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Abstract
There are several kinds of non-invasive imaging methods that are used to collect data from the brain, e.g.,
EEG, MEG, PET, SPECT, fMRI, etc. It is difficult to get resolution of information processing using any
one of these methods. Approaches to integrate data sources may help to get better resolution of data and
better correlations to behavioral phenomena ranging from attention to diagnoses of disease.The approach
taken here is to use algorithms developed for the author’s Trading in Risk Dimensions (TRD) code using
modern methods of copula portfolio risk management, with joint probability distributions derived from
the author’s model of statistical mechanics of neocortical interactions (SMNI). The author’s Adaptive
Simulated Annealing (ASA) code is used for optimizations of training sets, as well as for importance-
sampling. Marginal distributions will be evolved to determine their expected duration and stability using
algorithms developed by the author, i.e., PATHTREE and PATHINT codes.
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1. Introduction
This paper presents detailed algorithms that utilize methods of multivariate copula risk-management of
portfolios recently used in finance, to develop top-level neocortical-system joint distributions from
multiple synchronous sources of imaging data.This approach transforms constituent probability
distributions into a common space where it makes sense to develop correlations to further develop
probability distributions and risk/uncertainty analyses of the full portfolio.Adaptive Simulated Annealing
(ASA) is used for importance-sampling short-time conditional transition probability distributions
(referred to here simply as the distributions) and for optimizing system parameters.

The neocortical distributions to be used, the use of copula transformations to integrate disparate marginal
distributions, and the sophisticated optimization and sampling algorithms to be used, all have been
developed and tested thoroughly by the author and teams he has led.

Initial prototype calculations will fit weight-parameters of different-resolution imaging data, optimized
with respect to parameterized regional neocortical circuitry corresponding to major electrode sites, during
binocular rivalry tasks.

This project, portfolio of physiological indicators (PPI), is a spin-off of a more generic project, Ideas by
Statistical Mechanics (ISM), which integrates previous projects to model evolution and propagation of
ideas/patterns throughout populations subjected to endogenous and exogenous interactions[36,37,39].
Another paper uses PPI in the context of developing experimental data for testing theories of neocortical
interactions [40].

2. Specific Aims
There are several kinds of non-invasive imaging methods that are used to collect data from the brain, e.g.,
EEG, MEG, PET, SPECT, fMRI, etc. It is difficult to get resolution of information processing using any
one of these methods[58]. Approachesto integrate data sources may help to get better resolution of data
and better correlations to behavioral phenomena ranging, from attention to diagnoses of disease.

The approach taken here is to use probability distributions derived from a model of neocortical
interactions, which were used in previous studies with NIH data from studies on predisposition to
alcoholism. Theseprobability distributions will be fit independently using ASA to different set of data
taken from the same experimental design.Recent copula methods of portfolio risk-management used for
financial markets will develop these marginal distributions into a joint distribution. Thisjoint distribution
will be used to test various cost-function hypotheses on regional circuitry and weights of different data
sets to determine if better resolution of behavioral events can be determined rather than by treating each
distribution separately.

2.1. Aims Enumerated

1. Probability distributions defined by Statistical Mechanics of Neocortical Interactions
(SMNI) [10,11,29],used to fit previous EEG studies[26,27], will be designed to model the tasks
represented by the data used. The SMNI distributions will be parameterized with respect to
circuitry among major electrode sites, reasonable ranges of macrocolumnar excitatory and
inhibitory activity in each region, and ranges of connectivity among regions, including strengths
and lead-lag flows of excitatory flows. All ranges of parameters will be justified by independent
experimental data.

2. As an example, the SMNI distributions can be fit separately to experimental data from binocular-
rivalry tasks, representing two brain states — dominant and nondominant periods — from two data
collection methods — raw data sensitive to 5-10 cm scales, and Laplacian-transformed data
sensitive to 2-3 cm scales — i.e., four sets of data per subject. ASA will be used for optimization.

3. For each subject, a “portfolio” of two stochastic variables, representing the two collection methods,
will be constructed using copula algorithms.ASA importance-sampling will provide numerical
portfolio distributions. Thesedistributions will be attempted to be fit to some known analytic
distributions, but this is not essential.
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4. Somecomparisons will be made among these distributions, for each subject, and among subjects.
For example, for each brain state, overlaps of probability distributions of portfolios will be
calculated. Comparisonamong subjects with respect to moments of distributions and the overlaps
states will determine the success of how faithful the model distributions are to the data.

5. Asan example, binocular rivalry likely is a stochastic Gamma process [50], wherein there can be as
much as 20% of the data switching between states during either task.We would “train” the fitted
distributions on data presenting clear cases of brain states, and “test” these distributions on out of
sample clear data, and then match these distributions to data not so clearly defined. Theseresults
may be sufficiently defined to be correlated with frontal region activity, suggesting further studies
on the role of consciousness in binocular rivalry.

6. As another example, some modest progress has been made in using noninvasive imaging, EEG, to
measure the progress of amyotrophic lateral sclerosis (ALS)[52]. This paper suggests that
simultaneous imaging data may provide much more precise measures of progress of ALS.For
example, neural circuits perpendicular to the scalp give rise to most measurable EEG; neural
circuits parallel to the scalp give rise to most measurable MEG.

7. Costfunctions composed of both collection-method variables will be used to calculate expectations
over the various portfolios.For example, relative weights of the multiple collection methods can be
fi t as parameters, and relative strengths as they contribute to various circuitries can be calculated.

8. Otherimaging datasets would be used for additional processing.

2.2. Background and Significance
There are often two kinds of errors committed in multivariate analyses:

E1: Althoughthe distributions of variables being considered are not Gaussian (or not tested to see how
close they are to Gaussian), standard statistical calculations appropriateonly to Gaussian
distributions are employed.

E2: Eithercorrelations among the variables are ignored, or the mistakes committed in E1 — incorrectly
assuming variables are Gaussian — are compounded by calculating correlations as if all variables
were Gaussian.

