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Abstract 

We examine how R&D portfolios of drug pipelines affect pharmaceutical licensing, 

controlling firm size, diversity, and competitors in R&D and product markets. The data 

collected comprises 329 license-outs and 434 license-ins closed by 54 Japanese 

pharmaceutical companies between 1997 and 2007. We pay special attention to 

stage-specific licensing by dividing the innovation process into an early stage and a late 

stage. Estimates from the fixed-effect GMM model reveal that drug pipelines 

significantly affect stage-specific licensing. Particularly, the state of drug pipelines is 

leveled off by license-outs at the early stage and license-ins at the late stage. Theoretical 

implications are also discussed. 

 

Keywords: R&D portfolios, licensing, pharmaceutical industry, drug pipelines 

JEL classification: C13; L24; L65. 
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1. Introduction 

 

Over the past two decades, utilizing markets for technology through licensing and other 

outsourcing arrangements has emerged as a key to organizing innovative activity (Arora 

et al., 2001a). The coordination of internal and external knowledge across a firm’s 

boundary is now regarded as the core of R&D management, especially in high-tech 

industries. Obviously, it is virtually impossible and never desirable for all relevant 

technologies to be developed by a single firm (Stephan, 1996; Narin et al., 1997; 

Chesbrough, 2003). It is, therefore, very probable that the incentive to utilize markets for 

technologies is closely associated with R&D portfolios at various stages of acquisition, 

accumulation, and exploitation of knowledge throughout the innovative process 

(Lichtenthaler and Ernst, 2006).  

The pharmaceutical industry is, arguably, the leading industry in which markets 

for technology have rapidly grown and are actively utilized (Arora and Gambardella, 

2010). This paper examines how R&D portfolios of pharmaceutical firms affect licensing 

decisions, controlling firm size, therapeutic diversity, and the degree of competition in 

R&D as well as product markets. The R&D portfolio of a pharmaceutical firm is mainly 

reflected in drug pipelines that consist of drug candidates under clinical testing as well as 

approved drugs being marketed
1

. Luckily, drug pipelines can be observed quite 

accurately owing to the rigorous regulatory process of clinical testing: pre-clinical, phase 

I, phase II, phase III, and post marketing surveillance (PMS). Accordingly, the 

pharmaceutical industry is a suitable candidate for examining the effect of R&D 

portfolios on licensing. 

Licensing can be a possible way of smoothing out the state of drug pipelines 

across stages. The change of drug pipelines would dictate a licensing decision as a result 

of the portfolio adjustment process. We will refer to this causality as a portfolio effect. For 

example, a firm with relatively richer drug candidates at one stage than at other stages 

will be likely to license some of the drug candidates outward at that stage. In contrast, if 

the number of drug candidates at a stage is diminishing compared to other stages, inward 

                                                   
1  The present paper could not utilize detailed data on project-based R&D expenditures. Although 

pharmaceutical patents are frequently used in empirical studies, they mainly reflect upstream drug 

discovery research. The state of drug pipelines, however, can be regarded as a useful proxy for the portfolio 

of pharmaceutical R&D, because resource allocation among pharmaceutical research projects within a firm 
would be at least partly reflected in the distribution of drug candidates across therapeutic categories. 
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licensing at that stage would be accelerated to level off the drug pipelines across the 

stages. 

In a recent theoretical study, Chan et al. (2007) provide a model of project 

selection that explicitly incorporates R&D pipelines, transaction costs, and downstream 

complementary assets such as distribution channels and brands. Chan et al. examine the 

investment and licensing decisions by using a dynamic programming technique, and they 

indicate that the state of R&D pipelines and the existence of downstream complementary 

assets affect the optimal R&D portfolio as well as the incentive to use the technology 

market at different R&D stages. The theoretical study by Chan et al. corroborates our 

empirical motivation to clarify the significant role of drug pipelines in licensing 

decisions. 

However, very few empirical studies in the literature explore the influence of 

R&D portfolios on inward or outward licensing, except for the technology transaction 

through mergers and acquisitions (M&A). Higgins and Rodriguez (2006) suggested that 

the bleak prospect of drug pipelines induced M&A between U.S. pharmaceutical 

companies. Using data on 160 pharmaceutical firms’ acquisitions from 1994 to 2001, 

they defined the desperation index, consisting of the state of drug pipelines and their 

remaining patent lengths, and found that firms with fewer drug candidates likely acquired 

other firms. Danzon et al. (2007) obtained virtually similar results by using M&A data of 

383 pharmaceutical firms from 1988 to 2001. 

Most previous studies focused on complementary assets as a significant 

determinant of licensing (Teece, 1986; Montalvo and Yafeh, 1994; Arora et al., 2001a, 

2001b; Shane, 2001; Kollmer and Dowling, 2004; Arora and Ceccagnoli, 2006; Fosfuri, 

2006; Gambardella et al., 2007). That is, a firm with complementary assets would absorb 

knowledge more effectively and exploit profit opportunities more efficiently, thereby 

exploiting its own inventions internally rather than acquiring royalties by licensing them 

out. 

As the theoretical literature points out, there are two conflicting effects with 

which a licensor’s profit varies and the incentives to license change accordingly (Arora 

and Fosfuri, 2003). One is the revenue effect, which enhances a licensor’s profit with 

royalties paid by licensees, and the other is the rent dissipation effect, which erodes a 

licensor’s profit by intensifying competition due to a licensee’s entry into the licensor’s 
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market. Therefore, the more competition at the R&D and marketing stages, the higher the 

incentive to license to horizontal rivals. This is because the revenue effect outweighs the 

rent dissipation effect. That is, firms faced with severe competition are marginally 

exposed to a small rent dissipation effect by licensing their technologies out to rivals, and 

they can obtain large royalty revenues through licensing because there are many potential 

licensees. We will consider the competition effect on licensing, reflecting the two 

conflicting strategic effects. 

The data that we collected through Asuno Shinyaku (the comprehensive database 

of drug developments and alliances of Japanese pharmaceutical firms) comprises 329 

license-outs and 434 license-ins closed by 54 Japanese pharmaceutical companies 

between 1997 and 2007 with various types of counterparts such as horizontal rivals and 

bio-ventures. We will define a portfolio of drug pipelines and classify the process of drug 

innovation into an early stage and a late stage. Thus, we will pay special attention to the 

stage-specific determinants of licensing, which are not fully explored in the literature. 

We assume that downstream complementary assets (such as statisticians, 

collaborative networks with physicians, and medical representatives) and the therapeutic 

diversity of existent drug pipelines are determined prior to licensing decisions. Then, we 

consider that drug pipelines are endogenously determined, because inward and outward 

licensing will result in different configurations of drug pipelines. That is, drug pipelines 

influencing a firm’s license decision are themselves influenced by a firm’s license 

activity. 

