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Abstract

Real Options for Project Schedules (ROPS) has three nexzsinpling/optimization shellsAn outer
Adaptive Smulated Annealing (ASA) optimization shell optimizes parameters of gicatBlans
containing multiple Projects containing ordereabks. Amiddle shell samples probability distuifions

of durations of @&sks. Aninner shell samples probability distributions of costs agk. RTHTREE is

used to deglop options on schedules. Algorithms used for Trading in Risk Dimensions (TRD) are
applied to deelop a relatve lisk analysis among projects.
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1. Introduction

This paper is a brief description of a methodology eEldging options (in the sense of financial options,
e.g., with all Greeks defined below) to schedule comptejects, e.g., such as the maesuUS Army
project Future Combat Systems (FCS).

The major focus is to #&elop Real Options for non-financial projects, as discussed in other earlier
papers [3,5,19].Data and some guidance on its use has been reported micugprstudy of FC$,6].

The need for tools for fairly scheduling and pricing such a commieject has been emphasized in
Recommendations for Erutive Action in a report by the U.S. General Accountindif (GAO) on

FCS [21], and theaso emphasize the need for management of FCS business plans [20,22].

The concept of Real Options is the subject of yngapers. Som@apers gie good advice on he to

apply these toolpt,23,24]. Someauthors also note potential dangers in not taking into account
unintended consequences of using Real Options in corporatgissdtd. The approach gen is this

paper includes important optimization and options algorithms not present in previous papers, and a
process of agggeting tasks to permit top-kel control of projects, which enablesvdopment of more

real Real Options.

2. Goals
A given Fan results inS(t), mong alocated by the client/gernment is defined in terms of Projects

S(t),
S(t) = .Z S(t) 1)

wherea;(t) may be some scheduled constraifPATHTREE processes a probability treevgleped wer

the life of the plarT, divided intoN nodes at timeét,}, each with mean epoch length [17]. Options,
including all Greeks defined belp familiar to fnancial markets, are calculated for quite arbitrary
nonlinear means and variances of multipli@tivise [7,11]. Options are calculated aspected alues

along stochastic paths of their underlying neask and the Greeks are functional iives of these
options. Thisenables fair pricing of expectedlues of a marketver extended periods and including
changes to underlyingaviables that can occur along these stochastic paths. The ability to process
nonlinear functions defining probability distributions is essential for real-world applications.

Each Task has a range of durations, with non2gravith a disbursement of funds used,idefg S (t,).
Any Task dependent on a Task completion igesldo its precursor(s).

We cevdop the Plan conditional probability density (CPD) in terms of differenced @$ts,
P(S+dS;t, + dt|S; t,)
P is nodeled/cast/fit into the functional form

1
P(S+dS;t, + dt|S; t,) = (2mg?dt) 2 exp(—Ldt)

_(dS- fdt)?
= egd?) @

where f andg are nonlinear function of co§and timet. The g2 variance function absorbs the multiple
Task cost and schedule statistical spreads, to deterR(d® t), giving rise to the stochastic nature of
dollars spent on the Plan.

A given Projecti with Taskk has a mean duratiagp, with a a mean cos§,. The spread S has tvwo
components arising from: (1) a stochastic duration around the mean duration, and (2) a stochastic spread
of mean dollars around a deterministic digement at a gen time. Different finite-width asymmetric
distributions are used for durations and cosEx example, the distribution created for Adagti
Simulated Annealing (ASA) [9], originally calledeYy Fast Simulated Re-annealing [8], iSraté-ranged
distribution with shape determined by a parameter “temperature”



Lester Ingber -3- Real Options for Project Schedules (ROPS)

1

ASA(x; Q) = 3

2|+ o) In(1+ ;)

For each state (whether duration or cost): (a) A random binary choice can be made to be higher or lo
than the mean, using yamatio of probabilities selected by the client. (b) Then, an ASA distribution is
used on the chosen sidBach side has a €i#rentq, each falling of from the mean. This is illustrated
and further described in Fig. 1.

6

1/(2 * (abs(x) + 0.01) * log(1 + 1/0.01)) ——
1/(2 * (abs(x) + 0.1) * log(1 + 1/0.1)) --------
1/(2 * (abs(x) + 1.0) * log(1 + 1/1.0)) -

I

0—l -0.5 0 0.5 1

Fig. 1. The ASA distribtion can be used to ddop finite-range asymmetric distriions
from which a alue can be chosen for avgi gate of duration or cost(a) Arandom binary
distribution is selected for aveer-than or higher-than mean, usingyaatio of probabilities
selected by the clientzach side of the mean has its own temperajurdere ASA distrill-
tions are gien forq={0.01, 0.1, 1.p. The range can be scaled tg/ dimite interval and the
mean placed within this rangdgb) A uniform random distribution selects alwe from
[-1,1], and a normalized ASA value is reafifafr the gven gate.

At the end of the tree at a tinTe(T also can be a parameter), there is a total cost at eachS(ibge
called a final “strike” in financial language. (A final skikight also appear at gmode before T due to
cancellation othe Project using a particular kind of schedule alteredtiWorking backvards, options
are calculated at timg,. Greeks defined belo assess sensitivity to variousnables, e.g., lik those

discussed in previous papers [19], but here wevatefirecise numbers based on as much realdv
information as is\ailable.

3. Data

The following data are used tovdop Plan CPD. Each Taskas
(a) a Projected allocated co&f,
(b) a Projected time schedule,
(c) a CPD with a statistical width of funds spesw/s
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(d) a distribution with a statistical width of duratidVyr.
(e) arange of duration&y.
(f) a range of costdys
Expert guesses need to be provided for (c)-(f) for the prototype study.

