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Abstract: Most natural commons are subject to discontinuities and

threshold effects, so their gradual depletion may result in a sudden irre-

versible loss of the associated ecological services. Yet, it is often impos-

sible to locate these thresholds with certainty. We analyze this context

using a variant of the divide-the-dollar game, in which the amount to

be split among players follows a discrete or multimodal probability dis-

tribution. ‘Cautious equilibria’ - where agents collectively behave as if

the worst-case scenario were certain - are found to coexist with ‘danger-

ous equilibria’ - where overall demand for ecological services might lead

to their collapse - and ‘dreadful equilibria’ - where agents collectively

request so much natural capital that a collapse of ecological services is

certain, even if all agents are risk averse. Communication/cooperation

among agents, however, which raises the possibility of coordinated group

deviations, would eliminate dreadful equilibria and reduce the occurrence

of dangerous equilibria, while cautious equilibria are robust to such devia-

tions. A direct corollary is that dangerous equilibria are Pareto-dominated

by any cautious equilibrium in which all agents claim less natural capital.

These results shed light on the management of common-pool resources,

international climate change negotiations, and the implementation of pre-

cautionary policies.

Keywords: Common-pool resources, Ecological thresholds, Divide-

the-dollar game, Coalition-proof Nash equilibrium
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1 Introduction

Human societies rely on a number of indispensable ecological services, such as water

purification, livestock support, flood prevention, waste recycling, climate stability,

erosion avoidance and fresh air, for their economic activities and wellbeing. These

services are provided by forests, lakes, coral reefs, savannas, wetlands, oceans, the

troposphere and other ecosystems which typically are ‘common-pool resources,’ i.e.

resources “(...) from which it is difficult to exclude or limit users once the resource

is provided, and one person’s consumption of resource units makes those units un-

available to others” (Ostrom 1999, p. 497). The impossibility to exclude potential

beneficiaries while there are inevitable capacity constraints (at least in the short run)

makes such ecosystems, and the corresponding ecological services, particularly prone

to a ‘tragedy of the commons.’

Over the last decades, significant research efforts have considered how human

societies can, and actually do, cope with this problem.1 Taking stock of this literature,

this paper now builds on two well-documented additional observations. First, the

provision of ecological services is subject to discontinuities, bifurcations or threshold

effects that may show up rather abruptly, following persistent abuses of the involved

ecosystems (Scheffer et al. 2001). In agriculture, for example, it is often the case

that “(...) no perceptible change in the environmental state occurs unless a specified

farming practice is applied with a minimal intensity and on a minimal area in the

zone of interest” (Dupraz et al. 2009, p. 613). In the literature on biodiversity, the

so-called ‘rivet hypothesis’ (Ehrlich and Ehrlich 1981; Lawton 1993) alleges that:

(...) the functions of species in ecosystems can be analogous to the func-

tions of rivets in an airplane. Both systems can afford continual extraction

of its constituent components without experimenting a loss of function.

However, after a certain point this capacity is lost and only one additional

species extinction (rivet popped) may cause a collapse in the functional

properties of the system.2

1For an exhaustive literature survey and appraisal, see Elinor Ostrom (2010)’s lecture, delivered

when she received the 2009 Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel.
2This statement is drawn from Muradian (2001, p. 11)’s benchmark discussion of ecological

thresholds.
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Secondly, the inherent complexity of ecosystems renders the assessment of discrete

thresholds usually uncertain. Continual nutrient loading to a lake, for instance, can

cause an abrupt move to a turbid state once a certain nutrient concentration has

been reached, but the precise turning point also depends on occasional events like

droughts and storms which are essentially random (Bachmann et al. 1999). This

illustrates the general fact that ecological data will often be quite noisy, so modelling

the mechanisms underlying regime shifts and testing the existence of a threshold can

pose real theoretical and statistical challenges.3

Most economic analyses of natural commons involving uncertainty, regime shifts

and strategic interaction have done so in a public good provision context (see, e.g.,

Boucher and Bramoullé 2010, and the references therein). Sandler and Sterbenz

(1990), then Perrings and Pearce (1994), were the first to deal with a non-excludable

but rival good subject to uncertain thresholds.4 The former looked at the exploita-

tion of a stock resource, showing that uncertainty about the size of the stock will lead

risk-averse firms to reduce their exploitation effort compared to what would happen

under certainty. The latter considered the preservation of biodiversity, recommend-

ing (in a manner consistent with risk averse behavior) that economic activity be

reduced further when the location of an ecological threshold is uncertain. Recently,

Bramoullé and Treich (2009) studied the effect of uncertainty in a global commons

situation. They show that emissions will be lower under uncertainty than under cer-

tainty (because polluters are risk averse), so uncertainty can have a positive effect

on welfare. They also point out that agents will cooperate less under uncertainty, as

cooperation yields lower rewards. This conclusion provides additional motivation for

Dupraz et al. (2009), who explicitly seek means to overcome lack of participation in

agri-environmental programs.

