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ABSTRACT
Motivated by path-integral numerical solutions of diffusion processes, PATHINT, we present
a new tree algorithm, PATHTREE, which permits extremely fast accurate computation of
probability distributions of a large class of general nonlinear diffusion processes.
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1. INTRODUCTION

1.1. Path Integral Solution of Diffusion Processes
There are three equivalent mathematical representations of a diffusion process, provided of course

that boundary and initial conditions can be properly specified in each representation. In this paper we
refer to all three representations.

The Langevin rate equation for a stochastic process in dS can be written as in a prepoint
discretization,

dS = fdt + gdW ,

< dW >= 0 ,

< dW (t)dW (t ′) >= dtδ (t − t ′) ,  (1)

for general drift f and standard deviation g which may depend on S and t, wherein f and g are
understood to be evaluated at the prepoint t. Here, we just consider S dependent, but our algorithm can
easily be extended to time dependent cases and to multivariate systems.

This corresponds to a Fokker-Planck equation representing the short-time conditional probability P
of evolving within time dt,

∂P

∂t
= −

∂( fP)

∂S
+

1

2

∂2(g2P)

∂S2
, (2)

where the diffusion is given by g2.

The path-integral representation for P for the short-time propagator is given by

P(S ′, t ′|S, t) =
1

2πg2∆t
exp(−Ldt)

L =
(
dS

dt
− f )2

2g2

dS

dt
=

S ′ − S

dt
, dt = t ′ − t . (3)

In the above we hav e explicitly used the prepoint discretization [1].

1.2. PATHINT Motivation From Previous Study
In the above we hav e explicitly used the prepoint discretization, wherein f and g are understood to

be evaluated at the prepoint t. In this paper, we do not require multivariate generalizations, or issues
dealing with other discretizations, or explication of long-time path-integral evaluations, or issues dealing
with Riemannian invariance of our distributions. There exist other references dealing with these issues in
the context of calculations presented here [2-5].

Our approach is motivated by a multivariable generalization of a numerical path-integral
algorithm [6-8], PATHINT, used to develop the long-time evolution of the short-time probability
distribution as used in several studies in chaotic systems [9,10], neuroscience [9,11,12], and financial
markets [4]. These studies suggested that we apply some aspects of this algorithm to the standard
binomial tree.

1.3. PATHTREE Algorithms
Tree algorithms are generally derived from binomial random walks [13]. For many applications,

“tree” algorithms are often used, corresponding to the above Langevin and Fokker-Planck
equations [14,15]. These algorithms have typically been only well defined for specific functional forms of
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f and g.

We hav e previously presented a powerful PATHINT algorithm to deal with quite general f and g
functions [4]. This general PATHTREE algorithm can be used beyond previous specific systems,
affording fast reasonable resolution calculations for probability distributions of a large class of nonlinear
diffusion problems.

1.4. Organization of Paper
Section 2 describes the standard tree algorithm. Section 3 develops our probability PATHTREE

algorithm. Section 4 presents our probability calculations. Section 5 is our conclusion.

2. STANDARD OPTION TREE ALGORITHM

2.1. Binomial Tr ee
In a two-step binomial tree, the step up Su or step down Sd from a given node at S is chosen to

match the standard deviation of the differential process. The constraints on u and d are chosen as

ud = 1 ,  (4)

If we assign probability p to the up step Su, and q = (1 − p) to the down step Sd , the matched mean and
variance are

pSu + (1 − p)Sd = < S(t + ∆t) > ,

S2((pu2 + qd2 − (pu + qd)2)) = < ((S(t + ∆t) − < S(t + ∆t) >))2 > .  (5)

The right-hand-side can be derived from the stochastic model used.

2.2. Trinomial Tree
The trinomial tree can be used as a robust alternate to the binomial tree. Assume pu, pm and pd are

the probabilities of up jump Su, middle (no-)jump S and down jump Sd , where the jumps are chosen to
match the standard deviation. To match the variance of the process, the equations must satisfy

pu + pm + pd = 1 ,

S(puu + pm + pd d) = < S(t + ∆t) > ,

S2((puu2 + pm + pd d2 − (puu + pm + pd d)2)) = < ((S(t + ∆t) − < S(t + ∆t) >))2 > .  (6)

3. PROBABILITY TREE ALGORITHM

3.1. General Diffusion Process
Consider the general Markov multiplicative diffusion process interpreted as an Itô prepoint

discretized process, Eq. (1) with drift f and diffusion g2. For financial option studies the particular form
of the drift bS and diffusion (σ S)2 is chosen for lognormal Black-Scholes (BS) calculations [14]. For
options, the coefficient b is the cost of carry, e.g., b = r, the risk-free rate, when S is a stock price, and
b = 0 when S is a futures price [16]. The case of drift bS and constant diffusion diffusion σ 2 corresponds
to the Ornstein-Uhlenbeck (OU) process [17].