Estimates from the fixed-effect Generalized Method of Moment (GMM) model 

controlling endogeneity, using lagged variables as instruments, reveal that drug pipelines 

significantly affect stage-specific licensing. In particular, the Japanese pharmaceutical 

companies level off the state of drug pipelines by license-outs at the early stage and by 

license-ins at the late stage. That is, the number of drug candidates at the early stage is 

positively associated with license-outs (license-ins) at the early stage (late stage). On the 

other hand, the number of drug candidates at the late stage is negatively correlated with 

license-outs (license-ins) at the early stage (late stage). 

Furthermore, we find that a pharmaceutical firm with larger sales is more likely 

to introduce external drug candidates at the late stage. Therefore, downstream 

complementary assets, which are construed as absorptive capacity, strengthen the 



5 

propensity to license-in. In contrast, the extent of R&D competition enhances the 

propensity to license-out, presumably due to a marginally small rent dissipation effect. 

This paper is organized as follows. Section 2 explains our classification of 

licensing stages and the definitions of drug pipelines. It also gives an overview of 

pharmaceutical licensing in Japan. Section 3 presents the theoretical and empirical 

background of the portfolio effect and other factors affecting licensing decisions. Section 

4 describes the data sources, empirical specifications, and variable constructions. Section 

5 presents the estimation results. Section 6 concludes the paper. 

 

 

2. Drug pipelines and pharmaceutical licensing in Japan 

 

2.1. Drug pipelines and licensing stages 

New drug development is a sequential process. The upper part of Figure 1 presents the 

typical innovation process of pharmaceuticals. Quite a few drug candidates at the 

discovery stage are screened for synthesis by chemists and biologists in order to develop 

concepts for new compounds. Once a new compound has been synthesized, it is screened 

for pharmacologic activity and toxicity in vitro and in animals (pre-clinical testing), and 

thereafter in humans
2
. Human clinical testing typically comprises three distinct stages, 

phase I, phase II, and phase III, each of which involves different types of testing on safety 

and efficacy. Phase I is performed on a small number of healthy human subjects in order 

to obtain information on toxicity and safe dosage ranges. Phase II is performed on a larger 

number of humans who are patients for whom the drug is intended to be prescribed. Phase 

III involves large-scale trials on patients. The later a clinical trial is conducted, the greater 

its cost. Therefore, it is important for a pharmaceutical firm to screen promising 

candidates as efficiently as possible (DiMasi et al., 2003). A pharmaceutical firm will 

submit a list of drug candidates that are supported by phase III clinical testing to the 

Ministry of Health, Labor and Welfare (MHLW) (pre-registration). An approved drug is 

subsequently registered and listed with the reimbursement price. Finally, a marketed drug 

                                                   
2 The Pharmaceuticals and Medical Devices Agency (PMDA) conducts reviews and related services on 

pharmaceuticals and medical devices for marketing authorization in accordance with the Pharmaceutical 
Affairs Law in Japan. 
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is subject to post marketing surveillance (PMS).  

 

[Insert Figure 1 around here] 

 

 We divided the drug innovation process into the early stage and late stage, as 

shown in the lower part of Figure 1. Specifically, following Higgins and Rodriguez 

(2006), the early stage comprised the pre-clinical phase and phase I, and the late stage 

comprised all the stages after phase I.
3
 We accordingly categorized drug candidates and 

licensing contracts by the two stages. Note that there are mainly three practical reasons 

for this classification
4
. First, clinical testing at the late stage (i.e., phase II and phase III) 

requires much higher costs than at the early stage (i.e., pre-clinical and phase I). Second, 

there is a fast-truck clinical testing procedure applied for life-threatening or highly 

effective drug candidates such as anti-cancer drugs and orphan drugs. This procedure 

rendered classification of drug candidates between phase II and phase III quite obscure 

and virtually impossible. Finally, the transition probability of clinical testing from phase I 

to phase II is much lower than the success rates of subsequent stages (DiMasi et al., 2003). 

This distinction between the early stage and the late stage helps to clarify a significant 

strategic effect of drug pipelines on licensing. 

 

2.2. Stage-specific pharmaceutical licensing by firm size 

Table 1 presents the stage-specific licensing activities of 54 Japanese pharmaceutical 

firms for the years 1997 to 2007. The calculated values represent the annual average 

number of licenses per firm. Table 1 classifies the number of license-ins and license-outs 

by firm size measured by drug sales: (i) large firms (sales ≧400 billion yen), (ii) medium 

firms (400＞sales＞100), and (iii) small firms (100 ≧sales). This table shows that a large 

firm is likely to close a license-in contract. The annual average license-ins per firm is 

much higher in large firms (2.19) than in medium firms (0.74) and small firms (0.62). The 

bigger the firm size, the more license-ins contracts are closed at any stage (although the 

                                                   
3 In an unreported examination, we included all stages after pre-registration as a third stage. Furthermore, 
in another unreported examination, we marked the boundary between phase 2 and phase 3. We obtained 

virtually similar results at a slightly lower significance level compared to the present study. Therefore, we 

hereafter report the empirical results based on the early/late classification. 
4 Unfortunately, we found no information on the number of drug seeds at the discovery stage. 
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standard deviations are quite large). On the other hand, there is no significant correlation 

between firm size and license-outs. 

 

[Insert Table 1 around here] 

 

 

2.3. Pharmaceutical licensing by domestic and foreign partners 

Figure 2 presents the trends of pharmaceutical licensing by Japanese pharmaceutical 

firms with foreign and domestic partners from 1997 to 2007. There are three points worth 

noting. First, the number of license-ins and license-outs moved roughly in parallel, 

although the numbers for licensing with domestic partners fluctuated more widely than 

those for licensing with foreign partners. Second, inward licensing always exceeds 

outward licensing, probably because there are many foreign and domestic licensors such 

as bio-ventures, universities, and foreign pharmaceutical firms. Third, the number of 

license-ins between 2000 and 2002 is slightly large. Slow introduction of molecular 

biology in the late 1990s in Japan (Henderson et al. 1999) and the introduction of 

biotechnologies in the early 2000s by the Japanese pharmaceutical firms (Motohashi, 

2007) possibly reflect the active license-ins during this period
5
. 