The harm in committing errors E1 and E2 can be fatal — fatal to the analysis and/or fatal to people acting
in good faith on the basis of these risk assessments. Risk is measured by tails of distributions. So,if the
tails of some variables are much fatter or thinner than Gaussian, the risk in committing E1 can be quite
terrible. Many times systems are pushed to and past desired levels of risk when several variables become
highly correlated, leading to extreme dependence of the full system on the sensitivity of these variables.
It is very important not to commit E2 errors. This project will establish the importance of correctly
dealing with the E1 and E2 issues in Section (2.), and develop code based on the algorithms described
below.

The neocortical distributions to be used, the use of copula transformations to integrate disparate marginal
distributions, and the sophisticated optimization and sampling algorithms to be used, all have been
developed and tested thoroughly by the author and teams he has led in academia, government and
industry.

3. Neocortical Modeling
Several components of this project are necessary for its completion. All of these have been developed
into a mature context already.

3.1. Probabilistic Model of Non-Invasive EEG
Since the late 1970’s, the author has developed a statistical mechanics of neocortical interactions (SMNI),
building from synaptic interactions to minicolumnar, macrocolumnar, and regional interactions in
neocortex. The SMNI model was the first physical application of a nonlinear multivariate calculus
developed by other mathematical physicists in the late 1970’s to define a statistical mechanics of
multivariate nonlinear nonequilibrium systems[4,49]. Most relevant to this study is that a spatial-
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temporal lattice-field short-time conditional multiplicative-noise (nonlinear in drifts and diffusions)
multivariate Gaussian-Markovian probability distribution (hereafter simply referred to as the SMNI
distribution) is developed that was used to fit previous sets of NIH EEG data. Such probability
distributions are a basic input into the approach used here.

From circa 1978, a series of papers on SMNI has been developed to model columns and regions of
neocortex, spanning mm to cm of tissue. Most of these papers have dealt explicitly with calculating
properties of short-term memory (STM) and scalp EEG in order to test the basic formulation of this
approach at minicolumnar and macrocolumnar scales, resp.SMNI derives aggregate behavior of
experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic
interactions. Whilenot useful to yield insights at the single neuron level, SMNI has demonstrated its
capability in describing large-scale properties of short-term memory and electroencephalographic (EEG)
systematics [10-12,18,21,22,24,26,45].

3.1.1. Application to Proposed Project
As depicted in Fig. 1, neocortex has evolved to use minicolumns of neurons interacting via short-ranged
interactions in macrocolumns, and interacting via long-ranged interactions across regions of
macrocolumns. Thiscommon architecture processes patterns of information within and among different
regions of sensory, motor, associative cortex, etc. Therefore, the premise of this approach is that this is a
good model to describe and analyze evolution/propagation of information among these defined
populations.

A spatial-temporal lattice-field short-time conditional multiplicative-noise (nonlinear in drifts and
diffusions) multivariate Gaussian Markovian probability distribution is developed faithful to neocortical
function (physiology). Suchprobability distributions are a basic input into the approach used here.

3.1.2. SMNI Tests on STM and EEG
The author has developed a statistical mechanics of neocortical interactions (SMNI) for human neocortex,
building from synaptic interactions to minicolumnar, macrocolumnar, and regional interactions in
neocortex. Since1981, a series of papers on the statistical mechanics of neocortical interactions (SMNI)
has been developed to model columns and regions of neocortex, spanning mm to cm of tissue. Most of
these papers have dealt explicitly with calculating properties of STM and scalp EEG in order to test the
basic formulation of this approach [9-12,14-16,18,19,21-27,44,45].

The SMNI modeling of local mesocolumnar interactions (convergence and divergence between
minicolumnar and macrocolumnar interactions) was tested on STM phenomena. The SMNI modeling of
macrocolumnar interactions across regions was tested on EEG phenomena.

3.1.3. SMNI Description of STM

SMNI studies have detailed that maximal numbers of attractors lie within the physical firing space ofMG ,
where G = {Excitatory, Inhibitory} minicolumnar firings, consistent with experimentally observed
capacities of auditory and visual STM, when a “centering” mechanism is enforced by shifting background
noise in synaptic interactions, consistent with experimental observations under conditions of selective
attention [12,15,21,45,56].This leads to all attractors of the short-time distribution lying along a diagonal
line in MG space, effectively defining a narrow parabolic trough containing these most likely firing states.
This essentially collapses the 2 dimensionalMG space down to a one-dimensional space of most
importance. Thus,the predominant physics of STM and of (short-fiber contribution to) EEG phenomena
takes place in a narrow “parabolic trough” inMG space, roughly along a diagonal line [12].

These calculations were further supported by high-resolution evolution of the short-time conditional-
probability propagator using PATHINT [45]. SMNI correctly calculated the stability and duration of
STM, the primacy versus recency rule, random access to memories within tenths of a second as observed,
and the observed 7± 2 capacity rule of auditory memory and the observed 4± 2 capacity rule of visual
memory.

SMNI also calculates how STM patterns may be encoded by dynamic modification of synaptic
parameters (within experimentally observed ranges) into long-term memory patterns (LTM) [11].
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Fig. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a* )-(a’) micro-
scopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. SMNI has
developed appropriate conditional probability distributions at each level, aggregating up from
the smallest levels of interactions.In (a* ) synaptic inter-neuronal interactions, averaged over
by mesocolumns, are phenomenologically described by the mean and variance of a distribu-
tion Ψ. Similarly, in (a) intraneuronal transmissions are phenomenologically described by
the mean and variance ofΓ. Mesocolumnar averaged excitatory (E) and inhibitory (I ) neu-
ronal firings are represented in (a’). In (b) the vertical organization of minicolumns is
sketched together with their horizontal stratification, yielding a physiological entity, the
mesocolumn. In(b’) the overlap of interacting mesocolumns is sketched. In(c) macroscopic
regions of neocortex are depicted as arising from many mesocolumnar domains.(c’)
sketches how regions may be coupled by long-ranged interactions.