These works draw attention to certain exogenous characteristics of agents, such

as risk aversion, willingness-to-pay and private information, in driving the outcome.

Although these certainly are important items (which we come back to in the closing

sections of this paper) in understanding the conservation or depletion of common-

3For a discussion of this general point, together with an overview and appraisal of available

statistical methods, see Andersen et al. (2008).
4Experimental game theorists and psychologists have also examined this situation since at least

Suleiman and Rapoport (1988)’s article.
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pool resources, we will rather emphasize here the role of interaction, endogenous

communication and cooperation between agents in the presence of a specific, yet

rather plausible, type of uncertainty. This is actually a ‘classical topic’ in the lit-

erature on common-pool resources. It has been extensively examined by means of

experiments, notably with games quite similar to the one used in this paper (see,

e.g., Budescu et al. 1995). The experimental approach, however, must necessarily

assume peculiar utility functions and probability distributions. In particular, multi-

modal distributions, like the ones introduced here to represent scientific uncertainty

about discrete thresholds, were excluded, which rules out multiple equilibria of the

‘cautious/dangerous/dreadful’ sort we study below.

To be precise, our model amends the well-known Nash demand game (Nash 1950;

Malueg 2009), also called the ‘Divide-the-dollar game,’ by supposing that symmetri-

cally informed players are splitting an uncertain amount (of natural capital) which

follows a discrete or multimodal probability distribution. This setting seems to cap-

ture a number of stylized situations: in climate change negotiations, for instance,

parties normally focus on a finite number of collective targets, such as 550 parts per

million (ppm) of carbon dioxide (CO2)-equivalent - a politically sensible objective

that many think is unlikely to prevent major environmental disruptions, 450 ppm -

which may limit global warming to a manageable level (thought to be 2◦C), or 350

ppm - which some scientists and vulnerable countries regard as the upper bound on

emissions that guarantees the preservation of the present biosphere.

In contrast with results in the previous literature, this type of uncertainty does not

always lead to lower collective demand for natural capital, even when all agents are

risk averse: ‘cautious equilibria’ - where agents altogether behave as if the worst-case

scenario were certain - are found to coexist with ‘dangerous equilibria’ - where the

overall request of ecological services might lead to their collapse - and even ‘dreadful

equilibria’ - where agents collectively claim so much of the resource that no unilateral

deviation by one agent can stop its exhaustion. We next bring in the (realistic)

possibility that agents communicate and cooperate via group deviations (formally,

this means we use the strong and coalition-proof equilibrium concepts developed by

Aumann 1959, and Bernheim et al. 1987, respectively). As expected, this readily

rules out dreadful equilibria. Somewhat less predictable, however, is the fact that
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dangerous equilibria may be vulnerable to group deviations, while cautious equilibria

are not. Actually, dangerous equilibria are not coalition-proof when certain cautious

equilibria exist. The upshot is that any cautious equilibrium is efficient and Pareto-

dominates all dangerous equilibria that can be reached from it while increasing every

agent’s claim on natural capital.

These results are initially derived with only two possible ceilings. We show later

on that they are qualitatively robust to the presence of an arbitrary finite number

of potential thresholds. They hold as well if uncertainty concerning the location of

thresholds is captured by a continuous but multimodal probability distribution. The

latter situation may reflect the fact that the models and approaches around which

scientists tend to cluster offer different confidence intervals or probability distributions

rather than point estimates. Multimodal probability distributions are also likely to

emerge in climate change policy discussions (see Jones 2003, and Moss and Schneider

2000), from the aggregation of experts’ opinions and the Bayesian updating practiced

by the Organization for Economic Cooperation and Development (OECD) and the

Intergovernmental Panel on Climate Change (IPCC).

On a policy note, these findings support the creation of institutions and governance

mechanisms which enhance communication between users of natural commons: for

as long as agents can identify a cautious equilibrium in which they all consume less

than in the current state, they should cooperate in moving to this precautionary,

yet more efficient, situation. As the derivation of our results will show, however,

a lower threshold will invite such a move only if the probability associated with it

is sufficiently large; the collective adoption of a costly precautionary stance seems

therefore robust to the existence of doomsayers.

The rest of the paper unfolds as follows. The upcoming section lays out the

mathematical notation and basic model. Section 3 presents and proves our main

propositions. Section 4 checks their robustness and generality. Section 5 discusses

some of their policy implications. Section 6 brings some concluding remarks.
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2 The basic model

Consider a finite set  = {1  } of agents (which can be firms, individuals or
countries) who must simultaneously decide how much of a natural capital, measured

in positive real numbers, they will claim for themselves. Overall demand is sustainable

up to a limit, but scientists disagree on the tipping point beyond which the available

resource would collapse to 0. To keep matters simple (generalizations will be made

in Section 4), suppose some experts set the ceiling on total demand at 1 while others

deem it to be  ∈ (0 1). These point estimates are given consensual and common-
knowledge probabilities  and (1− ) respectively.