 

[Insert Figure 2 around here] 

 

 

3. Factors affecting licensing decisions 

 

3.1. Portfolio effect 

It is crucial for a pharmaceutical firm to keep a well-balanced portfolio, since releasing 

new drugs continuously secures stable cash flow and facilitates efficient use of 

complementary assets. Licensing can be a possible means of smoothing the state of drug 

                                                   
5 In addition, the Japanese government enacted the Technology Licensing Office (TLO) Act in 1998 and the 

Japanese Bayh-Dole Act in 1999 to promote industry-university collaboration. These policy changes 

facilitated the Japanese pharmaceutical firms to contract collaborative research with universities and other 

public research institutes (Okada et al. 2009). Moreover, recent trends enforcing stronger intellectual 

property rights may reduce uncertainty and information asymmetry concerning licensing contracts (Gans et 
al., 2008; Lichtenthaler, 2010).  
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pipelines across stages. Optimal portfolios of drug candidates depend upon the 

combination of transition probabilities of clinical tests that are not directly observable. 

Given the combination of transition probabilities, the change of drug pipelines would 

dictate a licensing decision as a result of the portfolio adjustment process. We will 

hereafter refer to this causality as a portfolio effect. For example, a firm with relatively 

richer drug candidates at a stage compared with other stages given the transition 

probabilities constant would tend to license-out some of its drug candidates at that stage. 

On the other hand, if the number of drug candidates at a stage is diminishing compared to 

other stages, inward licensing at that stage would be promoted to level off the drug 

pipelines across stages. 

 

3.2. Measuring the change of drug pipelines 

As we will define fully in the subsequent section, we use three types of measures of drug 

pipelines: (i) the aggregate number of drug candidates across stages, (ii) the stage-specific 

number of drug candidates, and (iii) the relative numbers of drug candidates between 

adjacent stages. The basic ideas of the first and the second measures are relatively 

straightforward. Higher innovative performance would be reflected by the larger number 

of drug candidates.  

By contrast, the third measure would be associated with relative innovative 

performance across stages. The innovative performance of the early stage relative to the 

drug discovery stage can be measured by the number of drug candidates at the early stage 

divided by research expenditures at the drug discovery stage. Unfortunately, research 

expenditures as well as the number of drug seeds at the drug discovery stage were not 

available to the present study. Therefore, we used patent stocks as the denominator.  

Concerning the relative productivity between the early and late stages, if success 

probabilities of clinical testing (which are basically determined by firm-specific 

capabilities and institutional factors) are not virtually changed, the optimal structure of 

the drug pipelines will be stable and the innovative performance of the late stage relative 

to the early stage can be measured by the number of drug candidates at the late stage 

divided by the number of drug candidates at the early stage. If the structure of drug 

pipelines varies, however, licensing decisions at all stages will accordingly change 

depending on the portfolio effect.  
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Possible other sources of variation in licensing decisions are the rent dissipation 

effect, revenue effect, and complementary assets. These factors would accentuate or 

offset the portfolio effect. Particularly, we suspect that (i) the relatively stronger rent 

dissipation effect compared to revenue effect may offset the portfolio effect, and (ii) 

downstream complementary assets may raise the optimal size of drug candidates at the 

late stage. We will clarify these points below. 

 

3.3. The portfolio effect on outward licensing 

License-out at the early stage 

If the innovative productivities at both the early stage and the late stage affect the 

licensing decisions at the early stage distinctively in the opposite directions, this indicates 

the existence of the portfolio effect, which would lead to leveling off the drug pipelines. 

More specifically, higher innovative performance at the early stage leads to more drug 

candidates at the early stage. Therefore, the growth of drug candidates at the early stage 

would stimulate license-outs at the early stage for smoothing drug pipelines. For a similar 

reason, the increase in drug candidates at the late stage would discourage outward 

licensing at the early stage.  

 

License-out at the late stage 

The portfolio effect on outward licensing at the late stage can be explained in a similar 

manner. That is, an increase of drug candidates at the late stage would stimulate 

license-outs at the late stage. In contrast, an increase of drug candidates at the early stage 

would discourage outward licensing at the late stage.  

It should be noted, however, that the incentive to license-out may vary 

depending on the magnitude of the rent dissipation effect relative to revenue effect. 

Although these two effects are not distinctively observable in the present study, the rent 

dissipation effect at the late stage should be much larger than the one at the early stage. 

This is because license-outs at the late stage would intensify product market competition 

in the near future. Thus, the rent dissipation effect at the late stage may outweigh the 

revenue effect as well as the portfolio effect. In addition, the large size of downstream 

complementary assets possibly discourages outward licensing at the late stage. Therefore, 

a firm with a large number of drug candidates at the late stage may be reluctant to engage 
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in license-outs at that stage. 

 

3.4. The portfolio effect on inward licensing 

License-ins at the early stage 

The portfolio effect will have a similar impact upon inward licensing. More specifically, 

the growth of drug candidates at the early stage would discourage license-ins at the early 

stage, whereas the increase in drug candidates at the late stage would encourage inward 

licensing at the early stage in order to smooth out drug pipelines across stages. 

 

License-ins at the late stage 

A firm with more drug candidates at the late stage will reduce license-ins at that stage, 

while a firm with fewer drug candidates at the late stage will buy external drug candidates 

to maintain downstream complementary assets. Therefore, the decrease in drug 

candidates at the late stage will result in a much higher likelihood of license-ins at the late 

stage.  

The increase of drug candidates at the early stage would encourage inward 

licensing at the late stage. However, it should be noted that the complementary assets of a 

pharmaceutical firm are not malleable and most relevant expenditures are sunk. 

Therefore, a decrease of drug candidates at the early stage may not result in less inward 

licensing at the late stage. That is, the complementary assets may virtually predetermine 

the optimal size of drug candidates at the late stage: Inward licensing at the late stage may 

be strategically dictated by the size of the complementary assets and not by the number of 

drug candidates at the early stage. We will further discuss this issue in the subsequent 

sections. 

Our predictions regarding portfolio effects on license-outs and license-ins are 

summarized in Table 2. The plus sign means the positive correlation between the 

innovative productivities of clinical testing and the likelihood of licensing at a 

corresponding stage, while the minus sign represents the negative one. As shown in Table 

2, the portfolio effect would produce the opposite signs within a column set of 

explanatory variables. Furthermore, we expect explanatory variables would produce the 

same signs of coefficients diagonally as well as off-diagonally. Note that, however, the 

rent dissipation effect may outweigh the portfolio effect at the late stage. Moreover, the 
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presence of complementary assets would produce a strong incentive to hoard more drug 

candidates at the late stage of license-outs and at the early stage of license-ins. 

 

[Insert Table 2 around here] 

 

3.5. Control factors 

Firm size 

As theoretically shown by Teece (1986) and Arora and Fosfuri (2003), complementary 

assets may reduce the propensity to license-out. Most literature regards firm size as the 

proxy for complementary assets. Unfortunately, there is conflicting evidence regarding 

the relationship between firm size and propensity for outward licensing. In Japan, for 

example, Ohnishi and Okada (2005) and Motohashi (2008) provided evidence that larger 

firms less frequently closed license-outs than smaller ones
6
. On the contrary, Nakamura 

and Odagiri (2005) and Nagaoka and Kwon (2006) showed that larger firms were most 

likely to engage in license-outs
7
. 