A given Fan must be constructed among all Tasks, specified the ordering of Tasks, e.g., obgying an
sequential constraints among Tasks.

4. Three Recursie Shells

4.1. OuterShell

There may be seral parameters in the Project, e.g., asfcaehts of variables in means ararances of
different CPD. These are optimized in an outer shell using [@BAThis end product, including
MULTI_MIN states returned by ASA,\gis the client fleibility to apply during a full Projedtl9]. We
may wish to minimize Cosk/, or (CostOverrun - Costlnitial}/, ec.

4.2. Middle Shell

To dbtain the Plan CPD, an middle shell of Monte Carlo (MC) states are generated fromveecursi
calculations. AWeibull or some other asymmetric finite distribution might be used &skTdurations.

For a gven date in the outer middle, a MC state has durations and mean cassdigients defined for
each Task.

4.3. Inner Shell

At each time, for each Task, the fdienced cos{(S(t + dt) — S (t)) is subjected to a inner shell
stochastic variation, e.g., some asymmetric finite digidh. Thenet costdS,(t) for each Projedtand
Task k are added to defe dS(t) for the Plan.The inner shell cost CPD is re-applied méimes to get a
set of{ dS} at each time.

5. RealOptions

5.1. PlanOptions

After the Outer MC sampling is completed, there are histograms generated of tledB{&n'and
dS(t)/S(t — dt) at each timet. The histograms are normalized at each timeve B{dS, t). At each time
t, the data representirgis “curve-fit’ to the form of Eq. (2), wherd andg are functions needed to get
good fits, e.g., fitting coéitients of parametefs«}

f = X0+ X1 S+ XS+ -

0= Xgo+ Xg1 S+ Xgo S + -+ 4)

At each timet, the functionsf and g are fit to the function I(R(dS, t)), which includes the prattor
containingg and the functior. which may be viewed as a Paalgproximate of these polynomials.

Compl« constraints as functions & (t) can be easily incorporated in this approach, e.g., dugjtdare
reviews by funding agencies oxeeutives. TheseP’s are input into RTHTREE to calculate options for a
given drategy or Plan.

5.2. RiskManagement of Project Options

If some measure of risk among Projects is desired, then during the MC calculatidapeatefor the top-

level Plan, sets of dferenced costs for each Projed§ (t) and dS(t)/S(t — dt), stored from each of the
Projects Tasks. Thenhistograms and Project CPDs arevali@ped, similar to the delopment of the

Plan CPD. A copula analysis, coded in TRD for risk management of financial markets, are applied to
develop a relatve lisk analysis among these projed®,16]. Insuch an analysis, the Project giaal

CPDs are all transformed to Gaussian spaces, where it makes sense to calevat@eces and
correlations. Araudit trail back the original Project spaces permits analysis of risk dependent on the tails
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of the Project CPDs. Some details angegiin papers dealing with generic portfolios [13-15].

It is not appropriate to simply use a standard Gaussian second moment of a non-Gaussiatiodistrib
(most common in real-orld data) to assess “risk”. It it appropriate to simply use standard standard
Gaussian second moments of non-Gaussian distributions (most common in real-world data) to assess
correlations of variables.

5.2.1. Pst-Processing of Multiple Optima/“Mutations”

Within a chosen resolution of variables and parameters to be sampled, often the huge numbers of possible
states to be importance-sampled presents multiple optima and sometimes multiple optimaltstates.
should be understood thatyasampling algorithm processing a huge number of states can fing man
multiple optima. As used in TRD, retnt to this ROPS approach, ASAMULTI_MIN OPTIONS are

used to se nultiple optima during sampling. Some algorithms might label these states as “mutations”

of optimal states.lt is important to be able to include them in final decisions, e.g., to apply additional
metrics of performance specific to applications. Experience shows that all criteria are not best considered
by lumping them all into one cost functionytlrather good judgment on risk versus benefit should be
applied to multiple stages of pre-processing and post-processing when performing such sampling.

5.3. Greeks

Traders on financial options use “Greeks” to assess value oétearkonsidea positionl on an option.
The change in alue associated with changes in tidte underlying dS, risk-free interest-ratep, and
volatility do is given by a im over the “Greeks,as derived from a Taylor expansion of the fdifenced
position [11],

an 1 0°M an an on 9%n 10°M 1 0°M
dn=—-dS+= d*+ —do+——dt+——dr + dSdo + = —— do? + = ds*do + -
s 7 2 adx? 90 7 ot T ar Y T as00 YT 2002 Y9 e o500 O 97
1 1 1
dI'I=AdS+£FdSZ+Kda+G)dt+pdr+A’dea+EK’d02+gl"d52da+--- (5)

whereA = Delta,I = GammaK = Kappa (sometimes called thegdd, © = Theta,p = Rho. TheGreeks

and the ceariance matrix are functions of a s&ik at the value the underlying of the option is priced to
be when it is gercised [7,17],The Greeks are calculated using probability-distribution models selected by
traders. Thg can drav from Black Scholes (most common), Ornstein-Uhlenbeck or more general uni-
variable or multi-variable models (which are more appropriate to real-world data) [10,17,18].

The Greeks are useful numbers to gauge the sensitivity of the price of the option with respedltofse
its underlying variables.

6. GenericApplications

ROPS can be applied to yareomplex scheduling of tasks similar to the FCS project. The need for
government agencies to plan and monitor such large projects is becoming increasifigiyt dihd
necessary [25]. Manlarge businesses va dmilar projects and similar requirements to manage their
compl projects.

Similarly, large investment funds should at least internallywelep estimates of the Real Optionsaiff

vaue” of their revenue streams, based on realistic underlying probability digiis of their returns.

They then can use these estimates as complementary measures of risk, and decide on what pyoducts the
might invest in as insurance to protect their assets.
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