3.1.4. SMNI Description of EEG
Using the power of this formal structure, sets of EEG and evoked potential data from a separate NIH
study, collected to investigate genetic predispositions to alcoholism, were fitted to an SMNI model on a
lattice of regional electrodes to extract brain “signatures” of STM[26,27]. Eachelectrode site was
represented by an SMNI distribution of independent stochastic macrocolumnar-scaled MG variables,
interconnected by long-ranged circuitry with delays appropriate to long-fiber communication in
neocortex. The global optimization algorithm ASA was used to perform maximum likelihood fits of
Lagrangians defined by path integrals of multivariate conditional transition probabilities.Canonical
momenta indicators (CMI) were thereby derived for individual’s EEG data. The CMI give better signal
recognition than the raw data, and were used to advantage as correlates of behavioral states.In-sample
data was used for training [26], and out-of-sample data was used for testing [27] these fits.

These results gav e strong quantitative support for an accurate intuitive picture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.Recent work using SMNI gives direct calculations supporting
local columnar generation of EEG for three prototypical cases, predominately inhibitory columnar firings,
and in between balanced columnar firings, with and without the centering mechanism described
above [41].
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3.2. Direct Fit of SMNI to EEG

3.2.1. Data collection
The project used the collection of EEG spontaneous and averaged evoked potential (AEP) data from a
multi-electrode array under a variety of conditions.We fit data being collected at several centers in the
United States, sponsored by the National Institute on Alcohol Abuse and Alcoholism (NIAAA)
project [6,59]. These experiments, performed on carefully selected sets of subjects, suggest a genetic
predisposition to alcoholism that is strongly correlated to EEG AEP responses to patterned targets.

For the purposes of this paper, it suffices to explain that we fit data obtained from 19 electrode sites on
each of 49 subjects, of which 25 are considered to be high risk with respect to a propensity to alcoholism,
and 24 are considered to be low risk. Eachsubject participated in EEG-monitored pattern-matching tasks.
The time epoch during which the P300 EP exists was extracted (the P300 EP is named for its appearance
over 300 msec after an appropriate stimulus), yielding 191 time epochs of 5.2 msec for each of the above
circumstances. Eachset of 192 pieces of data is obtained by having the subject perform similar pattern-
matching tasks, e.g., about 100 such tasks, time-locking the EEG responses to the initiation of the task,
and averaging over the set of tasks for each time epoch.

3.2.2. Mathematical Development of Columns
Some of the algebra behind SMNI depicts variables and distributions that populate each representative
macrocolumn in each region.

A derived mesoscopic LagrangianLM defines the short-time probability distribution of firings in a
minicolumn, composed of∼102 neurons, given its just previous interactions with all other neurons in its
macrocolumnar surround.G is used to represent excitatory (E) and inhibitory (I ) contributions. G
designates contributions from bothE andI .

PM =
G
Π PG

M [MG(r; t + τ )|MG(r′; t)]

=
σ j

Σ δ


 jE
Σσ j − M E (r; t + τ )




δ



 jI
Σσ j − M I (r; t + τ )





N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG

M ) ,

PM ≈(2π τ )−1/2g1/2 exp(−Nτ LM ) ,

LM = LE
M + L I

M = (2N )−1(Ṁ
G − gG)gGG′(Ṁ

G′ − gG′) + MG JG /(2Nτ ) − V ′ ,

V ′ =
G
ΣV ′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + N G tanhFG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1N Gsech2FG ,

g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
, aG

G′ =
1

2
AG

G′ + BG
G′ , (1)

where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies, vG
G′ and φ G

G′ are
av eraged means and variances of contributions to neuronal electric polarizations.MG′ andN G′ in FG are
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afferent macrocolumnar firings, scaled to efferent minicolumnar firings byN /N * ∼10−3, whereN * is the
number of neurons in a macrocolumn,∼105. Similarly, AG′

G andBG′
G have been scaled byN * / N∼10 sup

3 to keepFG invariant. V ′ are mesocolumnar nearest-neighbor interactions.

3.2.3. Inclusion of Macroscopic Circuitry

The most important features of this development are described by the LagrangianLG in the negative of
the argument of the exponential describing the probability distribution, and the “threshold factor” FG

describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, theJG terms can be dropped, and more realistically replaced by a modified
threshold factorFG ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
,

a‡E
E′ =

1

2
A‡E

E′ + B‡E
E′ . (2)

Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have
been added, whereN‡E might be on the order of 10% ofN ∗: Of the approximately 1010 to 1011

neocortical neurons, estimates of the number of pyramidal cells range from 1/10 to 2/3. Nearly every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 1010.

3.2.4. Algebraic Development of Regions

A l inear relationship was assumed (about minima to be fit to data) between theMG fi ring states and the
measured scalp potentialΦν , at a giv en electrode siteν representing a macroscopic region of neuronal
activity:

Φν − φ = aM E + bM I , (3)

where { φ , a, b } are constants determined for each electrode site.In the prepoint discretization, the
postpointMG(t + ∆t) moments are given by

m ≡< Φν − φ >= a < M E > +b < M I >

= agE + bgI ,

σ 2 ≡< (Φν − φ )2 > − < Φν − φ >2= a2gEE + b2gII , (4)

where theMG-space driftsgG , and diffusionsgGG′, hav ebeen derived above. Note that the macroscopic
drifts and diffusions of theΦ’s are simply linearly related to the mesoscopic drifts and diffusions of the
MG ’s. For the prepointMG(t) firings, we assume the same linear relationship in terms of{ φ , a, b } .

The data we are fitting are consistent with invoking the “centering” mechanism discussed above.
Therefore, for the prepointM E (t) firings, we also take advantage of the parabolic trough derived for the
STM Lagrangian, and take

M I (t) = cM E (t) ,  (5)

where the slopec is determined for each electrode site.This permits a complete transformation fromMG

variables toΦ variables.