With regard to the relationship between firm size and inward licensing, Cohen 

and Levinthal (1989, 1990) convincingly argue that large firms have a greater absorptive 

capacity to assimilate and exploit existing outside technologies. There is a growing body 

of literature which empirically supports the positive effect of absorptive capacity on 

license-ins (Lichtenthaler, 2009; Lichtenthaler and Lichtenthaler, 2009; Eom and Lee, 

2010, among others). Thus, we expect that larger firms would maintain complementary 

assets at least partly by outsourcing external drug candidates. 

 

Therapeutic Diversity 

Pharmaceutical firms dealing with a large number of therapeutic fields have a better 

capability to assimilate external knowledge. Specifically, co-specialized assets used in 

R&D, manufacturing, and marketing may be an important source of scope economies 
                                                   
6 Fosfuri (2006) and Arora and Ceccagnoli (2006) also obtained empirical evidence supporting the 
theoretical arguments by Teece (1986) and Arora and Fosfuri (2003). 
7 Gallini (1984) provided theoretical arguments supporting the positive relationship between firm size and 

license-outs: A dominant firm may strategically license-out its technologies in order to prevent competitors 

from developing better technologies. Rockett (1990) developed a similar argument, suggesting that a large 

firm licenses out its technologies to a weak rival in order to crowd out other stronger competitors. 

Furthermore, Kim (2004) suggested that a larger firm may not be worried with regard to an increase in 
competitors because of its dominant market position. 
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(Henderson and Cockburn, 1996; Cockburn and Henderson, 2001). Thus, it will become 

much easier for a more diversified firm to assimilate a wide range of external knowledge; 

therefore, a firm dealing with more diverse therapeutic fields should be more inclined to 

close license-ins.  

 To our knowledge, there are no solid theoretical predictions regarding the 

relationship between therapeutic diversity and outward licensing. Lichtenthaler (2010) 

interestingly found a positive correlation between product diversification and 

license-outs, but without convincing arguments. Firms with diverse therapeutic fields 

probably find various types of potential licensees with more ease at either the upstream or 

downstream innovation process. 

 

Competitors in R&D and the product market 

Arora and Fosfuri (2003) indicate that outward licensing would be inhibited to some 

extent due to competition in R&D and the product market, assuming all else is equal. If 

technologies and markets are not differentiated, it is difficult to appropriate the outcome 

of R&D by a single firm. In this case, the rent dissipation effect caused by an additional 

competitor is expected to be smaller. On the other hand, the large number of potential 

licensees would mean more expected royalties from licensing (i.e., a stronger revenue 

effect). Thus, R&D competition would raise the profitability of license-outs. Fosfuri 

(2006) and Kim and Vonotras (2006) obtained evidence that is consistent with this 

argument. 

 There are very few empirical studies examining the competition effect on inward 

licensing. In very recent studies, Allain et al. (2010) and Grimpe and Hussinger (2010) 

indicated that technology competition has a positive impact on the propensity to 

license-in. In a similar vein, Lichtenthaler (2010) found that competition fostered 

technology diffusion and enhanced the demand in technology markets. Therefore, the 

increase in competitors in R&D as well as the product market will raise the incentive to 

license-in as well as to license-out. 

 

 

4. Empirical analysis 
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4.1. Data 

We obtained data on 54 pharmaceutical firms that are members of the Japan 

Pharmaceutical Manufacturers Association (JPMA). JPMA is an industry association of 

research-oriented pharmaceutical manufacturers that has 68 members as of 2010. From 

the 68 firms, we excluded 14 firms which were 100% foreign-owned companies or whose 

main business lines were generic drugs, medical devices, or Chinese herbal medicines. 

Although foreign-owned companies have become increasingly present in the Japanese 

pharmaceutical market, the licensing determinants of foreign-owned companies located 

in Japan would most likely be different from those of the Japanese companies. 

Furthermore, it is very unlikely that R&D pipelines on generic drugs, medical devices, or 

Chinese herbal medicines are associated with the licensing decisions regarding new 

molecular entities (NMEs). 

The complementary nature between M&A and licensing provokes concerns 

about endogeneity regarding licensing decisions. Fortunately, however, there were very 

few M&A in the Japanese pharmaceutical industry until quite recently. Hence, M&A as a 

missing explanatory variable would not cause very serious endogeneity issues.
8
 

We used three types of data: the number of licenses, drug pipelines, and firm 

characteristics. Data sources for these are described as follows. 

 

Licensing 

We investigated the licensing contracts of the 54 firms through websites, financial reports, 

and Asuno-Shinyaku (Technomics, Inc.). Asuno-Shinyaku is a comprehensive database of 

drug developments and alliances for Japanese pharmaceutical firms. Asuno-Shinyaku 

collects information through various sources such as publications, news releases, and 

interviews. Using these data sources, we collected the data on 329 license-outs and 434 

license-ins from 1997 to 2007. 

 

                                                   
8 Horizontal M&A between major Japanese pharmaceutical companies have occurred since 2005, such as 

Tanabe and Mitsubishi Pharma in 2005 (the present name is Tanabe-Mitsubishi), Fujisawa and Yamanouchi 

in 2005 (Astellas), Dainippon and Sumitomo in 2005 (Dainippon-Sumitomo), and Daiichi and Sankyo in 

2007 (Daiichi-Sankyo). Resulting changes of pipelines may provoke concerns about empirical regularities; 

therefore, for a robustness check we used data from 1997 to 2005 instead. We found virtually similar results 

for the years 1997–2007. Therefore, the present paper mainly used the larger dataset for 1997 to 2007. 

Regarding consolidated firms within our observation period, we collected data on firm characteristics at the 
time when licensing contracts were closed. 
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Drug pipelines 

Next, the data on drug pipelines for the 54 firms were extracted from Pharmaprojects 

(Informa UK Ltd.). In addition, we divided drug candidates for the pipelines into 16 

therapeutic fields using the Anatomical Therapeutic Classification (ATC) prepared by the 

European Pharmaceutical Market Research Association
9
. 

 

Firm Characteristics 

Finally, we collected information about firm characteristics such as firm size and 

therapeutic diversity. We collected data on drug sales except for non-drug business sales 

from Katsudo Gaikyo Chosa (annual questionnaire surveys conducted by the JPMA). We 

also collected data on individual sales in the 16 therapeutic fields for each firm from the 

IMS World Review (IMS Health). 

