periodicity

generating the N returns. There will be commonality whenever m∗ < N whether k∗ = m∗ or

k∗ < m∗. In the case where N > m∗ = k∗, the m∗ variables xt,i can be interpreted as common

factors. The cases where either N > m∗ > k∗ or k∗ < min(N,m∗) are more interesting as in these

cases, Γ has reduced rank. This rank reduction implies that the model (11) can be parameterized

by fewer than the Nm∗ parameters as Γ = αβ′ where α and β are full column rank matrices of

dimensions N × k∗ and m∗ × k∗ respectively. Let us also denote xβ = F the common periodic

series.
4A transformation by a continuous function (such as the exponential transformation) of a quantile (median of

logged variables) yields a consistent estimate of the quantile of the transformed variable.
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One strategy to search for the rank of Γ is to jointly determine the number of periodic elements

m to be included in x and k by minimising the following multivariate information criteria over both

the values of m and k:

AIC(s,m) = ln det
(

Ω̂ε,s

)

+
2

MT
(N × m − υs,m,N ) (13)

HQ(s,m) = ln det
(

Ω̂ε,s

)

+
2 ln ln MT

MT
(N × m − υs,m,N) (14)

SC(s,m) = ln det
(

Ω̂ε,s

)

+
ln MT

MT
(N × m − υs,m,N ), (15)

where Ω̂ε,s = Ω̂ε −
s
∑

l=l∗
ln(1 − λ̂l) for s = 1, . . . ,min(N,m), the estimated covariance matrix of the

residuals in the multivariate reduced rank regression, the one with full rank being Ω̂ε = {Σ̂yy −
Σ̂yxΣ̂−1

xx
Σ̂xy}.5 This approach is similar to the one used by Athanasopoulos et al. (2009) for VAR

models. This method can be used to detect the true pair (m∗, k∗), the true number of factors k∗

or the true number of periodic elements m∗.

A second strategy for determining k∗, and hence the domain of the spaces generating α and

β, is to rely on the above information criteria to detect m∗ and for a given number of periodic

elements, say m, rely on a canonical correlation analysis using a spectral decomposition of

Σ−1
yy

ΣyxΣ−1
xx

Σxy, (16)

where Σyx are covariance matrices to be estimated by their empirical counterparts

Σ̂yx = (y − ȳ)′(x − x̄)/MT where ȳ and x̄ denote the empirical means of y and x respectively.

The null hypothesis that there exist at least s ≤ min(N,m) linear combinations that annihilate

k common periodic features is tested using

ξs = −MT
s
∑

l=l∗

ln(1 − λ̂l), s = 1, . . . ,min(N,m) (17)

with l∗ = max(1, N − m + 1) and where λ̂l is the l-th smallest eigenvalue of the estimated matrix

(16). For i.i.d. normally distributed random variables, ξs follows asymptotically under the null a

5We must be careful however on the bounds for k when the number of periodic elements runs from m < N to

m ≥ N. For instance, consider N = 5 returns and no reduced rank in Γ, i.e. k∗ = min(N, m∗). We should obtain

k = 2 with m∗ = 2, k = 4 with m∗ = 4 and k = 5 for m∗ ≥ 5.
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χ2 distribution with υs,m,N = s × max(N,m) − s(min(N,m) − s) degrees of freedom. Then, after

having determined s, the number of detected factors is k = min(N,m) − s.

Given the non-normal distribution of the disturbance terms here a χ2-test will at best be

approximately valid. Its accuracy will be evaluated in a Monte Carlo study in the next section.

Finally, once k and m are determined, either by ξs or with the help of information criteria, we can

form the common periodic components xβ̂ = F̂. We obtain β̂ from the k eigenvectors associated

with the k largest eigenvalues of Σ̂−1
xx

Σ̂xyΣ̂−1
yy

Σ̂yx, the dual problem of (16). Then the loadings

coefficients α̂ are estimated by regressing each return on an intercept and the k components in F̂.

The notion underlying common features is, although similar in spirit, different from the one used

in traditional factor models. Indeed, our extracted factors F are linear combinations of observed

variables xt,j . They are such that no significant information is lost when imposing these restrictions

contrary to traditional factor models with latent factors where these factors (often estimated by

principal components) try to explain a sufficient percentage of the variability of the series with a

limited number of combinations of these series.

Finally, note that Model (11) assumes a common left null space of every periodic intraday

component. The model can be generalized to include exogenous variables or additional periodic

effects zt,i such that

yt,i ≡ log |̄rt,i| = ω + Γxt,i + Υzt,i + εt,i. (18)

In this framework we can either test the reduced rank of [Γ : Υ] or only of Γ. In this latter case we

can concentrate out the effect of zt,i from both yt,i and xt,i by multivariate least squares and apply

the previous approach to the residuals from these regressions. We use this approach in Section 4.2

to account for the presence of serial correlation in εt,i induced by a violation of Assumption 3.

In the next section we evaluate the performance of the three information criteria AIC(s,m),

HQ(s,m) and SC(s,m) to determine m and/or k as well as ξs to determine k.

4 Monte Carlo Simulation

We use simulated data to gauge the quality of the proposed approach in several situations. We

generate T = 100 or 250 days of N = 5 or 15 univariate time series with M = 288 intraday

observations per day (corresponding to 5-minute data of exchange rate returns). The DGP is a
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multiplicative model implying intraday periodicity in volatility as well as GARCH effects.

We carry out three Monte Carlo studies. In the first one Assumptions 1-3 are satisfied while in

the second and third ones respectively, Assumption 3 and Assumptions 1 and 3 are violated.

4.1 Case 1: Constant intraday stochastic volatility and conditional normality

The structure of the first DGP is similar to the one employed recently by Visser (2010). The

stochastic part of the volatility is constant during the day but varies from day to day in accordance

with a GARCH(1, 1) structure at the daily level.

More specifically, the DGP is defined as Equations (1)-(2), with

sj,t,i =
sj,t√
M

(19)

s2
j,t = α0 + α1r

2
j,t−1 + β1s

2
j,t−1, (20)

where j = 1, . . . , N, t = 1, . . . , T, i = 1, . . . ,M, rj,t =
∑M

i=1 rj,t,i and ug,t,i⊥ul,t,i∀g 6= l.