Denote  an agent ’s claim, demand or request (we use these terms interchange-

ably throughout the paper) on natural capital,  = () a request vector or profile,

 =
P

  total demand, and − =
P

 6=  the sum of all agents’ claims except

agent ’s. The utility an agent  derives from being delivered her request  is given

by (), where the function (·) is concave (so agents can be risk averse or risk
neutral) and nondecreasing. Reaching this consumption level is of course conditional

on total demand not exceeding the ecological threshold; otherwise each agent gets

(0) = 0.

Concretely,  might correspond, for example, to a farming area encroaching on

some endangered key species’ habitat, a certain flow of wastewater being dumped into

a lake, a quantity of fish caught, or some level of carbon dioxide emissions accruing

into the atmosphere. This brings agent  a positive utility level (), provided an

underlying key ecological service - in these cases, land fertility, water purification,

livestock renewal, or stable weather, respectively - is maintained. Otherwise, agent

’s utility level drops to 0.

Agent ’s expected payoff in this amended divide-the-dollar game is now given by

(−) = ()I( ≤ ) + ()I(   ≤ 1) , (1)

where I(·) indicates whether the condition within parenthesis holds (= 1) or not (= 0).
This completes the description of the model, so we can proceed to the derivation of

our main results.
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3 Main results

We shall now look first at the Nash equilibria of this simple game. These equilibria will

next be put to the test of stronger equilibrium concepts - respectively the notions of

strong and coalition-proof Nash equilibria - which allow for group as well as individual

deviations.

3.1 Nash equilibria

Using the current notation, one can characterize an agent ’s best response strategy

as follows.

First, let −  , so the other agents are asking for more than the lower resource

cap :

a) If − ≤ 1, then agent  will claim  = 1 − −. She can indeed do no

better than request natural capital up to the upper (risky) ceiling 1, since the

remaining agents’ overall demand is already higher than the safe threshold .

b) If −  1, however, agent  can claim any amount  ≥ 0, since everybody will
end up losing the ecological services anyway.

Next, let − ≤ , so the other agents are asking for less than the inferior limit :

a) If ( − −) ≥ (1 − −), then agent  does best by claiming  =  −
−. Requesting the safe amount −− in this case yields more utility than

demanding the best (but risky) alternative 1−−.

b) If (−−)  (1−−), however, agent  should then go for  = 1−−.

This description of best-response strategies shows that three sorts of Nash equilib-

ria are possible: (1) cautious equilibria, in which agents collectively set total demand

at the highest secure level  = ; (2) dangerous equilibria, where agents altogether

request natural capital up to the risky upper ceiling  = 1 and face a probability

1−  of exhausting the resource; and dreadful equilibria, wherein everyone’s claim on

ecological services is so high (i.e. −  1 for all ) that no individual adjustment

can avoid their collapse.
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Note that no Nash equilibrium exists in which agents collectively ask for an amount

of natural capital lower than  or strictly between  and 1.

Moreover, cautious, dangerous and dreadful Nash equilibria can coexist, despite

the fact that all agents are risk averse. This contrasts with the findings reported so

far in the literature (see Bramoullé and Treich 2009, for example). The simultaneous

presence of these equilibria is also unlikely to be accidental, as the following simple

example suggests.

Example 1. Let there be only two agents, with identical utility function () =
√


for  = 1 2. Suppose  = 08 and  = 08. The strategy profile  = (05 05) is a

dangerous equilibrium because (05 05) = 07 · 08 = 056  (03 05) = 054 for

 = 1 2. At the same time, the profile 0 = (04 04) is a cautious equilibrium, since

(04 04) = 063  (06 04) = 077 · 08 = 062 for  = 1 2; and 00 = (15 15) is

also clearly an equilibrium, a dreadful one which brings each agent’s payoff to 0.5

In order to grasp the conditions underlying the existence of each type of Nash

equilibria, we need to introduce an extra piece of notation. Let 0 ≤   ≤  refer to

the cut-off demand level such that

(−−)  (1−−) if −   

(−−)  (1−−) if −   

 (2)

This allows to make the following preliminary statement.

Lemma 1. For all i, there is always a unique cut-off value.

Proof. Let (−) ≡ (−−)−(1−−) Clearly,  0 = −0(−−)+0(1−
−)  0 since the function  is concave. When (0) is negative or 0, one can

set ̄ = 0 If (0) is positive, the fact that ()  0 and () is decreasing and

continuous entails that there is a unique ̄  0 such that (̄) = 0, (−)  0 if

−  ̄, and (−)  0 if −  ̄

5Although we exclude such risk attitudes, note that all three types of equilibria could exist as

well with risk-loving agents. To see this, suppose that  = 1 2, () = 2 ,  = 04 and  = 08.