 

4.2. Empirical specifications 

Our basic empirical specification is  

ittiit

k

s Zks   ) stageat  pipelines of state() stageat  license of (#    

it 

 

where subscript i  shows a firm and t represents a year. The stage s or k  represents either 

the early or the late stage, as defined previously. The dependent variable is either the 

number of license-outs or license-ins. We use several dependent variables for license-outs 

and license-ins alternatively. Specifically, regarding license-outs, out_total is the total 

number of license-outs, and out_early (out_late) is the number of license-outs at the early 

stage (late stage). We define in_total, in_early, and in_late regarding license-ins in a 

similar way. k

s is an estimated parameter for the state of pipelines at stage k  in which 

the corresponding dependent variable is the number of licenses at stage s . Specifically, 

there are four combinations of stage s  and stage k in k

s . That is, we have four 

parameters of 
e

E , 
l

E , 
e

L , and 
l

L  where subscript E  ( L ) indicates the early stage of 

licensing (late stage of licensing) and superscript e  ( l ) indicates the early stage of drug 

                                                   
9 ATC comprises: (1) alimentary T. & metabolism, (2) blood & B. forming organs, (3) cardiovascular 
system, (4) dermatologicals, (5) G.U. System & sex hormones, (6) systemic hormones, (7) systemic 

anti-infectives, (8) hospital solutions, (9) antineoplast & immunomodul, (10) musculo-skeletal system, (11) 

central nervous system, (12) parasitology, (13) respiratory system, (14) sensory organs, (15) diagnostic 
agents, and (16) various. 
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pipelines (late stage of drug pipelines). Z  represents the column vector of control 

variables, and   is the row vector of corresponding parameters. Finally, i  shows a 

fixed effect for firm i , t  represents year dummies, and it  is an error term. 

 This specification raises concerns about possible endogeneity due to reverse 

causality: Drug pipelines influencing a firm’s license are themselves influenced by the 

firm’s licensing activity
10

. In order to cope with the endogeneity, we will use the 

fixed-effect GMM. GMM is an extremely general framework because an error term is not 

assumed to be ... dii  Instrumental variables should correlate with drug pipelines but be 

exogenous to the dependent variable. We use both one-year and two-year lagged 

variables of drug pipelines as instruments because they are assuredly correlated with 

present drug pipelines but they are not presumably correlated with present licensing 

decisions. The J-test supports the validity of the instrumental variables
11

.  

 

Drug pipelines and the portfolio effect 

We examine the portfolio effect on licensing by using three different specifications. As a 

first step, we employ regressions with either the total number of license-outs (out_total) 

or the total number of license-ins (in_total) as a dependent variable. The total number of 

drug candidates (p_total) is a key independent variable. That is, 

.)_( 

_

or       
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Second, we use a stage-specific number of licensing (out_early, out_late, 

in_early, or in_late) as a dependent variable. Then we incorporate both the number of 

drug candidates at the early stage (p_early) and that of drug candidates at the late stage 

(p_late) as independent variables reflecting the state of pipelines. That is, 

                                                   
10 According to the Pharmaproject data, a licensed drug candidate in a certain year is included in the drug 

pipeline in the same year. Therefore, this could partially offset the true negative correlation between 

license-ins and drug candidates in the same year. 
11  According to Kleibergen-Paap rk LM statistics (Kleibergen and Paap, 2006), the null of a weak 

instrument is significantly rejected. If we use three-year lagged variables as instruments, weak instruments 

are detected. Thus, we determined that the combination of one-year and two-year lagged variables of 
instruments is suitable for our estimation. 
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where subscript E  ( L ) indicates that licensing occurs at the early stage (late stage); 

meanwhile, superscript e  ( l ) indicates that a corresponding explanatory variable is the 

number of drug candidates at the early stage (late stage). 

Finally, as alternative independent variables for drug pipelines, we incorporate 

the measures of innovative productivity, as mentioned in Section 3.2. We define the 

innovative productivity at the early stage as the number of drug candidates at the early 

stage divided by patent stocks (i.e., stockpatearlyp __ / )
12

. We employ a conventionally 

used measure of patent stock ( stockpat_ ) as a proxy for the research expenditure at the 

early stage (Lach, 1995). In pharmaceutical research, a patent should be filed relatively 

early in the drug discovery process, probably due to low imitation costs. Therefore, patent 

stock can be regarded as the research input at the drug discovery stage.  

Similarly, we define the state of pipelines by the number of drug candidates at 

the late stage divided by the number of drug candidates at the early stage (i.e., 

earlyplatep __ / ). We introduce stockpatearlyp __ /  and earlyplatep __ /  as independent 

variables, and the stage-specific number of licensing ( earlyout_ , lateout_ , earlyin_ , or 

latein_ ) as a dependent variable as follows: 
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and 

                                                   
12 We collected pharmaceutical patent applications defined by IPC: A61K. Patent stock is constructed 

following the conventional method in the literature. See, for example, Lach (1995). We used a 20% 
knowledge depreciation rate. 
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4.3. Control variables 

We adopted three types of controls in regressions, firm size, therapeutic diversity, and 

competitors in both R&D and the product market, as mentioned in Section 3.5. We briefly 

describe our variable construction methods below.
 13

 

 

Firm size 

Firm size can be regarded as the proxy for complementary assets. We employed drug 

sales (sales) representing a firm size. We used the Corporate Goods Price Index (GCPI, 

Bank of Japan) as a deflator of drug sales given 2000 as a base year.  

 

Therapeutic diversity 

We defined the therapeutic diversity index of sales (scope). We classified drug sales into 

16 therapeutic fields according to the ATC, and calculated the Herfindahl index (H) based 

on the sales share. Then we defined the diversity index as H/1 .  

 

R&D and market competition 

We constructed two types of competition indices either at the clinical testing stage (i.e., 

from pre-clinical to phase III) or at the product market stage (i.e., at the PMS stage). We 

constructed the competition index at the clinical stage (comp_develop) using the 

Herfindahl index weighted by the number of drug candidates. In a similar way, we 

defined the competition index at the product market stage (comp_market) by the 

Herfindahl index weighted by drug sales of the 16 ATC categories. Table 3 summarizes 

variable definitions and basic statistics. 

 

                                                   
13 See the Appendix for more detail regarding variable constructions on therapeutic diversity as well as 

either R&D or market competition. In unreported regressions, we employed sales growth as an additional 

explanatory variable, since this could be a mitigating factor against the rent dissipation effect (see Fosfuri, 

2006). However, we could not obtain any significant results on this variable. Therefore, we omitted a sales 
growth variable in the present study. 
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[Insert Table 3 around here] 

 

 

5. Estimation results 

 

We present our estimation results in the order of the three sets of empirical specifications. 