The parameters of the GARCH model, α0, α1 and β1, have been set to 0.022, 0.068 and 0.898

respectively for all series, which correspond to the estimated parameters of a GARCH(1, 1) model

reported by Andersen and Bollerslev (1998a) for the daily returns on the Deutschemark-US Dollar

exchange rates from 1987 until 1992.

Notice that the impact of the values of the parameters α0, α1 and β1 on the outcome of the

test is small as each return series rj,t,i is divided by ŝj,t,i.

To simulate a realistic periodic factor we consider four cos and four sin terms depending only

on the time of the day, i.e.

log f∗
j,t,i =

4
∑

l=1

γj,l cos

(

i2πl

M

)

+
4
∑

l=1

γj,4+l sin

(

i2πl

M

)

(21)

or more compactly in matrix form

log f∗ = xΓ′, (22)

i.e. there are m∗ = 8 variables in x and the constant ω is set to 0. fj,t,i is recovered from log f∗
j,t,i

using (10).
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Figure 1: Simulated periodicity

With respect to the commonalities in the periodicity, three cases are investigated, i.e. the

presence of one, two and three factors. This means that the DGPi considered in this simulation

satisfies the null hypothesis that rank(Γ) = i, i ∈ {1, 2, 3}.
The coefficients chosen for the decomposition of Γ = αβ′ are reported here below for DGP3

(i.e. 3 factors case) for N = 5 variables:



















1 0 0

1 0 0

0 1 0

0 1 0

0 0 1



























−0.24422 −0.49756 −0.054171 0.073907 −0.26098 0.32408 −0.11591 −0.21442

−0.24422 −0.40000 −0.054171 0.073907 −0.26098 0.32408 −0.11591 −0.21442

−0.15000 0.40000 −0.054171 −0.073907 −0.56098 0.32408 −0.11591 −0.21442









Only the first row of β′ is taken for the one factor case (DGP1) and the first two rows are

considered in the two factor case (DGP2). The three periodic components, denoted f(1), f(2) and

f(3) are plotted in Figure 1.

The parameters of the first factor (i.e. first row of β′) correspond to the estimated parameters
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of (9) estimated by OLS on 3 years of 5-minute returns of the EUR-USD exchange rate and thus

implies a realistic intraday periodic pattern in volatility. The second (resp. third) factor implies

an arbitrary minor (resp. major) modification of the intraday periodicity.

The loadings on the other hand will depend on the number of series. In DGP3 the first factor

enters with coefficients equal to one for the first ⌊(N + 1)/3⌋ elements only. The second factor

enters in the second set of variables of size also ⌊(N + 1)/3⌋. The third factor only influences the

N − 2⌊(N + 1)/3⌋ remaining series. This is what we illustrate above for N = 5. For DGP2 one

takes the first ⌊(N + 1)/2⌋ loading coefficients equal to one and the remaining series equal to zero;

the second factor enters only in the N − ⌊(N + 1)/2⌋ + 1 variables. The N × 1 vector of loadings

is equal to one in DGP1.

To compute ξs, one has first to determine the number m of variables to include in x, e.g. the

number of cos and sin terms. Recall that the true value of m used in the DGP is m∗ = 8. The

same value has been used by Andersen and Bollerslev (1997, 1998b) in their empirical applications.

Table 1 reports for the three information criteria the frequencies (over 1000 replications) with which

minimization of the criterion over both the values of m and k leads to selecting respectively the

true number of periodic elements m∗, the true number of factors k∗ and the true pair (m∗, k∗).6

To be clear we choose the pair (m,k) that minimises the information criterion.

It emerges from Table 1 that one cannot rely on information criteria to choose either k or the

pair (m,k) because frequencies of determination of the true value(s) are not uniformly satisfactory

across the DGPs considered. Indeed, information criteria perform very poorly in this case, except

when the number of factors is very small. However, frequencies of determination of the true number

of periodic components m∗ reach 100% in all cases for the SC information criterion and thus one

can safely rely on them to determine m.

Table 2 concerns the finite sample properties of the ξs test statistic for the null hypothesis that

there exist at least s ≤ min(N,m) linear combinations that annihilate k common periodic features.

The value for m used when computing ξs is the one obtained in the pair (m,k) that minimises the

SC information criterion because this strategy was found to deliver the correct value for m in 100%

of the cases. Column Prob(ξs=s∗+1 > q
(1−α)
vs,m,N ), also labelled ‘Empirical power’, reports the rejection

6All estimations and simulations in this paper have been obtained by the authors using the Ox programming

language (Doornik, 2009) and the G@RCH software (Laurent, 2009).
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frequencies when the null hypothesis is not satisfied by the DGP, where q
(1−α)
df is the (1 − α)%

quantile of the χ2 distribution with df degrees of freedom. We only report results for a 5% nominal

size α but results for α = 1% and 10% were qualitatively similar. For instance, the first element

of this column corresponds to the case where T = 100, N = 5 and there is one factor (k∗ = 1).

Consequently, s∗ = min(N,m∗) − k∗ = 4 because there are 4 linear combinations annihilating this

common factor. In this case, the number reported in this column gives the frequency of rejection

of the null assumption of absence of intraday periodicity in volatility (i.e., rejecting s ≤ 4 in favour

of s = 5) while there is one common intraday periodic factor. The empirical power of the test in

this configuration is thus 100%.7

The next column, Prob(ξs=s∗ > q
(1−α)
vs,m,N ) corresponds to the empirical size at the 5% nominal

level, i.e. the rejection frequency using the test statistic ξs under H0 : s = s∗(≡ min(N,m∗) − k∗)

for N = 5 and m∗ = 8. The first element of this column equals 4.9 suggesting that there is no

evidence of size distortion.

The overall conclusion from this simulation study is that the test has good power properties and

does not suffer from any significant size distortion. Hence we recommend to use SC for determining

m and then to use ξs to determine s (or equivalently k).