Similarly, as appearing in the modified threshold factorFG each regional influence from electrode siteµ
acting at electrode siteν , giv en by afferent firingsM‡E , is taken as

M‡E
µ→ν = dν M E

µ (t − Tµ→ν ) ,  (6)
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wheredν are constants to be fitted at each electrode site, andTµ→ν is the delay time estimated for inter-
electrode signal propagation, based on current anatomical knowledge of the neocortex and of velocities of
propagation of action potentials of long-ranged fibers, typically on the order of one to several multiples of
τ = 5 msec. Someterms in whichd directly affects the shifts of synaptic parametersBG

G′ when calculating
the centering mechanism also contain long-ranged efficacies (inverse conductivities) B∗E

E′ . Therefore, the
latter were kept fixed with the other electrical-chemical synaptic parameters during these fits. In future
fi ts, we will experiment taking theT ’s as parameters.

This defines the conditional probability distribution for the measured scalp potentialΦν ,

Pν [Φν (t + ∆t)|Φν (t)] =
1

(2π σ 2∆t)1/2
exp(−Lν ∆t) ,

Lν =
1

2σ 2
(Φ̇ν − m)2 , (7)

wherem andσ have been derived just above. As discussed above in defining macroscopic regions, the
probability distribution for all electrodes is taken to be the product of all these distributions:

P =
ν
Π Pν ,

L =
ν
Σ Lν . (8)

Note that we are also strongly invoking the current widespread belief in the dipole or nonlinear-string
model. The model SMNI, derived for P[MG(t + ∆t)|MG(t)], is for a macrocolumnar-averaged
minicolumn; hence we expect it to be a reasonable approximation to represent a macrocolumn, scaled to
its contribution toΦν . Hence we useL to represent this macroscopic regional Lagrangian, scaled from its
mesoscopic mesocolumnar counterpartL. Howev er, the above expression for Pν uses the dipole
assumption to also use this expression to represent several to many macrocolumns present in a region
under an electrode: A macrocolumn has a spatial extent of about a millimeter. A scalp electrode has been
shown, under extremely favorable circumstances, to have a resolution as small as several millimeters,
directly competing with the spatial resolution attributed to magnetoencephalography; often most data
represents a resolution more on the order of up to several centimeters, many macrocolumns. Still,it is
often argued that typically only several macrocolumns firing coherently account for the electric potentials
measured by one scalp electrode[57]. Then,we are testing this model to see if the potential will scale to
a representative macrocolumn. Theresults presented here seem to confirm that this approximation is in
fact quite reasonable.

As noted in a previous SMNI paper [12], the structure of STM survives an approximation settingMG = 0
in the denominator ofFG , after applying the “centering” mechanism.To speed up the fitting of data in
this study, this approximation was used here as well.

The resolution of this model is certainly consistent with the resolution of the data.For example, for the
nonvisual neocortex, taking the extreme of permitting only unit changes inMG fi rings, it seems
reasonable to always be able to map the observed electric potential valuesΦ from a given electrode onto a
mesh a fraction of 4N E N I ≈ 104.

3.2.5. Results

For this study, we used some current knowledge of the P300 EP phenomena to limit ourselves to just fiv e
electrodes per subject, corresponding to hypothesized fast and slow components of P300. The first
component appears to be generated along the brain midline, from frontal (Fz) to central (Cz) to parietal
(Pz) areas; a delay time of one 5.2-msec epoch was assumed for each relay. The slow component appears
to be generated from Pz, branching out to lateral areas P3 and P4; a delay time of two 5.2-msec epochs
was assumed for each branch.Since P300 has such a quite broad rise, peak, and decay over a large
fraction of a second, regional delays are not expected to be very important here. Data currently being
collected on more stringent time-locked STM tasks are expected to provide stronger tests of the
importance of such delays. Furthermore, the relative lack of sensitivity of fits to such delays here
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suggests that volume conductance effects are large in these data, and Laplacian techniques to localize
EEG activities are required to get more electrode-specific sensitivity to such delays.However, the main
emphasis here is to determine whether SMNI is consistent with EEG data collected under conditions of
selective attention, and these results appear to be quite strong.

The P300 EP, so named because of its appearance over 300 msec after an appropriate stimulus, has been
demonstrated to be negatively correlated (reduction in amplitude and delay) with a number of psychiatric
diseases, e.g., schizophrenia and depression, and typically is most active at sites Pz, P3 and P4[54].
Here, the suggestion is that there also is some correlation with some precursor activity at Fz and Cz.

Thus, that project reported fits to 46,550 pieces of data. As described above in the section deriving
P[Φ(t + ∆t)|Φ(t)], we have: four parameters at site Fz, corresponding to coefficients { φ , a, b, c } ; fiv e
parameters at Cz,{ φ , a, b, c, dFz→Cz } ; fiv e parameters at Pz,{ φ , a, b, c, dCz→Pz } ; fiv e parameters at
P3, { φ , a, b, c, dPz→P3 } ; and fiv e parameters at P4,{ φ , a, b, c, dPz→P4 } . This represents a
24-parameter fit for 950 points of data (each electrode offset by two points to account for delays) for each
of 49 subjects.

Very Fast Simulated Re-Annealing (VFSR) was the precursor code to ASA[17]. TheVFSR runs took
several CPU hours each on a personal Sun SPARCstation 2 (28.5 MIPS, 21 SPECmarks) running under
GNU g++, a C++ compiler developed under the GNU project at the Massachusetts Institute of
Technology, which proved to yield faster runs than using Sun’s bundled non-ANSI C, depending on how
efficiently the simulated annealing run could sense its way out of local minima. Runs were executed for
inclusion of delays between electrodes, as discussed above. All runs were completed in approximately
400 CPU hours.Typically, at least one to three significant-figure consistencies between finer resolution
runs per parameter were obtained by exiting the global simulated annealing runs after either two sets of
100 acceptances or 20,000 trials led to the same best estimate of the global minima. Each trial typically
represented a factor of 3 to 5 other generated sets of randomly selected parameters, which did not satisfy
the physical constraints on the electrode sets of{ MG } , { M∗E } and the centering mechanism (which
required calculation of new synaptic parameters{ BG

G′ } for each new set of regional connectivity
parameters{ d } ). Someefficiency was gained by using the means and extremes of the observed electric
potentials as a guide for the ranges of the sets of intercept parameters{ φ } .