Note that, in the previous section, we defined three measures of drug pipelines: (i) the 

aggregate number of drug candidates across stages (p_total), (ii) the stage-specific 

number of drug candidates (p_early and p_late), and (iii) the relative numbers of drug 

candidates between adjacent stages ( stockpatearlyp __ /  and earlyplatep __ / ). 

Correspondingly, we defined dependent variables as out_total and in_total for the first 

definition, and out_early, out_late, in_early, and in_late for the second and third 

definitions.  

 

5.1. Aggregate number of drug candidates across stages 

Table 4 presents the estimation results with the total number of outward licenses 

(out_total) and inward licenses (in_total) as dependent variables. Independent variables 

are the total number of drug pipelines (p_total), real drug sales (sales), therapeutic 

diversity (scope), competition indexes (comp_develop and comp_market), and year 

dummies (d_year). The variable p_total is regarded as endogenous, thereby the 

combination of one-year and two-year lagged variables is used as an instrument in 

fixed-effect GMM. 

 

[Insert Table 4 around here] 

 

 The most interesting outcome of Table 4 is that the total number of drug 

pipelines has a significant impact on outward and inward licensing in opposite directions. 

That is, the coefficient of the total number of drug candidates (p_total) is positive for the 

total number of license-outs (out_total) at the 5% significance level, whereas it is 

negative for the total number of license-ins (in_total) at the 1% significance level
14

. The 

                                                   
14 Concerns about multicollinearity between sales and p_total led us to exclude either one of these variables, 
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negative relationship between drug pipelines and inward licensing is consistent with the 

results found in Higgins and Rodriguez (2006) and Danzon et al. (2007).  

 Most control variables have no significant impact on licensing except for sales 

and comp_develop. The coefficient of sales is positive for the total number of inward 

licenses (in_total) at the 1% significance level. This indicates that a large firm is eager to 

engage in license-ins, possibly for the purpose of maintaining existent complementary 

assets. Competition at the development stage (comp_develop) has a positive impact on 

the total number of license-outs (out_total) at the 5% significance level.  

 

5.2. Stage-specific number of drug candidates 

Next, we employed the second empirical specification of stage-specific determinants of 

license-outs and license-ins at either the early or the late stage. Table 5 shows estimation 

results. The dependent variables are out_early, out_late, in_early, and in_late. We used 

the number of drug candidates both at the early stage (p_early) and at the late stage 

(p_late) as our key independent variables in this specification. Control variables are the 

same as the ones in Table 4.  

 

 [Insert Table 5 around here] 

 

License-outs 

Equations (1) and (2) in Table 5 present the determinants of license-outs at the early stage 

and late stage, respectively. First, we found that out_early in Eq. (1) positively correlated 

with p_early but negatively correlated with p_late. This combination of the opposite 

signs of the pipeline variables is consistent with our prediction in Table 2, indicating the 

presence of the portfolio effect on outward licensing at the early stage. 

 Next, in Eq. (2) in Table 5, the coefficient of p_late is negative and significant 

but the one for p_early has no significant impact on out_late. These results are not 

consistent with our prediction regarding the portfolio effect. One possible reason is that 

license-outs at the late stage may be subject to much a stronger rent dissipation effect than 

at the early stage. That is, license-outs at the late stage can induce fiercer competition in 

                                                                                                                                                     
although the estimation results showed the same signs with a virtually similar significance level as those of 
our basic model above. 
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the near future due to a much shorter gestation lag of clinical tests for the drug candidates. 

Another possible reason is that a firm with a large number of drug candidates at the late 

stage already owns large complementary assets, so that it has to maintain and efficiently 

use the downstream assets instead of licensing drug candidates outward. 

 Furthermore, from Tables 4 and 5, we obtained the positive although weakly 

significant relationship between the frequency of outward licensing and the degree of 

competition at the development stage (comp_develop). This indicates that, with many 

competing drugs at the development stage, it would be difficult to appropriate the 

technologies of a relevant therapeutic field from other competitors and potential licensees. 

Accordingly, the expected return of a drug candidate in the future would be lower. In 

these circumstances, the revenue effect may outweigh the rent dissipation effect so that a 

pharmaceutical firm will likely be more inclined to license-out drug candidates (Arora 

and Fosfuri, 2003). 

 

License-ins 

Equations (3) and (4) in Table 5 summarize the determinants of license-ins at the early 

stage and late stage, respectively. First, what we found significant was that in_late in Eq. 

(4) positively correlated with p_early whereas it negatively correlated with p_late. The 

combined result of the opposite signs indicates the presence of the portfolio effect on 

inward licensing at the late stage. Moreover, the coefficient of sales is significantly 

positive on in_late. This indicates that larger downstream complementary assets would 

facilitate inward licensing at the late stage. 

With regard to in_early in Eq. (3) in Table 5, the coefficient of p_early is weakly 

significant and negative as expected, while the coefficient of p_late is not significant. 

Thus, although fewer drug candidates at the early stage may accelerate license-ins at the 

early stage, the attrition of drug candidates at the late stage rather stimulates license-ins at 

the late stage, as shown in Eq. (4).  

 

5.3. Relative numbers of drug candidates between adjacent stages 

For the purpose of a robustness check, we further employed the third empirical 

specification with relative numbers of drug candidates between two adjacent stages as 

alternative variables for drug pipelines. We incorporated the two innovative measures 
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defined in Section 3.2 as p_early / pat_stock and p_late / p_early into the third 

specification. Table 6 shows the estimation results. 

 

[Insert Table 6 around here] 

 

License-outs 

Equations (1) and (2) in Table 6 present the determinants of license-outs at the early stage 

and late stage, respectively. First, in Eq. (1) we found that the dependent variable 

( earlyout_ ) positively correlated with the innovative performance at the early stage 

( stockpatearlyp _/_ ), while it negatively correlated with the innovative performance at 

the late stage ( earlyplatep _/_ ). The combined result of the opposite signs in Eq. (1) for 

pipeline variables indicates the presence of the portfolio effect on license-outs at the early 

stage, similar to the previous specification.  

Next, in Eq. (2) in Table 6, the coefficient of stockpatearlyp _/_  is negative and 

significant but the coefficient of earlyplatep _/_  has no significant impact on out_late. 

Although the negative coefficient of stockpatearlyp _/_  is expected in Table 2, these 

results from Tables 5 and 6 suggest that the portfolio effect for license-outs is not 

significant at the late stage.  

 Finally, we obtained weakly significant coefficients for comp_develop in both 

Eqs. (1) and (2) in Table 6. Recall that the coefficients of comp_develop are also weakly 

significant and positive in Tables 4 and 5. Therefore, competition at the development 

stage possibly stimulates license-outs. A possible reason is that, as suggested before, the 

revenue effect outweighs the rent dissipation effect so that license-outs of drug candidates 

become increasingly active. 