4.2 Case 2: Time-varying intraday stochastic volatility and conditional normal-

ity

The assumption of constancy of the stochastic volatility during the day (Assumption 3) is ques-

tionable and a rejection of this assumption might affect the properties of the test.8 Indeed, our test

is based on the assumption that ε in (12) and (18) is i.i.d. If sj,t,i is not constant during the day,

ε might exhibit serial correlation.

We propose to explicitly take into account this autocorrelation by adding lagged values of yt,i

into zt,i in (18). Hence, we first concentrate out the effect of lags by multivariate least-squares of y

and x on a constant and z, i.e. lagged values of y. The analysis is then performed on the residuals

7Notice that rejection frequencies and simulated power function results are not size-adjusted and that power for

other set-ups is not reported because they are almost always equal to 100%.
8We thank one referee for bringing this issue to our attention.
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Table 1: Frequencies of correct determination of m∗, k∗ and the true pair (m∗, k∗) using information criteria

k∗ AIC HQ SC

m = m∗ k = k∗
m = m∗

k = k∗

m = m∗ k = k∗
m = m∗

k = k∗

m = m∗ k = k∗
m = m∗

k = k∗

T = 100

N = 5 1 80.0 83.6 67.9 98.9 100 98.9 100 100 100

2 88.0 86.5 77.1 100 99.7 99.7 100 21.5 21.5

3 90.1 67.6 61.4 99.7 3.90 3.90 100 0.00 0.00

N = 15 1 75.9 84.1 67.5 99.4 100 99.4 100 100 100

2 84.9 85.3 75.5 100 100 100 100 97.4 97.4

3 86.0 81.1 70.4 99.9 1.10 1.10 100 0.00 0.00

T = 250

N = 5 1 78.1 85.2 67.2 99.1 100 99.1 100 100 100

2 87.7 89.2 78.4 99.9 100 99.9 100 100 100

3 91.5 89.3 81.5 99.9 46.7 46.7 100 0.10 0.10

N = 15 1 78.7 83.9 69.5 99.5 100 99.5 100 100 100

2 86.7 86.1 76.7 99.9 100 99.9 100 100 100

3 89.8 88.4 81.0 99.9 67.1 67.1 100 0.00 0.00

Note: the true number of periodic elements m∗ = 8 and k∗ ∈ {1, 2, 3}.
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Table 2: Empirical power and empirical size of the ξs statistic for a 5% nominal size

Empirical power Empirical size

k∗ s∗ Prob(ξs=s∗+1 > q
(1−α)
vs,m,N ) Prob(ξs=s∗ > q

(1−α)
vs,m,N )

T = 100

N = 5 1 4 100 4.90

2 3 100 5.40

3 2 51.5 2.60

N = 15 1 7 100 5.40

2 6 100 4.80

3 5 67.3 2.40

T = 250

N = 5 1 4 100 5.40

2 3 100 3.50

3 2 95.3 4.40

N = 15 1 7 100 5.00

2 6 100 5.60

3 5 99.8 4.50

Note: the true number of periodic elements m∗ = 8, s∗ = min(N, m) − k∗,

q
(1−α)
df is the (1 − α)% quantile of the χ2 distribution with df degrees of

freedom while υs,m,N = s × max(N, m) − s(min(N, m) − s). Column

‘Empirical size’ (resp. ‘Empirical power’) correspond to the rejection

frequencies when the null hypothesis is (resp. is not) satisfied by the DGP

described in Case 1.
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of these two multivariate regressions.9

To study the performance of this approach and the effects of neglecting the serial correlation

in ε, we consider a second simulation design where the stochastic part of the volatility follows

a weak GARCH(1, 1) model. To this aim we use an Euler discretization of the continuous time

GARCH(1, 1) model proposed by Nelson (1990) with intraday periodicity.

More specifically, the new DGP consists of Equations (1)-(2), where

s2
j,t,i = θσ2 1

M
+ s2

j,t,i−1

(

1 − θ
1

M
+

√

2λθ
1

M
zj,t,i

)

, (23)

where zj,t,i is i.i.d. N(0,1) and independent of uj,t,i and by convention, s2
j,t,0 = s2

j,t−1,M .

This DGP is used to generate 5-minute returns characterised by intraday periodicity and time-

varying stochastic volatility. The memory of the volatility process depends on the values of θ

and λ while, for given values of the previous parameters, σ2 controls essentially the level of the

unconditional standard variance. As shown by Drost and Werker (1996), there is an exact one to one

relationship between these three parameters and the discrete-time weak GARCH(1,1) parameters

at the daily frequency, i.e. α0, α1 and β1 in (20):

θ = − log(α1 + β1) (24)

σ2 = α0(1 − α1 − β1)
−1 (25)

λ =
2 log2(α1 + β1)

[1−(α1+β1)
2](1−β)2

α1[1−β1(α1+β1)] + 6 log(α1 + β1) + 2 log2(α1 + β1) + 4(1 − α1 − β1)
. (26)

To control for the degree of persistence of the stochastic volatility, we chose several values of θ

and λ implying a weak GARCH(1, 1) satisfying the restriction α1+β1 = 0.95 at the daily frequency

with α1 = 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.4. The higher α1 is, the less sustainable the

assumption of constant stochastic volatility during the day is. Note that the most realistic values

for α1 in this setting are α1 = 0.05 or 0.1.

For the sake of comparison we also reconsider the constant volatility DGP presented in the

previous subsection. Results concerning the frequencies of selection of the right value for m using

9An adjustment of the eigenvalues for the presence of a MA component (see Tiao and Tsay, 1989) produces very

high size distortions and hence is not recommended (results are not reported to save space).
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the SC criterion are not reported here to save space but are in line with those reported in Section

4.1.

Figure 2 plots the size of the test statistic ξs, i.e. the rejection frequency using the test statistic

ξs under H0 : s = s∗(≡ min(N,m∗) − k∗) for N = 5 and m∗ = 8. This figure is divided into six

panels corresponding to six different situations where the time dimension varies (T = 100 and 250)

as well as the number of common factors in periodicity (k∗ = 1, 2 and 3). We refer to Subsection

4.1 for a description of the common factors in periodicity.

The x-axis corresponds to the number of lags of the endogenous variable that we include in zt,i

to control for the potential presence of autocorrelation in the residuals. The number of lags varies

from zero to 10.

