MATHEMATICS

On the mean summability by Cesaro (C, a) and Abel-Poisson methods of trigonometric Fourier series in the weighted Lorentz spaces

D. M. Israfilov¹, V. Kokilashvili², Y. E. Yildirir³

Abstract

In the paper the classical results on the mean convergence and summability of trigonometric Fourier series are extended to the weighted Lorentz spaces. 2000 Mathematics Subject Classification: 46E30.

Keywords and phrases: Fourier series, Cesaro means, Abel Poisson means, weighted Lorentz spaces.

Let T be the interval $(-\pi, \pi)$. In the theory of trigonometric Fourier series it is well known (see, [1]) that Cesaro and Abel-Poisson means converges in $L^p(T)$ $(1 \le p \le \infty)$. The problem of mean summability in weighted Lebesgue spaces has been investigated in [2], [3] in the frame of A_p classes.

In the present paper we study the mean summability problems in weighted Lorentz spaces. Let f be 2π -periodic measurable function. Then let w be 2π -periodic nonnegative integrable on T. The last functions are called as weights. For the Borel set e by

$$we = \int_{a} w(x)dx$$

we denote the Borel measure generated by the function w. For the function f consider its non-increasing rearrangement with respect to measure w;

$$f^{*}(t) = \sup\{s \ge 0 : w(x \in T : |f(x)| > s) > t\}$$
 (1)

Then consider the average of f^* :

$$f^{**}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(y) dy.$$
 (2)

It is easy to see that $f^*(t) = 0$, when $t > 2\pi$. Let 1 < p, $s < \infty$. The weighted Lorentz space $L_w^{ps}(T)$ is defined as the set of all measurable functions f, for which

$$||f||_{L_w^{ps}} = \left(\int_0^{2\pi} \left(f^{**}(t) t^{1/p}\right)^s \frac{dt}{t}\right)^{1/s} < \infty.$$
 (3)

It is known, that $L_w^{ps}(T)$ is a Banach space (see, example e. g. [4]).

Let $f \in L^1(T)$ and

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (4)

Department of Mathematics, Faculty of Art and Science, Balikesir University, 10100 Balikesir, Turkey, mdaniyal@balikesir.edu.tr ²A. Razmadze Mathematical Institute Georgian Academy of Sciences,0193 Tbilisi, M.Alexidze 1,Georgia, kokil@rmi.acnet.ge

³Department of Mathematics, Faculty of Art and Science, Balikesir University, 10100 Balikesir, Turkey, yildirir@balikesir.edu.tr

be the Fourier series of function $f \in L^1(T)$. Let

$$\sigma_n^{\alpha}(x, f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) K_n^{\alpha}(t) dt, \quad \alpha > 0$$
 (5)

when

$$K_n^{\alpha}(t) = \sum_{k=0}^n \frac{A_{n-k}^{\alpha-1} D_k(t)}{A_n^{\alpha}},$$

with

$$D_k(t) = \frac{\sin\left(k + \frac{1}{2}\right)t}{2\sin\frac{1}{2}t}$$

and

$$A_n^{\alpha} = \binom{n+\alpha}{n} \approx \frac{n^{\alpha}}{\Gamma(\alpha+1)}.$$

Definition. A weight function w is said to be of class A_o if

$$\sup \frac{1}{|I|} \int_I w(x) dx \left(\frac{1}{|I|} \int_I w^{1-p'}(x) dx \right)^{p-1} < \infty,$$

where the least upper bound is taken over all intervals I, the length of which are not greater than 2π .

Let

$$\widetilde{f}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i(x-t)}) ctg \frac{t}{2} dt$$

and

$$Mf(x) = \sup_{h>0} \frac{1}{2h} \int_{x-h}^{x+h} |f(t)| dt.$$

In the sequel we need the following two statements.

Proposition 1. Let 1 < p, $s < \infty$. Then the operator f is bounded in L_w^{ps} if and only if $w \in A_v$.

Proposition 2. Let 1 < p, $s < \infty$. Then the operator M is bounded in L_w^{ps} if and only if $w \in A_p$.

For the proof of these Propositions see [4] and [5].

Let

$$\sum_{n=1}^{\infty} (a_n \sin nx - b_n \cos nx)$$
 (6)

be the conjugate series to the Fourier series (4). Let $S_n(x, f)$ and $\widetilde{S}_n(x, f)$ denote the partial sums of (4) and (6) respectively.