 

License-ins 

Equations (3) and (4) in Table 6 show the determinants of license-ins at the early stage 

and late stage, respectively. First, in_late in Eq. (4) positively correlated with 

stockpatearlyp _/_ , whereas it negatively correlated with earlyplatep _/_ . The opposite 

correlations indicate the presence of the portfolio effect on inward licensing at the late 

stage. In addition, the coefficient of sales is significantly positive on in_late in the same 
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way in Table 5. 

Concerning in_early in Eq. (3) in Table 6, the coefficient of stockpatearlyp _/_  

is weakly significant and negative as expected, while the coefficient of earlyplatep _/_  is 

not significant. This is virtually the same as the results shown in Table 5.  

 

 In sum, we found that the Japanese pharmaceutical companies evened out drug 

pipelines by licensing-out at the early stage and by licensing-in at the late stage. It is safe 

to say that licensing is a significant means of smoothing the state of drug pipelines across 

stages, even though license-outs at the late stage may be influenced by the rent dissipation 

effect and license-ins at the late stage will be affected by complementary assets. 

 

 

6. Conclusions 

 

The present paper examined a portfolio effect, namely, how a portfolio of drug candidates 

affected stage-specific licensing by the Japanese pharmaceutical companies. We 

classified the timing of licensing and drug pipelines into an early and a late stage for the 

purpose of examining stage-specific incentives to license, which have not been fully 

explored in previous studies.  

 Our empirical results are summarized as follows. The state of drug pipelines 

significantly affected licensing decisions at the early and late stages even when we 

controlled for firm size, therapeutic diversity, and the degree of competition. In particular, 

the Japanese pharmaceutical companies leveled off drug pipelines by either license-outs 

at the early stage or license-ins at the late stage. That is, the number of drug candidates at 

the early stage positively correlated with license-outs (license-ins) at the early stage (late 

stage). Further, the number of drug candidates at the late stage negatively correlated with 

license-outs (license-ins) at the early stage (late stage). The combined results of the 

opposite impacts of the pipeline on licensing indicate that licensing plays a significant 

role in smoothing out the state of drug pipelines across stages. 

 In contrast, we could not find a significant impact of the portfolio effect on 

license-outs at the late stage. A possible reason is that the rent dissipation effect 
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dominates the portfolio effect at the late stage. Another possible reason is that a large 

number of drug candidates at the late stage would require a large size of complementary 

assets, so that it was preferable to maintain and efficiently use the downstream assets to 

license-out drug candidates. With respect to license-ins at the early stage, the exhaustion 

of drug candidates at the late stage stimulated license-ins at the late stage, although fewer 

drug candidates at the early stage accelerated license-ins at the early stage. 

 This paper contributes to the literature in several ways. Most previous empirical 

studies focused on the determinants of license-outs, mainly referring to complementary 

assets and revenue and/or the rent dissipation effect. The present paper, however, 

considered explicitly how an R&D portfolio of drug pipelines affected licensing 

decisions, controlling for firm size, therapeutic diversity, and competitors in R&D and 

product markets. Furthermore, we examined both outward and inward licensing. Thus, 

our analysis offers a more complete and clear picture of a firm’s involvement in markets 

for technology. 

 This paper has several limitations. First, our dataset consisted of licensing 

contracts of drug candidates. The present study did not use information on other types of 

licenses, such as research tools and biotechnologies. These restrictions may 

underestimate the growing role of technology markets in pharmaceutical R&D.  

 Second, we did not consider the economic value of a licensing contract. The 

value of a drug candidate differs significantly according to licensing stage and potential 

market size. However, the changing features of option values at different stages would 

demand further information on therapeutically distinctive market conditions and may 

require a more complicated exploration strategy. 

 Finally, we could not introduce pairwise controls of the characteristics of 

licensors and licensees, as was done by Kim and Vonotras (2006), mainly due to data 

restrictions. This requires broader and more comprehensive data collection. It is natural to 

consider license-ins and license-outs to be jointly determined by a pharmaceutical firm. 

Therefore, it is desirable to estimate simultaneously the determinants of license-ins and 

license-outs. This remains to be examined in future empirical research. 
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Appendix:  

Variable construction on therapeutic diversity and competition indexes 
 

Therapeutic diversity 

We calculate sales share iktT  in each of the 16 therapeutic fields of ATC, 

 
k

iktT 1 

where k represents a therapeutic field (1, 2, …, K), i is a firm (1, 2, …, N), and t denotes 

the year. Then, we construct the therapeutic diversity of the firm, scope, using the 

Herfindahl index of
  

k

itikt HT 2 , as follows. 

it

it
H

scope
1



.

 

 

The degree of competition in R&D 

First, we calculate the competition index at the development stage, comp_develop, as 

follows. We calculate the share of drug candidates across firms, iktX , in each of the 16 

therapeutic fields of ATC.  

 
i

iktX 1   

where k represents a therapeutic field (1, 2, …, K), i is a firm (1, 2, …, N), and t denotes 

the year. Thereafter, we create the diversity index ktC  in each therapeutic field through 

the Herfindahl index  
i

ktikt AX 2 , that is, 

kt

kt
A

C
1



.

 

Finally, we obtain the competition index in R&D, comp_develop, based on iktX  and ktC  

as follows: 

._ kt

k

iktit CXdevelopcomp 
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The degree of competition in product market  

Next, we calculate sales share iktS  in each of the 16 therapeutic fields of ATC.  

 
i

iktS 1   

where k represents a therapeutic field (1, 2, …, K), i is a firm (1, 2, …, N), and t denotes 

the year. Thereafter, we create the diversity index ktD  in each therapeutic field through 

the Herfindahl index  
i

ktikt BS 2 , that is, 

kt

kt
B

D
1



.

 

Finally, we obtain the competition index in the product market, comp_market, based on 

iktS  and ktD  as follows: 

._ kt

k

iktit DSmarketcomp 
 

 

Thus, the competition index of comp_market is defined using the Herfindahl index ktB

weighted by drug sales iktS in 16 ATC therapeutic markets.  
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Figures and Tables 
 

Figure 1 
Drug innovation process and corresponding licensing stages 

 
Note: The upper part of the figure shows the innovation process from drug discovery to post-market 

surveillance. The lower part of the figure depicts the authors’ classification of drug pipelines. See the text 

for more detail. 

 

 

 

  

Discovery Pre-clinical Phase-1 Phase-2 Phase-3
Pre-

registration
Registration Post-market

 

Early stage 

 

Late stage 
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Figure 2 

Number of licenses with foreign and domestic partners by pharmaceutical firms in Japan 

 

 
Data source: Asuno Shinyaku, Technomics, Inc. 
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Table 1 
Stage-specific licensing: Annual average number of licenses per firm from 1997 to 2007 

 
Note: Standard deviations are given in parentheses. 