It appears that for values of α1 ≤ 0.2, the rejection frequencies of the tests are close to the

nominal size of 5% even if the number of included lagged endogenous variables and T are small, in

particular in presence of 1 or 2 factors. In the presence of 3 common factors the tests appear to

over-reject, in particular when a few lagged endogenous variables are included as regressors. For

T = 250, with high order lags of the endogenous variables, the tests are found to be undersized.

These findings indicate that when sj,t,i is not constant over the day, including several lags

(around 5) of the endogenous variable would be sufficient to assure that the test of the number

of common factors using the test statistic ξs will have the right size even when T = 100, but

also certainly when T is as large as 250. Including few lagged endogenous variables results in an

oversized test whereas going beyond 5 lags of the endogenous variable leads to an undersized test.

To conclude, the size distortions are very small for realistic DGPs. For heavily volatile but less

frequently observed series, the correction we propose delivers accurate results. The determination

of the optimal number of lags in our correction is however beyond the scope of this paper.

4.3 Case 3: Time-varying intraday stochastic volatility and additive jumps

Prices of financial assets sometimes exhibit large jumps that are not in accordance with the assump-

tion of conditional normality in (1). It is thus more realistic to see intraday returns as realisations

of a Brownian SemiMartingale with Finite Activity Jumps (BSMFAJ) diffusion process like for

16
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Figure 2: Rejection frequency (i.e. empirical size) using the ξs test statistic in the presence of

non-constant intraday stochastic volatility

instance in Barndorff-Nielsen and Shephard (2004), and Lee and Mykland (2008).10

In the last simulation analysis, we study the impact of these jumps on our test by replacing

Equation (1) in the system (1)-(2)-(23) by

rj,t,i = σj,t,i uj,t,i + aj,t,i (27)

aj,t,i = qj,t,i κj,t,i, (28)

where ug,t,i⊥ul,t,i∀g 6= l and the parameters in Equation (23) are obtained using formulas (24)-(26)

10A count process is defined to be of finite activity if the change in the count process over any interval of time is

finite with probability one.
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and imply a GARCH(1,1) with α0 = 0.022, α1 = 0.068 and β1 = 0.898 at the daily frequency.

The additive jumps variable aj,t,i is a random variable that is zero for most of the observations.

For the intervals in which jumps occur, aj,t,i is non-zero and can be seen as an additive outlier with

respect to σj,t,i uj,t,i. More specifically, qj,t,i is a Poisson distributed random variable generating on

average q̄ jump(s) per day for each series (with qg,t,i⊥ql,t,i∀g 6= l). The jump size κj,t,i is modeled

as the product between a uniformly distributed random variable on
√

h/q̄([−2,−1]∪ [1, 2]) and the

total instantaneous volatility σj,t,i. The parameter h determines the magnitude of the jumps. Note

that the lower the intensity of the jump process, the larger the jumps are. In the simulation the

average number of jumps per day (q̄) ranges from 1 to 5 while h is set to 0 (no jumps), 0.1, 0.5, 1,

2, 3, 4 and 5, respectively.

In presence of jumps, we follow Lee and Mykland (2008) and Boudt et al. (2010) and estimate

sj,t,i, when evaluating (12) or (18), as the square root of a normalized version of Barndorff-Nielsen

and Shephard (2004)’s realized daily bipower variation, i.e.,

ŝj,t,i =

√

1

M − 1
BVj,t, (29)

with BVj,t = µ−2
1

M
∑

l=2

|rj,t,l||rj,t,l−1|, (30)

where µ1 =
√

2/π ≈ 0.79788. Alternatively, one can for instance use the square root of a normalized

version of the MinRV and MedRV estimators of Andersen et al. (2009).

Monte Carlo simulation results reported by Boudt et al. (2010) suggest that the log-transformation

shrinks the outliers and makes the OLS estimator of model (9) less sensitive to jumps.

In Figure 3, rejection frequencies for testing the presence of one factor (k = 1 or s = min(N,m)−
1 = 4) using ξs against the alternative that k > 1 are plotted against h for different values of the

number of jumps per day. The true number of factors k∗ equals 1 while N = 5, m∗ = 8 and

T = 100.11 In absence of jumps, the empirical size equals 4.90% which corresponds to the value

reported in column ‘Empirical size’ in Table 2. It appears from Figure 3 that the presence of jumps,

which are not taken into account, leads to a slightly oversized test when h is small. When h is large

the tests are slightly undersized. In the presence of fewer jumps, the oversize is larger when jumps

11Results concerning the frequencies of selection of the right value for m using the SC criterion are not reported

here to save space but are also in line with those reported in Section 4.1.
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occur more frequently. The general conclusion of this simulation study is that the procedure is not

heavily affected by the inclusion of jumps in the DGP.

Tests statistics using canonical correlations that are robust to the presence of jumps such as

the method of Taskinen et al. (2006) which uses the fast reweighted minimum covariance deter-

minant (MCD) of Rousseeuw and van Driessen (1999) to substitute for the estimated covariances

in Σ−1
yy

ΣyxΣ−1
xx

Σxy in (16) are not appropriate in our setting. Indeed the MCD requires the con-

ditional distribution of the data that are not contaminated by outliers (or jumps) to follow an

elliptical distribution while in our case y is log-normally distributed. This method was found to

produce very high size distortions both in absence and presence of jumps. Results are not reported

to save space.

5 Application

The data set was obtained from TickData and consists of transaction prices at the 5-minute sam-

pling frequency for N = 30 large capitalization stocks from the NYSE, AMEX NASDAQ, covering

the period from January 1, 2000 to December 31, 2008 (2239 trading days). A list of ticker symbols

and company names is provided in Appendix A. The trading session runs from 9:30 EST until 16:00

EST (390 minutes). Because of the unusual trading activity at the beginning of each day, we start

our intraday sampling at 9.35 am, 5 minutes after the market officially opens, such that M = 77.