Several more significant-figure accuracy was obtained by shunting the code to a local fitting procedure,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [62], where it either exited naturally or was
forcefully exited, saving the lowest cost function to date, after exceeding a limit of 1000 function calls.
The local BFGS runs enforced the above physical constraints by adding penalties to the cost functions
calculated with trial parameters, proportional to the distance out of range.

These sets of EEG data were obtained from subjects while they were reacting to pattern-matching tasks
requiring varying states of selective attention taxing their short-term memory. To test the assumptions
made in the model, after each subject’s data set was fitted to its probability distribution, the data were
again filtered through the fitted Lagrangian, and the mean and mean-square values ofMG were recorded
as they were calculated fromΦ above. Although MG were permitted to roam throughout their physical
ranges of±N E = ±80 and±N I = ±30 (in the nonvisual neocortex as is the case for all these regions), their
observed effective (regional- and macrocolumnar-averaged) minicolumnar firing states were observed to
obey the centering mechanism.I.e., this numerical result is consistent with the assumption that
MG ≈ 0 ≈ M∗E in FG .

3.3. Other Aspects of SMNI
Other aspects of SMNI clarify some overlap with neural networks, and also explain some approaches not
developed by SMNI such as chaotic behavior.

3.3.1. Generic Mesoscopic Neural Networks
As depicted in Fig. 2, SMNI was applied to propose a parallelized generic mesoscopic neural networks
(MNN) [19], adding computational power to a similar paradigm proposed for target recognition[13]. The
present project uses the same concepts, having sets of multiple variables define macrocolumns with a
region, with long-ranged connectivity to other regions. Eachmacrocolumn has its own parameters, which
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Fig. 2. “Learning” takes place by presenting the MNN with data, and parametrizing the data
in terms of the “firings,” or multivariate MG “spins.” The “weights,” or coefficients of func-
tions of MG appearing in the drifts and diffusions, are fit to incoming data, considering the
joint “effective” L agrangian (including the logarithm of the prefactor in the probability distri-
bution) as a dynamic cost function.This program of fitting coefficients in Lagrangian uses
methods of ASA.

“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian
path-integral algorithm, i.e., a set of coupled Langevin rate-equations.A coarse deterministic
estimate to “predict” the evolution can be applied using the most probable path, but
PATHINT has been used.PATHINT, even when parallelized, typically can be too slow for
“predicting” evolution of these systems. However, PATHTREE is much faster.

define sets of possible patterns.

3.3.2. On Chaos in Neocortex
There are many papers on the possibility of chaos in neocortical interactions. While this phenomena may
have some merit when dealing with small networks of neurons, e.g., in some circumstances such as
epilepsy, these papers generally have considered only too simple models of neocortex.

The author took a model of chaos that might be measured by EEG, developed and published by some
colleagues, but adding background stochastic influences and parameters that were agreed to better model
neocortical interactions. The resulting multivariate nonlinear conditional probability distribution was
propagated many thousands of epochs, using the author’s PATHINT code, to see if chaos could exist and
persist under such a model[46]. Therewas absolutely no measurable instance of chaos surviving in this
more realistic context.

3.4. Computational Algorithms

3.4.1. Adaptive Simulated Annealing (ASA)
Adaptive Simulated Annealing (ASA)[20] is used to optimize parameters of systems and also to
importance-sample variables for risk-management.

ASA is a C-language code developed to statistically find the best global fit of a nonlinear constrained
non-convex cost-function over a D-dimensional space. This algorithm permits an annealing schedule for
“temperature”T decreasing exponentially in annealing-timek, T = T0 exp(−ck1/D). Theintroduction of
re-annealing also permits adaptation to changing sensitivities in the multi-dimensional parameter-space.
This annealing schedule is faster than fast Cauchy annealing, whereT = T0/k, and much faster than
Boltzmann annealing, whereT = T0/ ln k. ASA has over 100 OPTIONS to provide robust tuning over
many classes of nonlinear stochastic systems.

For example, ASA has ASA_PARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first developed in 1994 when the author of this approach was PI of National Science Foundation
grant DMS940009P, Parallelizing ASA and PATHINT Project (PAPP). Sincethen these OPTIONS have
been used by various companies.
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3.4.2. PATHINT and PATHTREE
In some cases, it is desirable to develop a time evolution of a short-time conditional probability, e.g., of
the kind fitted in this study to EEG data.Tw o useful algorithms have been developed and published by
the author.

PATHINT and PATHTREE have demonstrated their utility in statistical mechanical studies in finance,
neuroscience, combat analyses, neuroscience, and other selected nonlinear multivariate
systems [28,38,43,45].PATHTREE has been used extensively to price financial options [42].

4. Trading in Risk Dimensions (TRD)
A full real-time risk-managed trading system has been coded by the author using state of the art risk
management algorithms, Trading in Risk Dimensions (TRD)[35]. TRD is based largely on previous
work in several disciplines using a similar formulation of multivariate nonlinear nonequilibrium
systems [31-33],using powerful numerical algorithms to fit models to data[30]. A published report
which was a precursor to this project was formulated for a portfolio of options[34]. Thesemethods have
been applied by the author to futures and to stock prices.

4.1. Application to Proposed Project
In the context of this approach, the concepts of “portfolio” are considered to be extended to the total
ensemble of of multiple regions of populations of data, each having sets of multiple variables. Thatis,
although the each region will have the same kinds of multiple variables, to create a generic system for the
project, such variables in different regions will be part of the full set of multivariate nonlinear stochastic
variables across all regions. Oncethe full “portfolio” distribution is developed, various measures of cost
or performance can be calculated, in addition to calculating various measure of risk.