One can check that  = (05 05) is a dangerous equilibrium, 0 = (04 04) is again a cautious one,
and 00 = (15 15) is a dreadful equilibrium.
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The following proposition will now indicate when there always exists at least one

cautious or one dangerous equilibrium, and when both types of equilibria actually

coexist.

Proposition 1. The game always admits at least one equilibrium which is not dread-

ful. More precisely,

i) There is a cautious equilibrium if and only if
P

∈ ̄ ≥ (− 1) ;
ii) There is a dangerous equilibrium if and only if

P
∈ ̄ ≤ − 1 ;

iii) Both cautious and dangerous equilibria will coexist if and only if

(− 1) ≤P∈ ̄ ≤ − 1 .

Proof. Part (i): By the above description of best-response strategies, a strategy profile

 is a cautious equilibrium if and only if(
− ≤ ̄ for all  ∈ P

  = 
(3)

Using the fact that − =  −  and adding up all the inequalities in (3), we have

that
P

 ̄ ≥ (− 1). Conversely, if
P

 ̄ ≥ (− 1), one can always find a vector
 which satisfies (3).

Part (ii): Similarly, a strategy profile  is a dangerous equilibrium if and only if(
− ≥ ̄ for all  ∈ P

  = 1
(4)

Using the fact that − = 1 −  and adding up all the inequalities in (4), we have

that
P

 ̄ ≤  − 1. Conversely, if P ̄ ≤  − 1, one can always find a vector 
which satisfies (4).

Part (iii) follows trivially.

Figure 1 illustrates the sets of equilibria predicted in the proposition, in the two-

agent case. These sets depend on the location of the cut-offs ̄, which in turn

depends on the lower bound , the probability , and the agents’ respective utility

functions (·).
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Figure 1: The two-agent case.

If agent  becomes more risk averse (so the coefficient of absolute risk aversion

00 (·)0(·) uniformly increases, say), the cut-off ̄ increases because a secure amount

of resources ( − −) now yields relatively more utility than the higher but risky

amount (1−−). From proposition 1, one infers that the set of cautious equilibria

expands while the set of dangerous equilibria shrinks.

A decrease in the probability  that the actual threshold on ecological services is

at 1 instead of  leads to the same conclusion, for ̄ must then go up.

Finally, consider an increase of the lower threshold from level  to level 0. Since

(
0  ̄(  ))  0, we have that ̄(

0  )  ̄(  ). This means that

the set of dangerous equilibria gets smaller. However, the set of cautious equilibria

might not expand: by proposition 1, this will happen if and only if
P

 ̄−(0 )−P
 ̄−( )  0 −  .

From these brief remarks about comparative statics, we shall now move on to

examine what happens to the above Nash equilibria when group deviations (and not

just individual ones) are permitted.
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3.2 Allowing for communication and cooperation

Users of common-pool resources can normally communicate, negotiate and act col-

lectively. Standard Nash equilibria a priori discard this behavior, so one may cast

doubts about their plausibility in the present context.6 A direct consequence of al-

lowing agents to talk to each other and eventually collude could be, for instance,

that subgroups may form in which members prefer to jointly move away from some

Nash equilibrium. This section will now examine whether the three types of equilibria

defined above are immune to such deviations.

Recall that a Nash equilibrium  is strong if there is no alternative strategy profile

0 ∈ R
+ such that (

0) ≥ () for all agents  belonging to a subcoalition  ⊆  , the

inequality being strict for at least one , and 0 =  for all the outsiders  ∈ \ .
The following proposition determines whether dreadful and cautious equilibria are

strong in this sense.

Proposition 2. Cautious Nash equilibria are strong, but dreadful Nash equilibria are

not.

Proof. From a dreadful equilibrium, any group deviation leading to a cautious or a

dangerous strategy profile, be it a deviation by the entire set of players, obviously

brings a higher payoff to all agents in the coalition. Hence, dreadful equilibria are not

strong Nash equilibria.

The proof that cautious equilibria are strong Nash equilibria proceeds by contra-

diction. Let  ∈ R
+ be a cautious Nash equilibrium, and suppose there exists another

strategy profile 0 and a coalition  ⊆  such that 0 =  for all  ∈  , (
0)  ()

for some  ∈  , and (
0) ≥ () for all  ∈  . Since the utility functions ’s are in-

creasing, it must be the case that
P

∈ 
0
 

P
∈  and 

0
 ≥  for all  ∈  . Now,

consider an agent  ∈  such that 0
−  −. For this agent, demanding 0 = − 0

−
or less leads to a lower payoff than before; her best response must be 0 = 1− 0

−.