5.1 Testing for common intraday periodicity

For the choice of variables driving the intraday periodicity in volatility, we follow Andersen and

Bollerslev (1997) and include both a linear and a quadratic trend in x as well as pj cos and pj sin

terms such that Equation (9) can be rewritten as

log |r̄j,t,i| = ωj + δj,1
i

N1
+ δj,2

i2

N2
+

pj
∑

l=1

γj,l cos

(

i2πl

M

)

+

pj
∑

l=1

γj,pj+l sin

(

i2πl

M

)

+ εj,t,i, (31)

where N1 = (M + 1)/2 and N2 = (2M2 + 3M + 1)/6 are normalizing constants and pj is the

number of cos and sin terms (determined using the SC criterion) for series j. Note that in this case

mj = pj × 2 + 2 while the multivariate version of (31) imposes mj = m ≡ p × 2 + 2 ∀j = 1, . . . , N .

Because of the presence of jumps in the data, sj,t,i is estimated by (29) for each series.
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The outcome of the test is reported in Table 3. The test is applied to three windows of three

consecutive years (respectively 742, 750 and 747 days for the periods 2000-2002, 2003-2005 and

2006-2008).

The number m of variables included in x is reported in column 2 and equals 6 for each sub-

period. Recall that x contains a linear and a quadratic trend as well as a number of cos and sin

terms determined by minimising the SC criterion (15).12 The number of common factors detected

at the 5% critical level is reported in the column labelled ‘k’ while the p-values of the null hypothesis

that there are at least s = (max(N,m)−k) linear combinations that annihilate k common periodic

features are reported in columns ‘ξs=l’ (for l = 25, 26, . . . , 30).

It emerges from the reading of this table that, out of the 30 US stocks, only three factors are

driving the intraday periodicity in volatility. The common periodicity series F̂ = xβ̂ extracted from

the data are plotted in Figure 4, where the factors are ranked in terms of their informativeness

(corresponding to the k largest to the smallest eigenvalues, see (17)).

The estimated factors in Figure 4 exhibit similar behaviour across different sampling periods.

The factor represented by the solid line corresponds to the typical U-shaped pattern observed in

return volatility over the trading day (see e.g. Andersen and Bollerslev, 1997), i.e. volatility is high

at the open and close of trading and low in the middle of the day. The factor represented by the

broken line is almost constant over a large part of the day and then increases at the end. Finally,

the factor given by the dotted line fluctuates most during the trading day.

Factor 1 mimics the behavior of the well-known intraday volatility shape and the factors 2 and

3 capture more erratic fluctuations. Moreover, the shape of the factors changes somewhat over

time. The factors should not necessarily have a clear economic interpretation. The factors are

linear combinations of the sinusoids and of polynomials of the time of the day. The factors 2 and 3

multiplied by their respective loadings for a given asset could be interpreted as deviations of that

asset from the well-known intraday volatility shape given by the first factor, also multiplied by the

corresponding loading for the asset considered. Typically, we observe a slowly decreasing intraday

trend (factor 2) and a sinusoidal factor (factor 3). Depending on the value and sign of the loadings,

factor 2 could either strengthen or weaken the typical intraday volatility shape of an asset whereas

12Results reported in Table 3 concern the case where no lagged values of yt,i are included into zt,i but similar

results have been obtained with 1 or 2 lags.
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factor 3 would add a new feature of intraday fluctuations to this typical shape. When the factors

are multiplied by their loadings, we get components that will exhibit asset-specific idiosyncracies

that could be more easily interpreted.

Table 3 suggests that there is some strong evidence of commonalities in the intraday periodicity

in volatility. In the next two subsections, we investigate whether imposing these commonalities

can be exploited to better forecast either future values of log f∗
j,t,i or the conditional variance of

5-minute returns.

5.2 Predicting log absolute standardised returns

As explained in the introduction, adequately imposing commonalities in a multivariate model can

be exploited to improve parameter efficiency and hopefully for some series also improve forecasts

accuracy. The first forecasting exercise considers the problem of predicting the values of log |r̄j,t,i|
for the period 2003-2005 (resp. 2006-2008) on the basis of the values of log f∗

j,t,i obtained for the

period 2000-2002 (resp. 2003-2005).

The first model is the unrestricted model where Equation (31) is estimated by OLS series by

series. Note that in this case, mj is chosen by minimising the Schwarz criterion for univariate linear

regression models and thus can vary from one series to another (but for each series we include linear

and quadratic terms). The second model is the multivariate extension of (31) that imposes the

presence of the three detected common factors.

Predicted values log f̂∗
j,t,i are compared to realisations (i.e. log |r̄j,t,i|) for each model and for

each series separately by means of the following mean squared (prediction) error (MSE) criterion

MSEj = 1
MT ∗

∑T ∗

t=1

∑M
i=1 lj,t,i, where lj,t,i ≡ e2

j,t,i = (log |r̄j,t,i| − log f̂∗
j,t,i)

2 and T ∗ is the number

of days in the forecasting period (about 750 for each period). To test the null hypothesis of equal

prediction MSE of the factor and unrestricted models for series j we rely on the Diebold and Mariano

(1995) test (denoted as DM hereafter). We also test the null hypothesis of equal MSE across the 30

series. To do so and in order take into account the presence of potential contemporaneous correlation

between the prediction errors, we use the following criterion MSEAll = 1
MT ∗

∑T ∗

t=1

∑M
i=1 lt,i, where

lt,i ≡
∑N

j=1 lj,t,i.

It is well known that the DM test should be applied with care in situations where the competing

models are nested, which is the case here. Giacomini and White (2006) have shown that when the
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estimation window size is bounded (e.g., for the fixed and rolling schemes) the DM test is still

valid. Our setting corresponds to the fixed scheme because the models are estimated on the period

2000-2002 (resp. period 2003-2005) and these values are used to predict log |r̄j,t,i| on the period

2003-2005 (resp. period 2006-2008).

The outcome of the DM test is summarised in Table 4. Column labelled ‘DM’ contains a plus

when the DM statistic is higher than the 5% critical value, suggesting that the non-restricted model

significantly under-performs (and possibly a minus when it significantly over-perform, which never

happens). This column is left empty when the two models are not statistically different. The first

row of this table, labelled ‘All’ corresponds to the null hypothesis of equal MSE across the 30 series

while the other 30 rows correspond to the tests for individual assets.