Data source: Asuno Shinyaku, Technomics, Inc. 
 

Firm size

(billion yen)

Number

of firms
Total Early stage Late stage Total Early stage Late stage

Large 2.19 0.85 1.35 0.79 0.24 0.55

sales≧400 (1.79) (0.98) (0.64) (1.10) (0.55) (0.33)

Medium 0.74 0.37 0.37 0.88 0.40 0.48

400＞sales＞100 (0.82) (0.59) (0.34) (1.07) (0.63) (0.42)

Small 0.62 0.29 0.33 0.50 0.23 0.27

100≧sales (0.92) (0.62) (0.32) (0.88) (0.53) (0.35)

0.83 0.38 0.46 0.63 0.27 0.35

(1.14) (0.69) (0.39) (0.98) (0.56) (0.37)
Total 54

License-ins License-outs

8

14

32
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Table 2 

Portfolio effect on license-out and license-in 

 
 

 
  

Early stage Late stage Early stage Late stage

Innovative productivity

at the early stage
＋ － － ＋(?)

Innovative productivity

at the late stage
－ ＋(?) ＋ －

License-out License-in
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Table 3 
Definition and basic statistics of variables (units: 54 firms, year: 1997–2007) 

 
Note 1: See section 2.1 for the division of licensing and pipeline stages. 

Note 2: See section 4.3 and the Appendix for the detailed definition of therapeutic diversity and competition 

indexes. 

  

Variable Definition Obs Mean Std. Dev. Min Max

License-outs Number of outward licensing

  out_total      Total number 524 0.63 0.94 0 5

  out_early      Early stage 524 0.27 0.57 0 3

  out_late      Late stage 524 0.35 0.68 0 4

License-ins Number of inward licensing

  in_total      Total number 524 0.83 1.14 0 8

  in_early      Early stage 524 0.38 0.69 0 5

  in_late      Late stage 524 0.46 0.80 0 5

R&D Pipeline

  p_total Total number of drug pipelines 524 28.65 24.24 0 165

  p_early Drug pipelines at the early stage 524 5.75 5.71 0 36

  p_late Drug pipelines at the late stage 524 22.90 19.92 0 133

  pat_stock Patent stock (20% depreciation rate) 513 83.00 99.78 0 632.56

  p_early / pat_stock p_early  divided by pat_stock 506 0.13 0.12 0.01 1.33

  p_late / p_early p_late  divided by p_early 524 4.05 3.17 0 26

Controls

  sales Real drug sales (hundred billion yen in 2000) 501 1.48 2.12 0.02 15.09

  scope Therapeutic diversity index in drug sales 491 3.32 1.51 1.00 7.73

  comp_develop Competition index at the development stage 504 15.28 4.09 4.71 27.97

  comp_market Competition index at the product market 491 17.58 4.07 5.37 29.38
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Table 4 

Estimation result of aggregate number of drug candidates across stages 

 
Note 1: *** 1%, ** 5% 

2: Robust standard errors are given in parentheses. 

3: Instrumented: p_total. Instruments: One- and two-year lagged p_total. 

 
 

  

out_total in_total

R&D Pipeline

0.012** －0.078***

(0.006) (0.029)

Controls

－0.100 0.826***

(0.062) (0.221)

0.083 0.181

(0.054) (0.199)

0.060** －0.051

(0.029) (0.045)

0.053 －0.347

(0.055) (0.265)

　　　 d_year yes yes

Number of observations 359 359

Number of groups 47 47

Hansen J statistics
0.363

(p = 0.547)

1.248

(p = 0.264)

　　　 p_total

　　　 sales

　　　 scope

　　　 comp_develop

　　　 comp_market
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Table 5 
Estimation results of stage-specific number of drug candidates 

 
Note 1: *** 1%, ** 5%, * 10%. 

2: Robust standard errors are given in parentheses. 

3: Instrumented: p_early and p_late. Instruments: One- and two-year lagged p_early and p_late. 

 

  

(1) (2) (3) (4)

out_early out_late in_early in_late

R&D Pipeline

0.092*** 0.048 －0.058* 0.100***

(0.034) (0.031) (0.036) (0.036)

－0.049* －0.071** －0.030 －0.081***

(0.029) (0.033) (0.028) (0.030)

Controls

0.099 0.227 0.215 0.661***

(0.152) (0.138) (0.182) (0.201)

0.153* 0.138 0.014 0.193*

(0.089) (0.116) (0.097) (0.117)

0.021* 0.024* －0.003 －0.021

(0.013) (0.015) (0.027) (0.037)

0.011 －0.014 －0.121 －0.087

(0.056) (0.067) (0.101) (0.090)

　　　 d_year yes yes yes yes

Number of observations 359 359 359 359

Number of groups 47 47 47 47

Hansen J statistics
1.922

(p = 0.369)

0.210

(p = 0.900)

2.437

(p = 0.295)

0.861

(p = 0.650)

License-outs License-ins

　　　 p_early

　　　 p_late

　　　 sales

　　　 scope

　　　 comp_develop

　　　 comp_market
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Table 6 
Estimation results of relative numbers of drug candidates between adjacent stages 

 
Note 1: *** 1%, ** 5%, * 10%. 

2: Robust standard errors are given in parentheses. 
3: Instrumented: p_early / pat_stock and p_late / p_early. Instruments: One- and two-year lagged p_early / 

pat_stock and p_late / p_early. 

 

 

 
 

 

(1) (2) (3) (4)

out_early out_late in_early in_late

R&D Pipeline

2.729** －2.437* －2.648* 3.037**

(0.136) (1.400) (1.566) (1.524)

－0.068** －0.070 －0.025 －0.099**

(0.032) (0.056) (0.046) (0.040)

Controls

0.001 0.004 0.023 0.440***

(0.066) (0.076) (0.176) (0.171)

0.080 0.142 0.076 0.152

(0.106) (0.128) (0.120) (0.118)

0.034* 0.035* 0.006 －0.016

(0.020) (0.020) (0.032) (0.036)

－0.046 －0.013 －0.076 －0.143

(0.063) (0.079) (0.093) (0.109)

　　　 d_year yes yes yes yes

Number of observations 350 350 350 350

Number of groups 46 46 46 46

Hansen J statistics
2.577

(p = 0.275)

3.803

(p = 0.163)

2.264

(p = 0.322)

1.286

(p = 0.525)

　　　 scope

　　　 comp_develop

　　　 comp_market

License-outs License-ins

　　　 p_early / pat_stock

　　　p_late / p_early

　　　 sales