We then have that (
0


0
−) = (1− 0

−
0
−)  (1−−−) ≤ (), where

6Quoting Ostrom (2010, p. 648), for instance, on why the prisoner’s dilemma game might not

fully capture what goes on in the sharing of common-pool resources: “Public investigators purposely

keep prisoners separated so they cannot communicate. The users of a common-pool resource are not

so limited.”
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the last inequality holds because  is a Nash equilibrium. Agent  is thus worse off

under 0 than under , which contradicts the initial assertion.

This proposition entails that all cautious equilibria are Pareto efficient. Further-

more, any cautious equilibrium Pareto-dominates all dreadful ones. The status of

dangerous equilibria is not so clear-cut, however. To analyze it, we shall invoke a

weaker equilibrium notion which forbids certain improbable group deviations. Let

us call a group deviation self-enforcing if it is not itself exposed to improving sub-

group deviations. Following Bernheim et al. (1987), a Nash equilibrium is said to

be coalition-proof if no self-enforcing group deviation can deliver an outcome that is

Pareto improving.7 Clearly, any strong Nash equilibrium (hence any cautious equi-

librium, by the last proposition) is coalition-proof. A reconsideration of dangerous

equilibria is now at hand.

Proposition 3. Let the strategy profile  be a dangerous equilibrium. If there is a

cautious equilibrium 0 such that, for some subset  ⊆  ,

0 =  −  for all  ∈  , and

0 =  for all  ∈ 
(5)

with  ≥ 0 for all  ∈  and
P

  = 1− , then  is not coalition-proof.

Proof. Suppose a dangerous equilibrium  is coalition-proof, but that there is a cau-

tious equilibrium 0 verifying condition (5). For all  ∈  , we have that

(
0
) ≥ (

0
 + 1− )

= ( +
X
 6=

)

 ()

The first inequality holds because 0 is itself a Nash equilibrium. The second (strict)

inequality follows from the fact that
P

 6=   0, for
P

 6=  = 0 would mean

7The formal definition of coalition-proofness (which can be found in Bernheim et al. 1987, or

in Moreno and Wooders 1996) is recursive and involves heavy notation that we chose to spare the

reader. The application made here of this equilibrium concept is anyhow rather straightforward.
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that  is not a Nash equilibrium (since the cautious equilibrium 0 could then be

reached from it through a unilateral move by agent ). Now, 0 being a strong Nash

equilibrium by proposition 2, it constitutes a self-enforcing group deviation from .

Hence,  cannot be coalition-proof.

Note that condition (5) does not always hold. Suppose, for example, that we

have three agents whose preferences are such that ̄1 = ̄2 = ̄3 =
2
3
, with   3

4
.

One can see that  = (0 1
2
 1
2
) is a dangerous equilibrium while 0 = (

3
 
3
 
3
) is a

cautious one. Yet, (5) does not apply to this pair. The important upshot is that

coalition-proof dangerous and cautious equilibria can coexist. This also suggests that

some dangerous equilibria which are not coalition-proof may not verify condition (5),

as the following example shows.

Example 2. Let us add a third identical player to the previous Example 1 where

 = 08,  = 08, and  ≡
√·. Clearly, the request profile  = (1

2
 1
2
 0) is a dan-

gerous equilibrium since (1
2
 1
2
) was a dangerous equilibrium in the two-agent game.

A profitable deviation for coalition  = {1 2} is to demand (04 04); this devia-
tion is self-enforcing since (04 04) was a cautious equilibrium in the earlier game.

But 0 = (04 04 0) is not a cautious equilibrium because the third agent can cer-

tainly gain by asking for a share of natural capital larger than zero. Hence,  is not

coalition-proof even though no cautious equilibrium verifying expression (5) exists.

This example illustrates the well-known shortcoming of coalition-proofness: a self-

enforcing group deviation may be exposed to some outsiders repositioning. More

importantly, it also suggests (as Figure 1 somewhat does) that a group deviation

from a dangerous to a cautious equilibrium can only occur when claims on natural

capital are ‘not too asymmetric’ across agents. This observation has ramifications for

public policy and climate change negotiations that will be briefly discussed in Section

5. Beforehand, we will first check the robustness of the results just shown.

4 Extensions

The game considered so far had only two thresholds. This section will now successively

contemplate a situation with multiple thresholds and one with a continuum of possible

14



thresholds randomly spread according to a multimodal probability distribution. The

former case could stem from greater disagreement among experts, the latter from

acknowledging measurement errors and aggregating various interval or probabilistic

estimates (instead of point estimates) of thresholds. Our analysis will proceed as in

the previous section and will produce qualitatively similar results.

4.1 Multiple thresholds

Suppose the predicted ecological thresholds, according to a group of experts or models,

now belong to a finite set,  = {1  } ⊂ R+. The ecosystem capacity is then

either 1  0 with probability 1, 2  1 with probability 2,..., or   −1 with

probability  = 1− 1 − 2 − − −1.