Interestingly, the results suggest that imposing the detected commonalities helps to better

predict log |r̄j,t,i| in most cases and never leads to a deterioration of the forecast accuracy.

We have also implemented the Superior Predictive Ability (SPA) test proposed by Hansen

(2005) in addition to the DM test. The advantage of the SPA test over the DM test when applied

to pairwise comparisons is that the former approximates the finite sample distribution of the test via

block-bootstrap while the latter relies on asymptotic critical values. The SPA naturally accounts

for the potential presence of correlation within the blocks. The analysis leads to results very similar

to those of the DM test and similar critical values, confirming our findings reported above. For

that reason, we have omitted reporting detailed results for the SPA test.

5.3 Forecasting the intraday conditional variance

The finding that imposing common factor restrictions improves forecasts of log |r̄j,t,i| is encouraging

but does not necessarily mean that this strategy will also lead to better forecasts of the intraday

conditional variances σ2
j,t,i. To investigate that issue we consider now four different modelling

strategies to obtain one-step-ahead forecasts of the conditional variance of 5-minute returns. For

each model we implement two versions, one imposing and one not imposing the three detected

common factors in the intraday periodicity in volatility. This leads to a total of 8 competing

models. Like in the first forecasting exercise we rely on the 30 US stocks and divide the period into

3 sub-periods of three years.
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Table 3: Test of common periodic common features applied to 30 US stocks

Period m ξs=25 ξs=26 ξs=27 ξs=28 ξs=29 ξs=30 k

2000-2002 6 0.787 0.370 0.102 0.000 0.000 0.000 3

2003-2005 6 0.795 0.399 0.092 0.000 0.000 0.000 3

2006-2008 6 0.488 0.531 0.071 0.003 0.000 0.000 3

Column m corresponds number of variables included in x, i.e. linear and quadratic trends as well as

(m− 2)/2 cos and (m− 2)/2 sin terms as defined in (21) selected using the SC criterion. Columns ξs=l

(for l = 25, 26 . . . , 30) correspond to the p-value of the null hypothesis that there are at least s = l linear

combinations that annihilate k common periodic features. The number of periodic factors k obtained

by ξs is reported in the last column.

The first period (2000-2002) is used to estimate fj,t,i either by estimating (9) equation by

equation or with the reduced rank version of the multivariate model (12).13 These values are used

as forecasts of the intraday periodicity for the second period (2003-2005). Similarly, the intraday

periodicity of the third period (2006-2008) is forecasted using the estimates of the second period.

For each model, one-step-ahead forecasts of the 5-minute conditional variance of rj,t,i are ob-

tained as E(σ2
j,t,i+1|Ωt,i) = E(s2

j,t,i+1|Ωt,i)E(f2
j,t,i+1|Ωt,i), where Ωt,i is the information set avail-

able at the beginning of the ith interval of day t and where by convention, σ2
j,t,M+1 = σ2

j,t+1,1,

s2
j,t,M+1 = s2

j,t+1,1 and f2
j,t,M+1 = f2

j,t+1,1. The models differ in the way they forecasts s2
j,t,i+1 and

f2
j,t,i+1. We present now the four modelling strategies to forecast s2

j,t,i.

Model 1 (Daily GARCH) corresponds exactly to Equations (1)-(2)-(19)-(20). The stochastic

volatility is assumed to follow a GARCH(1, 1) at the daily frequency and the intraday variations of

the conditional variance are entirely due to the deterministic periodic component fj,t,i. The first

forecast of s2
j,t,i+1 is obtained by estimating a GARCH(1, 1) model by QML for the period 2000-

2002. The parameters are kept constant during 50 days, whereon the GARCH model is re-estimated

on a rolling window (i.e. keeping the number of observations fixed).

Model 2 (Intradaily GARCH) is a GARCH(1, 1) estimated on filtered intraday returns rj,t,i/fj,t,i,

13Recall that fj,t,i is recovered from log f∗
j,t,i using (10).
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Table 4: Out-of-sample forecast analysis
Period 2003-2005 Period 2006-2008

DM OLS1 OLS2 OLS3 OLS4 CF1 CF2 CF3 CF4 DM OLS1 OLS2 OLS3 OLS4 CF1 CF2 CF3 CF4

All + * * + * * * * * *

ABT * * * * * * + * * * * * * * *

BAC * * + * * * * * * * *

BMY * * * * * * * * * * * * * * * *

C + * * * * * * * *

CL * * * * * * + * * * * * * * *

CSCO * + * * * *

DELL * * * * + * * * * *

DIS + * * * * * + * * * * * * * *

EK + * * * * * * * + * * * *

EXC + * * * * * * *

F + * * * * * * * * * *

GE * * * * * * + * * * * * * *

GM * * * * * * * * * * * * * * *

HD * * + * * * * * * * *

INTC * * * * * * * * *

JPM * * * * + * * * * * * * *

KO * * * * * * + * * * * * * * *

LLY * * * * + * * * * * * * *

MCD * * * * + * * * * * * *

MRK + * * * * * * * * + * * * * * * * *

PEP + * * + * * * * * * * *

PFE + * * * * * * * * * * * * * * * *

PG + * * * * * * * * *

T + * * + * * * * * * * *

TWX * * * * * * * * + * * * * * * * *

VZ * * * * * * * * *

WFC * * * * * + * * * * * * * *

WYE + * * * * * * * * + * * * * * * * *

XOM * * * * * * * *

XRX + * * * * * * * *

Note: Column ‘DM’ corresponds to the Diebold and Mariano (1995) test of equal predictive ability of the intraday
periodicity as discussed in Subsection 5.2. A + (resp. -) means that the unconstrained univariate model under-
performs (resp. under-performs) compared to model imposing the commonalities. Columns ‘OLSl’ and ‘CFl’
(l ∈ {1, 2, 3, 4}) concerns the outcome of the MCS test of Hansen et al. (2009) for superior predictive ability of
the conditional variance. A * means that the model belongs to the set of superior models at the 5% critical level.
Columns labelled ‘OLSl’ refer to the unconstrained univariate model estimated by OLS, equation by equation
while columns labelled ‘CFl’ concern the models imposing the common factors. Models l ∈ {1, 2, 3, 4} correspond
respectively to the GARCH(1,1) on daily data, GARCH(1,1) on intradaily data, HAR-RV model and HAR-RV-J
model.
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i.e.

rj,t,i/fj,t,i = sj,t,i uj,t,i (32)

sj,t,i = αj,0 + αj,1r
2
j,t,i−1 + βj,1σ

2
j,t,i−1. (33)

The model is estimated by QML on a rolling window of 100 days (i.e. 7700 observations). The

parameters are also kept constant during 50 days.