Our formalism is general and can be applied to other functional forms of interest with quite general
nonlinear drifts and diffusions, of course provided that the region of solution does not violate any
boundary or initial conditions.

Statistical properties of the dS process and of any derivative one based on nonlinear transformations
applied to S are determined once the transition probability distribution function P(S, t |S0, t0) is known,
where the 0 index denotes initial values of time and of the stochastic variable S. Transformation are
common and convenient for BS,
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z = ln S , (7)

yielding a simple Gaussian distribution in z, greatly simplifying analytic and numerical calculations.

The probability distribution can be obtained by solving the associated forward Fokker-Planck
equation Eq. (2). Appropriate boundaries and initial condition must be specified, e.g.,
P(S|S0) = δ (S − S0).

In general cases, the Fokker-Planck equation is rather difficult to solve, although a vast body of
work is devoted to it [17]. The particular BS and OU cases possess exact results.

Our goal is to obtain the solution of Eq. (1) for the more general process. A quite general code,
PATHINT [4], works fine, but it is much slower than the PATHTREE algorithm we present here.

3.2. Deficiency of Standard Algorithm to Order √ dt

We briefly describe the CRR construction of the binomial tree approximation [18].

A tree is constructed that represents the time evolution of the stochastic variable S. S is assumed to
take only 2 values, u, (up value), and d (down value) at moment t, giv en the value S at moment t − ∆t.
The probabilities for the up and down movements are p and q, respectively. The 4 unknowns { u, d , p, q}
are calculated by imposing the normalization of the probability and matching the first two moments
conditioned by the value S at t − ∆t, using the variance of the exact probability distribution P(S, t |S0, t0).
One additional condition is arbitrary and is usually used to symmetrize the tree, e.g., ud = 1.

The main problem is that the above procedure cannot be applied to a general nonlinear diffusion
process as considered in Eq. (1), as the algorithm involves a previous knowledge of terms of O(∆t) in the
formulas of quantities { u, p} obtained from a finite time expansion of the exact solution P sought.
Otherwise, the discrete numerical approximation obtained does not converge to the proper solution.

This observation can be checked analytically in the BS CRR case by replacing the relation
u = exp(σ ∆t) [15] with u = 1 + σ √ ∆t, and deriving the continuous limit of the tree. This also can be
checked numerically, as when { u, p} are expanded to O(∆t), the proper solution is obtained.

3.3. Probability PATHTREE
As mentioned previously, a general path-integral solution of the Fokker-Plank equation, including

the Black-Scholes equation, can be numerically calculated using the PATHINT algorithm. Although this
approach leads to very accurate results, it is computationally intensive.

In order to obtain tree variables valid up to O(∆t), we turn to the short-time path-integral
representation of the solution of the Fokker-Planck equation, which is just the multiplicative Gaussian-
Markovian distribution [1,19]. In the prepoint discretization relevant to the construction of a tree,

P(S ′, t ′|S, t) =
1

√ 2π∆tg2
exp




−

(S ′ − S − fdt)2

2g2∆t





∆t = t ′ − t (8)

valid for displacements S ′ from S “reasonable” as measured by the standard deviation g√ ∆t, which is the
basis for the construction of meshes in the PATHINT algorithm.

The crucial aspects of this approach are: There is no a priori need of the first moments of the exact
long-time probability distribution P, as the necessary statistical information to the correct order in time is
contained in the short-time propagator. The mesh in S at every time step need not recombine in the sense
that the prepoint-postpoint relationship be the same among neighboring S nodes, as the short-time
probability density gives the correct result up to order O(∆t) for any final point S ′. Instead, we use the
natural metric of the space to first lay down our mesh, then dynamically calculate the evolving local short-
time distributions on this mesh.

We construct an additive PATHTREE, starting with the initial value S0, with successive increments

Si+1 = Si + g√ ∆t , Si > S0
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Si−1 = Si − g√ ∆t , Si < S0 , (9)

where g is evaluated at Si . We define the up and down probabilities p and q, resp., in an abbreviated
notation, as

p =
P(i + 1|i; ∆t)

P(i + 1|i; ∆t) + P(i − 1|i; ∆t)

q = 1 − p . (10)

where the short-time transition probability densities P’s are calculated from Eq. (8). Note that in the limit
of small ∆t,

∆t→0
lim p =

1

2
. (11)

3.3.1. Continuous Limit of the PATHTREE Algorithm
In either the upper or lower branches of the tree (Si > S0 or Si < S0, resp.), we always have the

postpoint Si±1 in terms of the prepoint Si , but we also need the inverses to find the asymptotic
∆→0
lim of our

PATHTREE building technique. For example, for the upper branch case,

Si−1 ≈ Si − g√ ∆t + (g
∂g

∂S
)∆t + O(∆t3/2) .  (12)

This expression must be used to extract the down change d (Si−1 = Si + d), for comparison to the standard
tree algorithm.