As before, let each agent  = 1  claim an amount  ≥ 0 of ecological services.
If all claims add up to less than or exactly the actual threshold, agent ’s demand, ,

is met. On the other hand, if the sum, , of all demands exceeds the true capacity,

every agent gets 0. Let ̄ =
P

= ; agent ’s expected payoff is given by

(−) = ()I( ≤ 1) +  + ̄()I(−1   ≤ ) (6)

Proceeding as we did in Section 3, let ̄

 with  ∈  and  = 1 − 1 denote

the cut-off values defined as:

̄( −−)  ̄+1(+1 −−) if −  ̄



̄( −−)  ̄+1(+1 −−) if −  ̄



(7)

The following statement is a generalization of Lemma 1.

Lemma 2. The cut-offs of each agent  follow the natural order:

0 = ̄0
 ≤ ̄1

 ≤ ̄2
 ≤  ≤ ̄−1

 ≤ ̄
 = .

Hence, demanding  = −− is the best response to − ∈ [̄−1
  ̄

 ]

Proof. See the appendix.
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Let us now call cautious a Nash equilibrium strategy profile ∗ where∗ =
P
=1

∗ =

1, h-dangerous a Nash equilibrium in which ∗ = , and dreadful a Nash equilib-

rium where ∗   . Conditions that guarantee the existence of these equilibria are

given below.

Proposition 4. The game always admits at least one non-dreadful equilibrium. Fur-

thermore,

1) A cautious equilibrium exists if and only if
P

∈ ̄1
 ≥ (− 1)1;

2) For any  ∈ {2 }, an −dangerous equilibrium exists if and only ifX
∈

̄−1
 ≤ (− 1) ≤

X
∈

̄


This proposition implies that cautious and all -dangerous equilibria may coexist.

The underlying argument matches the one used in the proof of proposition 1.

The possibility of group deviations would again make dreadful equilibria and cer-

tain dangerous equilibria untenable. The following statements are straightforward

extensions of propositions 2 and 3.

Proposition 5. Cautious Nash equilibria are strong; dreadful Nash equilibria are not.

Proposition 6. Let a strategy profile  be an h-dangerous equilibrium. If there is an

0-dangerous equilibrium 0, 0  , such that for a subgroup  ⊆  ,

0 =  −  for all  ∈  , and

0 =  for all  ∈ 

with  ≥ 0 for all  ∈  and
P

  = 1− 0 , then  is not coalition-proof.

More clearly than its counterpart in section 3, the latter proposition conveys a

notion of gradualism (which may matter, for instance, in international climate policy

negotiations). The 0-equilibrium that a group of agents would prefer to the riskier

-equilibrium may not itself be coalition-proof. In this case, one can imagine that

another deviation to an even safer 00-equilibrium might occur, and so on, until a

cautious equilibrium is reached.
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We shall now show that these results do not depend (qualitatively, at least) on

having the natural threshold take only a finite number of possible values.

4.2 Continuous (multimodal) distributions of thresholds

Consider now a situation where the ceiling on ecological services  is located according

to a common-knowledge distribution function  (·) with density (·) such that  (0) =
0. We view  (·) as an aggregate of various interval or probabilistic estimates of an
ecological threshold and assume it is multimodal.

Again, let each agent  = 1  make a claim  ≥ 0 on natural capital. If the
sum of individual demands amounts to no more than , all requests  are satisfied;

otherwise, everybody gets 0. The probability of not exceeding the threshold being

given by 1−  (), agent ’s expected payoff is then

(−) = ()(1−  ( +−)) (8)

Notice first that this payoff function can have several local maxima. The first-order

necessary condition for maximizing agent ’s payoff is given by

0()
()

=
( +−)

1−  ( +−)
(9)

The left-hand side of this expression increases with . The right-hand side is the

inverse of the so-called hazard rate. The literature on mechanism design (see, e.g.,

Bulow and Roberts 1989; Levin 1997) usually assumes the latter to be monotonically

decreasing. Here, the fact  (·) is multimodal may cause it to be non-monotonic, since
between two sufficiently far off predictions the density (·) will first decline and then
grow sharply. This may indeed create multiple local maxima.

In this context, let us call a Nash equilibrium cautious (dangerous) when total

demand is at the lowest (highest) level. Both types of equilibria may coexist, even in

this continuous framework, as the following examples illustrate. A notable difference

with the discrete case is that there can be only one Nash equilibrium of a kind.

Example 3. Suppose there are three agents with identical utility function () =√
,  = 1 2 3. Let the distribution of thresholds  (·) be the weighted sum of two
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different expert assessments: the first one is a normal distribution with mean equal

to 8 and variance equal to 1, the second is also a normal distribution with mean

18 and variance 1. The respective weights put on the former and the latter are 08

and 02. Two symmetric Nash equilibria will coexist in this case: one (the cautious

equilibrium) in which an agent claims an amount 2325 of natural capital, and the

other (the dangerous equilibrium) in which an agent requests 5421.