Model 3 (Daily HAR-RV) replaces Equation (19) in Model 1 by a forecast of the daily conditional

variance s2
j,t based on the Heterogenous Autoregressive Realized Volatility model (HAR-RV) model

of Corsi (2009):

s2
j,t = E(RVj,t|Ωj,t−1) (34)

RVj,t = αj,0 + αj,1RVj,t−1 + αj,2RV (5)j,t−1 + αj,3RV (22)j,t−1 + ej,t, (35)

where RVj,t is given in (6) and by convention, X(m)j,t−1 = 1
m

∑m
i=1 Xj,t−i. The model is an additive

cascade model of volatility components defined over different time periods, one day, one week and

one month. Corsi (2009) has shown that this model delivers remarkably accurate forecasts on real

data. The first forecast of s2
j,t is obtained by estimating Equation (35) by OLS on the period

2000-2002. The model is then re-estimated every 50 days on a rolling window.

Model 4 (Daily HAR-RV-J) is an extension of Model 3 where the HAR-RV specification is ex-

tended in order to take into account the effect of past jumps. We adopt the HAR-RV-J specification

of Andersen et al. (2007) (where J stands for jumps), i.e.

RVj,t = αj,0 + αj,1RVj,t−1 + αj,2RV (5)j,t−1 + αj,3RV (22)j,t−1

+ γj,1Jj,t−1 + γj,2J(5)j,t−1 + γj,3J(22)j,t−1 + ej,t, (36)

where Jj,t = Ij,t(RVj,t − BVj,t), BVj,t is given in (30), Ij,t ≡ I[Zj,t > Φ0.999],

Zj,t =
M2[RVj,t)−BVj,t]RV −1

j,t

[(µ−4
1 +2µ−2

1 −5)max{1,TQj,t(M)BV −2
j,t }]1/2

, TQj,t is the tri-power quarticity,14 a robust to jumps

estimator of the integrated quarticity and Φ0.999 is the 99.9% quantile of the standard normal

distribution.

To measure the out-of-sample forecasting performance of the competing models, forecasts have

to be compared to ex-post realisations as they become available. This implies choosing both a loss

14TQj,t ≡ Mµ−3

4/3

PM
l=3

|rj,t,l|
4/3|rj,t,l−1|

4/3|rj,t,l−2|
4/3, where µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1.
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function and a proxy for the true conditional variance (which is unobservable even ex-post). The

question arises on which volatility proxy and which loss function to use. Hansen and Lunde (2006)

provide conditions, for both the loss function and the volatility proxy, under which the ranking

of models based on the proxy is consistent for the true ranking (i.e. the one implied by the true

but unobserved variance). Starting from this result, Patton (2011) derives necessary and sufficient

conditions on the functional form of the loss function for the ranking to be robust to the presence

of noise in the proxy, all of which being satisfied by the MSE loss function. This is the reason why

we rely on this loss function. About the volatility proxy, we use the 5-minute squared return r2
j,t,i

which is known to be an unbiased (but noisy) proxy of σ2
j,t,i.

Furthermore, instead of just ranking the models in function of their MSE, we use the model

confidence set (MCS) approach of Hansen et al. (2009) to compare the forecasts. Given a universe

of model based forecasts, the MCS allows us to identify the subset of models that are equivalent in

terms of forecasting ability, but outperform all the other competing models. We set the confidence

level for the MCS to α = 5% and used 1000 bootstrap resamples (with block length of 6 observa-

tions) to obtain the distribution under the null of equal forecasting performance.15 The MCS test

is summarised in Appendix B.

Table 4 indicates by a * which models belong to the set of superior forecasting models according

to the MCS test for the two forecasting periods. Like in the previous section, MSEs are computed

for each series separately as the average of the squared forecasting errors e2
j,t,i but also for the 30

series jointly (row labelled ‘All’) as the average of
∑N

j=1 e2
j,t,i over the total number of intraday

observations in the forecasting period.

Columns labelled ‘OLSl’ and ‘CFl’ correspond respectively to the forecasts where fj,t,i is es-

timated equation by equation (by OLS) or with the multivariate model (12). Sub-strict l (l ∈
{1, 2, 3, 4}) refers to the modelling strategies used to forecast s2

j,t,i, i.e. respectively the GARCH(1,1)

on daily data, GARCH(1,1) on intradaily data, HAR-RV model and HAR-RV-J model.

Results suggest that for the period 2006-2008, models are hardly distinguishable but forecasts

based on the reduced rank version of the multivariate model (12) always belong to the set of

superior models. This result is in line with the one of Laurent et al. (2010) who also find on similar

15Implementation of this test has been done using the Ox software package MULCOM of Hansen and Lunde (2007).

Note that we got similar results with different block lengths for the block bootstrap and a higher number of resamples.
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series that (multivariate) GARCH models (from simple to sophisticated ones) are indistinguishable

during extremely volatile periods (e.g. over the 2007-2008 financial crisis). This is essentially

due to the fact that large jumps are not forecastable by these models, leading to extremely large

forecasting errors (and thus MSEs) for all models. Notice that other criteria that down-weight the

effect of these jumps, like the mean absolute deviation (MAD), do not satisfy the conditions stated

in Hansen and Lunde (2006) and Patton (2011) to ensure the ranking of models to be robust to

the presence of noise in the proxy.

Interestingly, during the more quiet period (2003-2005), forecasts based on the reduced rank

version of model (12) clearly dominate the MCS. Indeed, they belong to the MCS in 29 out of

30 cases when considering the individual MSEs. More specifically, the MCS test usually points

two models: the HAR-RV of Corsi (2009) and the HAR-RV-J model of Andersen et al. (2007) to

forecast s2
j,t,i, coupled with the reduced rank version of model (12) to forecast fj,t,i. These two

models correspond also to the MCS for the join test (row labelled ‘All’). The general message

is that for this period models imposing the detected commonalities in the periodicity and using

Assumption 3 to forecast s2
j,t,i using a simple linear regression model on the daily realized volatility

outperform in most cases those not imposing these commonalities as well as GARCH models fitted

on daily and even intradaily data.