The continuous limit of the previous tree building procedure is obtained by Taylor expanding all
factors up to terms O(∆t) and as functions of the prepoint Si [15]. This leads to

pu + qd

∆t
≈ f + O(∆t1/2)

pu2 + qd2

∆t
≈ g2 + O(∆t1/2) ,  (13)

from which the correct partial differential equation, Eq. (2), is recovered up to O(∆t).

In implementing the PATHTREE algorithm, good numerical results are obtained in the parameter
region defined by the convergence condition









g
∂g

∂Si





dt + g√ dt



/Si << 1 . (14)

This insures the proper construction of the tree to order O(∆t).

3.3.2. Treating Binomial Oscillations
Binomial trees exhibit by construction a systematic oscillatory behavior as a function of the number

of steps in the tree (equivalently, the number of time slices used to build the tree), and the new building
algorithm based on the short-time propagator of the path-integral representation of the solution of the
Fokker-Planck equation has this same problem. A common practice [20] is to perform averages of runs
with consecutive numbers of steps, e.g.,

C =
CN+1 + CN

2
, (15)

where CN signifies the value calculated with N number of steps.
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3.3.3. Inappropriate Trinomial Tree
Another type of tree is the trinomial tree discussed above, equivalent to the explicit finite difference

method [14,15]. If we were to apply this approach to our new PATHTREE algorithm, we would allow the
stochastic variable S to remain unchanged after time step ∆t with a certain probability pm. Howev er, in
our construction the trinomial tree approach is not correct, as the deterministic path is dominant in the
construction of the probabilities { pu, pm, pd } , and we would obtain

∆t→0
lim pu = pd = 0 ,

∆t→0
lim pm = 1 .  (16)

3.4. Linear and Quadratic Aspects of Numerical Implementation
PATHTREE computes the expected value of a random variable at a later time given the diffusion

process and an initial point. The algorithm is similar to a binomial tree computation and it consists of
three main steps: computation of a mesh of points, computation of transition probabilities at those points
and computation of the expected value of the random variable.

The first step is the creation of a one dimensional mesh of points with gaps determined by the
second moment of the short term distribution of the process. The mesh is created sequentially, starting
from the initial point, by progressively adding to the last point already determined (for the upward part of
the mesh) the value of the standard deviation of the short term distribution with the same point as
prepoint. In a similar fashion we create the mesh downwards, this time by subtracting the standard
deviations. The procedure takes a linear amount of time on the number of time slices being considered
and contributes very little to the overall time of the algorithm.

In the second step an array of up and down probabilities is created. These probabilities are the
values of the short term transition probability density function obtained by using the current point as
prepoint and the two neighboring points as post points. The probabilities are renormalized to sum to
unity. This procedure takes a linear amount of time on the number of time slices. Notice that the
probabilities only depend on the current point and not on time slice, hence only two probabilities are
computed per element of the array of points.

The third step is the computation of the expected value of the random variable. For example, the
option price C is developed by marching backwards along the tree and applying the risk-neutral
evaluation

C(Si , t − ∆t) = e−r∆t[pC(Si+1, t) + qC(Si−1, t)] . (17)

We emphasize again that in Itô terms the prepoint value is Si . This part works as a normal binomial tree
algorithm. The algorithm uses the expected values at one time slice to compute the expected values at the
previous one. The bulk of the time is spent in this part of the algorithm because the number of iterations
is quadratic on the amount of time slices. We managed to optimize this part by reducing each iteration to
about 10 double precision operations.

In essence, this algorithm is not slower than standard binomial trees and it is very simple to
implement.

4. CALCULATION OF PROBABILITY

4.1. Direct Calculation of Probability
We can calculate the probability density function by first recursively computing the probabilities of

reaching each node of the tree. This can be performed efficiently thanks to the Markov property. To
compute the density function we need to rescale these probabilities by the distance to the neighboring
nodes: the more spread the nodes are, the lower the density. We can estimate the probability density as
follows: First we compute the probability of reaching each final node of the tree. We do this
incrementally by first computing the probabilities of reaching nodes in time slice 1, then time slice 2 and
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so forth. At time slice 0, we know that the middle node has probability 1 of being reached and all the
others have probability 0. We compute the probability of reaching a node as a sum of two contributions
from the previous time slice. We reach the node with transition pu from the node below at the previous
slice, and with transition pd from the node above. Each contribution is the product of the probability at
the previous node times the transition to the current node. This formula is just a discretized version of the
Chapman-Kolmogorov equation

p(x j , ti) = p(x j−1, ti−1)pu j−1 + p(x j+1, ti−1)pd j+1 . (18)

After we have computed the absolute probabilities at the final nodes, we can give a proper
estimation of the density, by scaling the probabilities by the average of sizes of the two adjacent intervals,
densityi = pi/((Si+2 − Si−2)/2).