Example 4. Using the same bimodal distribution as in example 3, suppose there are

now three risk-neutral agents with identical utility function () = ∗,  = 1 2 3.
Again, two symmetric equilibria will coexist in this game: in the cautious equilibrium

an agent claims an amount 247 of ecological services, in the dangerous equilibrium

an agent demands 555.

These examples also reveal that, contrary to what happens when there is a finite

number of possible thresholds, overall demand for natural capital changes with the

agents’ degree of risk aversion. In both the cautious and the dangerous equilibrium,

claims are actually lower (as expected) when agents are more risk averse.

As the next proposition shows, finally, the cautious equilibrium in this continuous

setting is still a strong Nash equilibrium; it dominates any dangerous equilibrium in

which every agent makes a bigger claim.

Proposition 7. The cautious equilibrium is a strong Nash equilibrium. It Pareto-

dominates any dangerous equilibrium in which everyone asks for more natural capital.

Proof. The argument for the first part mimics that for proposition 2. Denote by  the

cautious equilibrium of the game. Consider another equilibrium, 0, to be the result

of a profitable deviation by coalition  ⊆  . Clearly | | ≥ 2, or  would not be a
Nash equilibrium of the game. Also, it must be that  0 6= . Suppose  0  , and

consider an agent  ∈  such that 
0
−  − Such an agent exist because | | ≥ 2.

Denote by ∗(
0
−) agent ’s best response to all other agents collectively demanding
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 0
−. By the monotonicity of , it must be that

(
0


0
−) ≤ (

∗
(

0
−)

0
−)

= (
∗
(

0
−))× (1−  (∗(

0
−) + 0

−))

 (
∗
(

0
−) + 0

− −−)× (1−  (∗(
0
−) + 0

−))

= (
∗
(

0
−) + 0

− −−−)

≤ ( −)

with the last inequality coming from the fact that  is a Nash equilibrium of the

game. A cautious equilibrium being a Nash equilibrium with the lowest total demand

by definition, the case  0   cannot happen.

To prove the second part, denote by  the cautious equilibrium of the game and

by 0 a dangerous equilibrium such that  0
− ≥ − for all  ∈  . From the definition

of an equilibrium, we know that for all 

(−) ≥ (
0
−) (10)

Furthermore,  is non-increasing in its second argument, because a larger value im-

plies smaller odds of obtaining a positive payoff. Therefore,

(
0
−) ≥ (

0


0
−) (11)

Combining the last two expressions hands the result.

This completes our verification that the results shown in Section 3 are qualitatively

robust. We shall now explore some of their main ramifications for public policy.

5 Some policy implications

The existence of an ecological threshold, and the fact that its exact level is un-

certain, raise specific policy issues. An important one is whether to then adopt

precautionary measures. The feasibility and social desirability of such actions have

been widely debated in policy circles and remain an active research topic (see, e.g.,
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Wiener 2010, Barrieu and Sinclair-Desgagné 2006, and the references therein). In the

present context, choosing a precautionary stance would mean to avoid claiming nat-

ural capital beyond the lowest possible threshold, in order to safeguard those vital and

irreplaceable ecological services. Contrary to the current literature, which assumes a

benevolent planner or representative agent with the proper kind of risk or ambiguity

aversion, proposition 1 above shows that this outcome can actually be achieved in a

decentralized fashion: it corresponds to what we called a ‘cautious’ equilibrium.

Propositions 2 and 3 entail, moreover, that precautionary outcomes would arise

rather naturally as a result of fostering communication and collaboration between

agents, since cautious equilibria are robust to group deviations (hence are also Pareto

optimal) while dreadful equilibria are not and dangerous equilibria may not.

There is, however, one caveat to proposition 3 which is worth mentioning. In that

proposition, the coalition which departs from the dangerous equilibrium, thereby

implementing a precautionary outcome, bears all the cost while outsiders retain their

initial claim (which will moreover materialize with certainty). This could create

an incentive for agents to stick to their original request and free-ride on deviating

coalitions, so dangerous equilibria might not be that vulnerable after all. One way

around this situation is to seek a grand coalition in which everybody settles for less

natural capital. This is the approach chosen notably in the post-Kyoto negotiations

over national reductions in carbon dioxide emissions. It might be the only sensible

one when agents are fairly similar in their respective preferences and requests, but the

effort then spent in drawing everybody together might be daunting. Alternatively, if

there is ‘enough asymmetry’ between agents at some dangerous equilibrium outcome 

(but not too much, in light of the discussion that follows example 2 above), a coalition

of the willing, ready to implement a precautionary outcome, might come about as

follows. Using proposition 3’s notation, let  − 
 be the certainty equivalent for

agent , so 
 is the positive quantity such that ( − 

 ) = (). The idea

is to target the agents with the largest 
 , in order to subsequently have them

give up an amount of natural capital  = 
 −  where  is a small positive

number. These agents will typically combine relatively high risk aversion with large

claims on ecological services. Suppose they form a strict subgroup  ⊆  such

that
P
∈


  1 − . If, in addition, the magnitude of their potential to sacrifice

20



would make their individual participation essential in any successful group deviation,

then they might well choose to collectively move ahead in deviating to a cautious

equilibrium.