6 Conclusion

Using a simple canonical correlation test as well as information criteria we investigate the presence

of commonalities in the intrady periodic components. Given the nature of the data and the number

of series considered the number of common factors is obtained. A likelihood ratio statistic based

on testing that the first set of eigenvalues obtained in a canonical correlation framework works

remarkably well. Information criteria determine very accurately the number of periodic elements

to be added in the system (by SC) but tend to heavily underestimate the number of factors.

The presence of serial correlation in the disturbances of the model affects the performance of the

test based on canonical correlations. However, including lagged values of the endogenous variables

can lead to a correctly sized test. The test appears to be fairly robust to the presence of jumps in

the DGP, which are not taken into account by the model.
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We have illustrated that 30 US asset returns are driven by only three factors in periodicity

although in that case only a few periodic elements are needed. Anyway, the reduction in the number

of parameters we have when we impose that factor structure can lead to a gain in efficiency and to

more accurate forecasts of both the intraday periodicity and the intraday conditional variance of

most assets considered in the application. Our framework is flexible enough to include additional

exogenous or deterministic variables (e.g. over night returns) sharing or not co-movements with

the periodicity.

Appendix A: Stocks used in the empirical application

Symbol Issue name Symbol Issue name

ABT ABBOTT LABORATORIES JPM JP MORGAN CHASE

BAC BANK OF AMERICA KO COCA COLA CO

BMY BRISTOL MYERS SQ LLY ELI LILLY & CO

C CITIGROUP MCD MCDONALDS CORP

CL COLGATE-PALMOLIVE CO MRK MERCK & CO

CSCO CISCO SYSTEMS PEP PEPSICO INC

DELL DELL INC PFE PFIZER INC

DIS WALT DISNEY CO PG PROCTER & GAMBLE

EK EASTMAN KODAK T AT&T CORP

EXC EXELON CORP TWX TIME WARNER

F FORD MOTOR CO VZ VERIZON COMMS

GE GENERAL ELEC WFC WELLS FARGO & CO

GM GENERAL MOTORS WYE WEYERHAEUSER CO

HD HOME DEPOT INC XOM EXXON MOBIL

INTC INTEL CORP XRX XEROX CORP
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Appendix B: Model Confidence Set

The MCS approach, introduced by Hansen et al. (2009), is a testing procedure for superior predic-

tive ability based on the reality check for data snooping of White (2000) and the superior predictive

ability (SPA) test of Hansen (2005). The test allows to identify a subset of models equivalent in

terms of predictive ability, that are superior to the other models. The advantage of the MCS pro-

cedure is that it does not require a benchmark model to be specified which is useful for applications

without an objective benchmark.

Let us denote ℑ0 the initial set of models for which we compute one-step ahead conditional

variance forecasts, denoted by σ̂2
m,T+1, ..., σ̂

2
m,T+T ∗+1, l = 1, . . . , l∗ where T ∗ defines the forecasting

sample length. For ease of exposition we only use one time index in this section to capture both

the daily and intradaily time intervals. The MCS procedure allows to selects a subset of models,

l̄, which are superior, in terms of predictive ability, with respect to all the other models in ℑ0. To

do this, we need an equivalence test, an elimination rule and an updating algorithm. The starting

hypothesis is that all models in ℑ0 have equal forecasting performance as measured by a loss

function Ll,t = L(σ2
t , σ̂

2
l,t) that compares the true but unobserved volatility σ2

t and the forecasts

of model l, i.e. σ̂2
l,t. If the null of equal predictive ability is rejected, then the elimination rule

removes the worst performing model. This process is repeated until the non-rejection of the null

occurs (at a given confidence level). The set of surviving models is the MCS. More formally, we

start by defining the relative performance at time t as dij,t = Li,t −Lj,t for all i, j = 1, ..., l∗. Under

the assumption that dij,t is stationary, the null hypothesis takes the form H0,ℑ0 : E(dij,t) = 0,

∀ i, j ∈ ℑ0 and the test statistic

TD =
1

l∗
∑

i∈ℑ0

t2i , (37)

where ti =
√

T ∗d̄i
ωi

and d̄i = 1
l∗

∑

j∈ℑ0 d̄ij is the contrast of model i’s sample loss with respect to

the average across all models and d̄ij = 1
T ∗

∑T ∗

t=1 dij,t is the sample loss difference between model

i and j. Hence the name of the statistic TD where D stands for deviation (from the average loss

across models). The variances ω2
i = limT ∗→∞V ar(

√
T ∗d̄i) can be estimated by ω̂2

i using a bootstrap

scheme, e.g., block bootstrap to account for serial dependence in the loss, and the distribution of TD

derived. If the null hypothesis is rejected, then we use as elimination rule argmaxiti to exclude the
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weakest model from the set. The elimination rule excludes the model with the largest standardised

excess loss relative to the average across models, that is d̄i = L̄i − L̄ = L̄i − 1
l∗

∑

j∈ℑ0 L̄j =
1
l∗

∑

j∈ℑ0(L̄i − L̄j). The MCS p-value is equal to pi = maxr≤ip(r) where p(r) is the p-value of

the test under the null H0,ℑr where r is the number of surviving models at step i of the iteration

process. After the necessary iterations, the set of superior models is given by {i ∈ ℑ0 : E(dij,t) ≤ 0

∀ i 6= j ∈ ℑ0}.
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Figure 3: Rejection frequency (i.e. empirical size) of the ξs test statistic in presence of 1 common

factor (k∗ = 1), non-constant intraday stochastic volatility and jumps. The magnitude of the jumps

is controlled by h/q̄ where q̄ is the expected number of jumps per day (which varies between 0 and

5) and h = 0.1, 0.5, 1, . . . , 5.
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Figure 4: Estimated intraday periodicity factors F̂ = xβ̂
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