The concepts of trading-rule parameters can be extended to how to treat parameters that might be
included in this work, e.g., to permit some top-level control of weights given to different members of
ensembles, or parameters in models that affect their interactions, towards a desired outcome of projects.

4.1.1. Standard Code For All Platforms
The ASA and TRD codes are in vanilla C, able to run across all Unix platforms, including Linux and
Cygwin under Windows [http://cygwin.com]. StandardUnix scripts are used to facilitate file and data
manipulations. For example, output analysis plots — e.g., 20 sub-plots per page, are prepared in batch
using RDB (a Perl relational database tool from ftp://ftp.rand.org/RDB-hobbs/), Gnuplot (from
http://gnuplot.sourceforge.net/), and other Unix scripts developed by the author.

The judicious use of pre-processing and post-processing of variables, in addition to processing by
optimization and importance-sampling algorithms, presents important features to the proposed project
beyond simple maximum likelihood estimates based on (quasi-)linear methods of regression usually
applied to such systems.

TRD includes design and code required to interface to actual data feeds and execution platforms.Similar
requirements might be essential for future use of these approaches in the project proposed here.

As with most complex projects, care must be given to sundry problems that arise. Similar and new such
problems can be expected to arise in this project as well.

4.1.2. Gaussian Copula
The concept behind copulas is simple, albeit some applications may be quite complex. Marginal (separate
from other variables) distributions of time series often do not exhibit simple Gaussian behavior. These
marginal distributions are transformed into a Gaussian space of newly defined variables. Afterthis is
done for all multiple variables of interest, it then makes sense in the new joint Gaussian space to calculate
covariance matrices and correlations.Theorems on copulas guarantee uniqueness of inverse
transformations back to the original spaces of interest [63].

Gaussian copulas are developed in TRD. Other copula distributions are possible, e.g., Student-t
distributions (often touted as being more sensitive to fat-tailed distributions — here data is first adaptively
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fi t to fat-tailed distributions prior to copula transformations). These alternative distributions can be quite
slow because inverse transformations typically are not as quick as for the present distribution.

Copulas are cited as an important component of risk management not yet widely used by risk
management practitioners[1]. Gaussiancopulas are presently regarded as the Basel II standard for credit
risk management [7]. TRD permits fast as well as robust copula risk management in real time.

The copula approach can be extended to more general distributions than those considered here[8]. If
there are not analytic or relatively standard math functions for the transformations (and/or inverse
transformations described) here, then these transformations must be performed explicitly numerically in
code such as TRD. Then, the ASA_PARALLEL OPTIONS already existing in ASA would be very
useful to speed up real time calculations [20].

4.2. Exponential Marginal Distribution Models
For specificity, assume that each market is fit well to a two-tailed exponential density distribution p (not
to be confused with the indexed price variablept) with scaleχ and meanm,

p(dx)dx =









1

2χ
e

−
dx−m

χ dx , dx >= m

1

2χ
e

dx−m

χ dx , dx < m

=
1

2χ
e

−
|dx−m|

χ dx (9)

which has a cumulative probability distribution

F(dx) =
dx

−∞
∫ dx′ p(dx′) =

1

2






1 + sgn(dx − m)



1 − e

−
|dx−m|

χ









(10)

whereχ andm are defined by averages <. >  over a window of data,

m = < dx > , 2χ 2 = < (dx)2 > − < dx >2 (11)

The p(dx) are “marginal” distributions observed in the market, modeled to fit the above algebraic form.
Note that the exponential distribution has an infinite number of non-zero cumulants, so that
< dx2 > − < dx >2 does not have the same “variance” meaning for this “width” as it does for a Gaussian
distribution which has just two independent cumulants (and all cumulants greater than the second vanish).
Below algorithms are specified to address correlated markets giving rise to the stochastic behavior of
these markets.

The TRD code can be easily modified to utilize distributions p′(dx) with different widths, e.g., different
χ ′ for dx less than and greater thanm,

p′(dx)dx =
1

2χ ′
e

−
|dx−m|

χ ′ dx (12)

4.3. Copula Transformation

4.3.1. Transformation to Gaussian Marginal Distributions
A Normal Gaussian distribution has the form

p(dy) =
1

√ 2π
e

−
dy2

2 (13)

with a cumulative distribution
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F(dy) =
1

2




1 + erf


dy

√2






(14)

where the erf() function is a tabulated function coded into most math libraries.

By setting the numerical values of the above two cumulative distributions, monotonic on interval [0,1],
equal to each other, the transformation of thex marginal variables to they marginal variables is effected,

dy = √2 erf−1((2 F(dx) − 1)) = √2 sgn(dx − m) erf−1



1 − e

−
|dx−m|

χ




(15)

The inverse mapping is used when applying this to the portfolio distribution,

dx = m − sgn(dy)χ ln



1 − erf


|dy|

√2






(16)

4.3.2. Including Correlations

To understand how correlations enter, look at the stochastic process defined by the dyi marginal
transformed variables:

dyi = ĝi dwi (17)

wheredwi is the Wiener Gaussian noise contributing todyi of market i. The transformations are chosen
such that ˆgi = 1.

Now, a giv en market’s noise, (̂gi dwi), has potential contributions from allN markets, which is modeled in
terms ofN independent Gaussian processes,dzk ,

ĝi dwi =
k
Σ ĝi

k dzk (18)

The covariance matrix ((gij)) of thesey variables is then given by

gij =
k
Σ ĝi

k ĝ j
k (19)

with inverse matrix, the “metric,” written as ((gij)) and determinant of ((gij)) written asg.

Since Gaussian variables are now being used, the covariance matrix is calculated directly from the
transformed data using standard statistics, the point of this “copula” transformation [53,61].