Theorem 1. Let $1 and <math>w \in A_p$. Then we have

$$i\lim_{n\to\infty} ||S_n(\cdot, f) - f||_{L_w^{ps}} = 0$$

and

$$ii$$
 $\lim_{n\to\infty} \left\| \tilde{S}_n(\cdot, f) - f \right\|_{L^{ps}} = 0.$

The proof of Theorem is similar as in classical case for L^p spaces, basing on Proposition 1 (see, [1]).

Theorem 2. Let $1 < p, s < \infty$ and let $w \in A_p$. Then

$$\lim_{n\to\infty} \|\sigma_n^{\alpha}(\cdot, f) - f\|_{L_w^{ps}} = 0, \quad 0 < \alpha \le 1.$$

For $0 \le r < 1$ let

$$U_r(x, f) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) r^n$$

be the Abel-Poisson means of function f .

Theorem 3. Let 1 < p, $s < \infty$ and let $w \in A_p$. Then

$$\lim_{r \to 1} ||U_r(\cdot, f) - f||_{L_u^{pr}} = 0.$$

Note that from Proposition 2 and the following estimates (see, [1])

$$\sup_{0 \le r \le 1} |U_r(x, f)| \le cMf(x)$$

and for positive functions f

$$c_1 M f(x) \le \sup_{0 \le r \le 1} |U_r(x, f)|$$

we conclude

Proposition 3. Let $1 < p, s < \infty$. Then the operator

$$Nf(x) = \sup_{0 \le r \le 1} |U_r(x, f)|$$

is bounded in L_w^{ps} if and only if $w \in A_p$.

Proposition 4. Let 1 < p, $s < \infty$ and let $w \in A_p$. Then the operator

$$f \to \sup_{n \ge 1} |\sigma_n^{\alpha}(\cdot, f)|$$

is bounded in L. ..

The last Proposition follows from the known estimate (see [1])

$$\sup_{n\geq 1} |\sigma_n^\alpha(x,\ f)| \leq cMf(x)$$

and the Proposition 2.

The proof of Theorem 2. Let us consider the sequence of operator

$$U_n: f \rightarrow \sigma_n^{\alpha}(\cdot, f), \quad n = 1, 2,$$

Let us show that each U_n is linear and bounded in L_w^{ps} . The linearity is clear. Applying the estimate

$$K_n^{\alpha}(t) < 2n$$

we get

$$\|\sigma_n^{\alpha}(\cdot, f)\|_{L^{ps}_w} \le c_n \left\| \int_{-\pi}^{\pi} |f(t)| dt \right\|_{L^{ps}_w}.$$

But using the generalized Holder's inequality for L_w^{ps} (see e.g. [5]) we get

$$\int_{T} |f(t)| dt \le ||f||_{L_{w}^{ps}}, ||l||_{L_{w}^{p's'}} \le c ||f||_{L_{w}^{ps}}.$$

Thus the operator U_n is bounded for each n. On the other hand by Proposition 4, the sequence of operator norms

$$||U_n||_{L_w^{ps} \to L_w^{ps}}$$

is bounded.

The set of continuous functions is dense in L_w^{ps} and the Fourier series of continuous functions on the real line converges uniformly to f. Thus the Cesaro means of continuous functions converges in the norm L_w^{ps} . Applying the Banach-Steinhaus theorem we conclude that we have the (C, α) summability for arbitrary function $f \in L_w^{ps}$.

Theorem is proved.

References

- A. Zygmund, Trigonometric Series, Vol 1, Cambridge University Press, 2nd edition, Cambridge 1959.
- [2] M. Rosenblum, Summability of Fourier series in L^p(dμ), Trans. Amer. Math. Soc., 165 (1962), 32-42.
- [3] A. P. Nakhman and B. P. Osilinker, The estimates of weighted norms generated by multiple trigonometric Fourier series. Izv. Vissh. Ucheb. Zav. No. 4(239), 1982, 39-55.
- [4] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz Spaces, World Scientific, Singapore, 1991.
- [5] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight Theory for Integral transforms on Spaces of Homogeneous Type. Addison Wesley Longman Limited, 1998.
- (1) and (3): Department of Mathematics, Faculty of Art and Science, Balikesir University, 10100 Balikesir, Turkey

E-mail: mdaniyal@balikesir.edu.tr, yildirir@balikesir.edu.tr

(2): A. Razmadze Mathematical Institute Georgian Academy of Sciences,0193 Tbilisi,M. Alexidze 1, Georgia

E-mail: kokil@rmi.acnet.ge