4.2. Numerical Derivatives of Expectation of Probability
The probability P can be calculated as a numerical derivative with respect to strike X of a European

Call option, taking the risk-free rate r to be zero, given an underlying S0 evaluated at time t = 0, with
strike X , and other variables such as volatility σ , cost of carry b, and time to expiration T suppressed here
for clarity, C(S0, 0; X),

P[S(T )|S(t0)]
S(T )≡X

= P[X |S(t0)] =
∂2C

∂X2
(19)

This calculation of the probability distribution is dependent on the same conditions necessary for
any tree algorithm, i.e., that enough nodes are processed to ensure that the resultant evaluations are a good
representation of the corresponding Fokker-Planck equation, addressed above, and that the number of
iterations in PATHTREE are sufficient for convergence.

4.2.1. Alternative First Derivative Calculation of Probability
An alternative method of calculating the probability P a a first-order numerical derivative, instead

of as second-order derivative, with respect to X is to define a function CH using the Heaviside step-
function H(S, X) = 1 if S ≥ X and 0 otherwise, instead of the Max function at the time to expiration.
This yields

P[S(T )|S(t0)]
S(T )≡X

= P[X |S(t0)] = −
∂CH

∂X
(20)

Sometimes this is numerically useful for sharply peaked distributions at the time of expiration, but we
have found the second derivative algorithm above to work fine with a sufficient number of epochs.

Our tests verify that the three methods above giv e the same density. We consider the numerical-
derivative calculations a very necessary baseline to determine the number of epochs required to get
reasonable accuracy.

4.2.2. Oscillatory Corrections
Fig. 1 illustrates the importance of including oscillatory corrections in any binomial tree algorithm.

When these are included, it is easy to see the good agreement of the BS PATHTREE and OU PATHTREE
models.

4.3. Comparison to Exact Solutions
Fig. 2 gives the calculated probability distribution for the BS and OU models, using the second

derivative numerical method, compared to their exact analytic solutions.

5. CONCLUSION
We hav e developed a path-integral based binomial PATHTREE algorithm that can be used in a

variety of stochastic models. This algorithm is simple, fast and can be applied to diffusion processes with
quite arbitrarily nonlinear drifts and diffusions.
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As expected, this PATHTREE algorithm is not as strong as PATHINT [4], as PATHINT can include
details of an extremely high dimensional tree with complex boundary conditions.

For PATHINT, the time and space variables are determined independently. I.e., the ranges of the
space variables are best determined by first determining the reasonable spread of the distribution at the
final time epoch. For PATHTREE just one parameter, the number of epochs N , determines the mesh for
both time and the space variables. This typically leads to a growth of the tree, proportional to √ N , much
faster than the spread of the distribution, so that much of the calculation is not relevant.

However, this PATHTREE algorithm is surprisingly robust and accurate. Similar to PATHINT, we
expect its accuracy to be best for moderate-noise systems.
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FIGURE CAPTIONS
FIG. 1. The oscillatory correction, an average of N and N + 1 iteration solutions, provides a simple

and effective fix to the well-known oscillations inherent to binomial trees. The uncorrected Black-Scholes
binomial tree (a) can be compared to the Black-Scholes tree with oscillatory correction (b). In (c), the
Ornstein-Uhlenbeck binomial tree also be robustly corrected as shown in (d). The BS PATHTREE model
shown in (e) can be compared to the Black-Scholes case shown in (b). The OU PATHTREE model (f) is
equivalent to the Ornstein-Uhlenbeck model in (d). Parameters used in these calculations are: S = 50.0, X
= 55.0, T = 1.0, r = 0.0675, b = 0, σ = 0.20, and N = 300.

FIG. 2. Probability distributions for the PATHTREE binomial model as described in the text, using
second-derivative numerical ("+"s) PATHTREE calculations. In (a), "+" graphs indicate OU PATHTREE
agrees well with the exact Ornstein-Uhlenbeck distribution shown in the black line. In (b), "+" graphs
indicate BS PATHTREE agrees well with the exact Black-Scholes distribution shown in the black line.
Parameters are the same as in Fig. 1.
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