Correlationsρ ij are derived from bilinear combinations of market volatilities

ρ ij =
gij

√ gii g jj
(20)

Since the transformation to Gaussian space has defined gii = 1, here the covariance matrices theoretically
are identical to the correlation matrices.

This gives a multivariate correlated processP in thedy variables, in terms of LagrangiansL and Actions
A,

P(dy) ≡ P(dy1, . . . ,dyN ) = (2π dt)
−

N

2 g
−

1

2 e−Ldt (21)

wheredt = 1 above. The Lagrangian L is given by

L =
1

2dt2
ij
Σ dyi gij dy j (22)

The effective action Aeff , presenting a “cost function” useful for sampling and optimization, is defined by

P(dy) = e−Aeff , Aeff = Ldt +
1

2
ln g +

N

2
ln(2π dt) (23)
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4.3.3. Stable Covariance Matrices
Covariance matrices, and their inverses (metrics), are known to be quite noisy, so often they must be
further developed/filtered for proper risk management. The root cause of this noise is recognized as
“volatility of volatility” present in market dynamics[47]. In addition to such problems, ill-conditioned
matrices can arise from loss of precision for large variables sets, e.g., when calculating inverse matrices
and determinants as required here.In general, the window size used for covariance calculations should
exceed the number of market variables to help tame such problems.

A very good approach for avoiding ill-conditioning and lack of positive-definite matrices is to perform
pre-averaging of input data using a window of three epochs[51]. Othermethods in the literature include
subtracting eigenvalues of parameterized random matrices[48]. Using Gaussian transformed data
alleviates problems usually encountered with fat-tailed distributions. Selectionof reasonable windows,
coupled with pre-averaging, seems to robustly avoid ill-conditioning.

4.3.4. Copula of Multivariate Correlated Distribution
The multivariate distribution inx-space is specified, including correlations, using

P(dx) = P(dy)




∂ dyi

∂ dx j





(24)

where




∂dyi

∂dx j





is the Jacobian matrix specifying this transformation. This gives

P(dx) = g
−

1

2 e
−

1

2 ij
Σ((dyi

dx))†((gij−Iij))((dy j
dx))

i
Π Pi(dxi) (25)

where ((dydx)) is the column-vector of ((dy1
dx , . . . , dyN

dx)) expressed back in terms of their respective
((dx1, . . . ,dxN )), ((dydx))† is the transpose row-vector, and ((I )) is the identity matrix (all ones on the
diagonal).

The Gaussian copulaC(dx) is defined from Eq. (25),

C(dx) = g
−

1

2 e
−

1

2 ij
Σ((dyi

dx))†((gij−Iij))((dy j
dx))

(26)

4.4. Portfolio Distribution
The time series variables most often used are returnsdM , e.g., (M(t) − M(t − 1)) /M(t), since this helps to
scale variables from different sources prior to combining them. The probability densityP(dM) of
portfolio returnsdM is given as

P(dM) = ∫
i

Π d(dxi)P(dx)δ D((dMt −
j

Σ(a j,t dx j + b j,t))) (27)

where the Dirac delta-functionδ D expresses the constraint that

dM =
j

Σ(a j dx j + b j) (28)

The coefficientsa j andb j are determined by in terms of portfolio parameters, e.g., contract sizesNC in
finance, but hereNC means relative importance of contributions to neuronal activities from different
imaging modalities at specific time epochs.

4.4.1. Recursive Risk-Management in Trading Systems
Sensible development of trading systems fit trading-rule parameters to generate the “best” portfolio (best
depends on the chosen criteria). This necessitates fitting risk-managedNC to chosen risk targets, for each
set of chosen system-specific neocortical parameters, e.g., selected by an optimization algorithm.A giv en
set of system-specific neocortical parameters affects thea j,t andb j,t coefficients in Eq. (27) as these rules
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act on the forecasted time series as they are generated to sample the multivariate distributions.

This process must be repeated as the system parameter space is sampled to fit the cost function of the
Portfolio returns over a reasonably large in-sample set of data.

4.5. Risk Management
Once P(dM) is dev eloped (e.g., numerically), risk-management optimization is defined. Theportfolio
integral constraint is,

Q = P(dM < VaR) =
−|VaR|

−∞
∫ dM P(Mt |M ′t′) (29)

where VaR is a fixed percentage of the total available money to inv est. E.g., this is specifically
implemented as

VaR = 0. 05, Q = 0. 01 (30)

where the value ofVaR is understood to represent a possible 5% loss in portfolio returns in one epoch,
e.g., which approximately translates into a 1% chance of a 20% loss within 20 epochs. Expected tail loss
(ETL), sometimes called conditional VaR or worst conditional expectation, can be directly calculated as
an average over the tail. While the VaR is useful to determine expected loss if a tail event does not occur,
ETL is useful to determine what can be lost if a tail event occurs [2].

ASA [20] is used to sample future contracts defined by a cost function, e.g., maximum profit, subject to
the constraint

CostQ = |Q − 0. 01| (31)

by optimizing theNCi,t parameters. Otherpost-sampling constraints can then be applied.(Judgments
always must be made whether to apply specific constraints, before, during or after sampling.)

Risk management is developed by (ASA-)sampling the space of the next epoch’s {NCi,t} to fit the above
Q constraint using the sampled market variables{dx}. The combinatoric space ofNC ’s satisfying theQ
constraint is huge, and so additionalNC-models are used to choose the actual{NCi,t} used.

4.5.1. Sampling Multivariate Normal Distribution for Events
Eq. (27) certainly is the core equation, the basic foundation, of most work in risk management of
portfolios. For general probabilities not Gaussian, and when including correlations, this equation cannot
be solved analytically.

Some people approximate/mutilate this multiple integral to attempt to get some analytic expression.
Their results may in some cases serve as interesting “toy” models to study some extreme cases of
variables, but there is no reasonable way to estimate how much of the core calculation has been destroyed
in this process.