6 Concluding remarks

This paper has analyzed the behavior of rational agents sharing a non-excludable

ecosystem that may not deliver some key services beyond an uncertain ecological

threshold. We modelled this situation as a version of the well-known ‘Divide-the-

dollar’ game in which the amount to be split follows a discrete probability distribution.

This brought two new insights for the economics of common-pool resources. First,

strategic interaction can have much more impact on the outcome than individual fea-

tures: whatever the agents’ respective degree of risk aversion, for instance, ‘cautious’

equilibria - where agents altogether behave as if the lowest (and safest) threshold were

certain - were found to coexist with ‘dangerous’ equilibria - where the agents’ request

of ecological services up to a higher threshold might lead to an ecosystem breakdown

- and even ‘dreadful’ equilibria - where so much natural capital is claimed collectively

that no single player’s actions can prevent its exhaustion. Second, allowing agents to

cooperate and form deviating coalitions would eliminate all dreadful equilibria and

several dangerous equilibria, while cautious equilibria were shown to be robust to such

deviations. These results support the emphasis currently put by the common-pool

resources literature on social capital, governance and institutions. The latter also

captures the recurrent empirical observation that some resource-sharing communities

were able to avoid a tragedy of the commons through communication and cooperation

(Ostrom 1999); its derivation indicates, moreover, which dangerous equilibria will be

discarded and which situation a successful deviating coalition will then prefer.

The above analysis and conclusions may first apply to other contexts as well.

Abusing natural capital might trigger severe social unrest instead or in addition of a

loss of ecological services (as in Diamond 2005’s tale of the Mayas collapse through

drought and warfare), for instance, or the agents’ actions might directly encroach on

social (rather than natural) capital until some uncertain borderline is crossed and

civil war erupts (as in André and Platteau 1998’s account of the rising tensions in

21



social and family relations that increasing land scarcity engendered in the eighties in

Rwanda, which partly paved the way to the bloody civil war that broke out in 1994.)

Another immediate step from this paper, considering the relative simplicity of

the present game, would be to check whether the above results hold as well in the

laboratory. In such a setting, we expect the presence of focal points, or the subjects’

usual preference for equality and fairness (as reported in Ostrom 2000), to then reduce

the initial sets of equilibria but also affect the extent to which deviating coalitions

may form. Other theoretical insights could additionally be obtained by relaxing some

informational assumptions. For example, agents might be allowed to hold different

beliefs about the location and distribution of thresholds or have access (at some cost)

to a privately observable warning signal (of the type discussed, say, in Scheffer et

al. 2009). The issue of asymmetric information has already been considered in the

common-pool resource literature (see, e.g., Lindahl and Johannesson 2009, and the

references therein), but not with various discrete thresholds or when the distribution

of thresholds is multimodal, as above. Finally, one should examine rigorously how

agents communicate and coordinate with each other. To be sure, for the above

equilibrium outcomes to locate where potential thresholds precisely lie, some means

of coordination must exist (particularly in large-scale natural commons, such as open

seas or the earth atmosphere). It would be worthwhile to investigate what they are,

and to explore when and how they can support cooperation.
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A Appendix

A.1 Proof of Lemma 2

Let  ∈ 1 , we start by proving that the set  := { ∈ R+|̄( − ) 

max 6= ̄(( − )+)} is convex subset of [0 [. This follows from the concavity of
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 and the fact that the sequence of ̄’s is decreasing:

i) First, notice that  ⊆ [0 [, because −−  0 on this set only, and agents
are not allowed to demand negative amounts of ecological services.

ii) For all   , the expression ̄(− )− ̄(( − )+) is decreasing in  on

[0 ]. Therefore { ∈ [0 ]|̄( − ) ≥ ̄( − )} is convex.

iii) For all   , the expression ̄(( − )+) − ̄( − ) is increasing on

[0 ]. Moreover, ̄( − )  ̄(( − )+) = 0 on [ ]. Hence, { ∈
[0 ]|̄( − ) ≥ ̄( − )} is also convex.

It follows from the convexity of the intersection of convex sets that the set  is

convex, for all . Moreover, point iii) implies that  ≤  for all   , so that the

’s are in the natural order.

Finally, denoting ̄−1
 and ̄+1

 the lower and upper bounds of the set , respec-

tively, yields the result.
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