Many people resort to Monte Carlo sampling of this multiple integral. ASA has an ASA_SAMPLE
option that similarly could be applied.However, there are published fast algorithms specifically for
multivariate Normal distributions [3].

4.5.2. Transformation to Independent Variables
The multivariate correlateddy variables are further transformed into independent uncorrelated Gaussian
dz variables. Multiple Normal random numbers are generated for eachdzi variable, subsequently
transforming back tody, dx, and dp variables to enforce the Diracδ -function constraint specifying the
VaR constraint.

The method of Cholesky decomposition is used (eigenvalue decomposition also could be used, requiring
inverses of matrices, which are used elsewhere in this project), wherein the covariance matrix is factored
into a product of triangular matrices, simply related to each other by the adjoint operation.This is
possible becauseG is a symmetric positive-definite matrix, i.e, because care has been taken to process the
raw data to preserve this structure as discussed previously.
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G = (gij) = C†C , I = C G−1 C† (32)

from which the transformation of thedy to dz are obtained.Eachdz has 0 mean and standard deviation 1,
so its covariance matrix is 1:

I = < (dz)†(dz) > = < (dz)† (C G−1 C†) (dz) >  (33)

= < (C† dz)† G−1 (C† dz) > = < (dy)† G−1 (dy) >  (34)

where

dy = C† dz (35)

The collection of related{dx}, {dy}, and {dz} sampled points are defined here as Events related to
market movements.

4.5.3. Numerical Development of Portfolio Returns
One approach is to directly develop the portfolio-returns distribution, from which moments are calculated
to define Q. This approach has the virtue of explicitly exhibiting the shapes of the portfolio distribution
being used. In some production runs, integration first over the Diracδ -function permits faster numerical
calculations of moments of the portfolio distribution, to fit these shapes.

The sampling process of Events are used to generate portfolio-return Bins to determine the shape of
P(dM). Basedon prior analyses of data — market distributions have been assumed to be basically two-
tailed exponentials — here too prior analyses strongly supports two-tailed distributions for the portfolio
returns. Therefore,only a “reasonable” sampling of points of the portfolio distribution, expressed as Bins,
is needed to calculate the moments.For example, a base function to be fitted to the Bins would be in
terms of parameters, widthΧ and meanmM ,

P(dM)dM =







1

2Χ
e

−
dM−mM

Χ dM , dM >= mM

1

2Χ
e

dM−mM

Χ dM , dM < mM

=
1

2Χ
e

−
|dM−mM |

Χ dM (36)

Χ andmM are defined from data in the Bins by

mM = < dM > , 2Χ2 = < (dM)2 > − < dM >2 (37)

By virtue of the sampling construction ofP(dM), Χ implicitly contains all correlation information
inherent inA′eff .

The TRD code can be easily modified to utilize distributionsP′(dM) with different widths, e.g., different
Χ′ for dM less than and greater thanmM ,

P′(dM)dM =
1

2Χ′
e

−
|dM−mM |

Χ′ dM (38)

A large number of Events populate Bins into the tails ofP(dM). Different regions ofP(dM) could be
used to calculate a piecewise Χ to compare to oneΧ over the full region, with respect to sensitivities of
values obtained forQ,

Q =
1

2
e

−
|VaR−mM |

Χ (39)

Note that fixing Q, VaR, and mM fixes the full shape of the portfolio exponential distribution. Sampling
of theNCi is used to adapt to this shape constraint.

5. Summary
The methods to be used all have been tested and used by the author for projects in other disciplines or
contexts. Thesemethods include the use of ASA for optimization and importance-sampling, application
of the SMNI model to fit EEG data for purposes of comparing experimental paradigms, risk-management
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tools for developing top-level probability distributions of multivariate systems with differing marginal
distributions, and experience working with large raw sets of data.

Again, it is important to stress that the use of these algorithms cannot be approached as a “black-box”
statistical analysis of data, e.g., without regard to decisions to make on scales and tuning of parameters
and functions to be developed and tested, and multiple sanity checks on intermediate as well as final
results among the team of researchers.

The Specific Aims enumerated in Section (2.1.) are an accurate chronological outline of the research
design envisioned at this time.

Using the methods of risk-management described in Section (4.), Trading in Risk Dimensions (TRD),
copula algorithms will be used to develop a portfolio of variables from different EEG setups, i.e., for each
subject for each experimental paradigm.After full “portfolio” distributions are developed, various
expectations of functional forms can be developed, typically simply intuitively formulated, but now able
to be algebraically and numerically calculated faithful to these intuitions.

For example, consider variablesx1 and x2 from two scales of measurements, e.g., as obtained from from
two data collection methods — raw data sensitive to 5-10 cm scales, and Laplacian-transformed data
sensitive to 2-3 cm scales.Eachx may represent a collection of parameterized stochastic variables, e.g.,
sets of excitatory and inhibitory activity at each electrode site.Using the SMNI distributions, marginal
distributions p1(x1) and p2(x2) are fit to data. The top-level “ portfolio” distribution is then developed,
p(x), where x can represent any function of x1 and x2, e.g., x = ax1 + bx2, where a and b might be
parameters to fit over sub-sets of experiments according to the degree of influence of the two scales.

As another example, a cost functionC(x1, x2) can be developed, e.g., that might represent some specific
circuitry measured among EEG electrode sites. The weights of the connections and time delays between
regions would be parameters inC(x1, x2), along with parameters in the SMNI model of excitatory and
inhibitory activities within each region. Sincewe have a bona fide probability distribution, this would be
a maximum likelihood fitting procedure using ASA.Resolution of this calculation might be enhanced
using ASA to importance-sample an analytic fit of the full portfolio distribution to its previous copula
development, thereby defining a recursive use of ASA for the fitting process. This procedure has been
used by the author in multiple previously published studies.

The true test of these algorithms requires good synchronized data utilizing multiple imaging techniques.
While some such data apparently is being generated[5,55,60], as is too common in medicine and
neuroscience, this data is not at all made available for public use, and it likely will take some time before
such data can be used as described here.
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