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ABSTRACT: It is demonstrated that local columnar firings of neocortex, as modeled by a Statistical
Mechanics of Neocortical Interactions (SMNI), supports multipieg regions of multiple oscillatory
processing, at frequencies consistent with oleskregional electroencephalogrgp{EEG). Direct
calculations of the Euldragrange (EL) equations which are ded from functional variation of the
SMNI probability distribution, giving most likely states of the system, are performed for three
prototypical cases, predominatelyceatory columnar firings, predominately inhibitory columniaings,

and in between balanced columniaings, with and without a centering mechanism (based on aatserv
changes in stochastic background of presynaptic interactions) which pulls more stable states into the
physical firings ranges. These calculations are repeated for the visual nepatiitd has twice as mgn
neurons/minicolumn as other neocorticagioms. Thenonlinearities lead toery long codes and here the
results are presented as graphs the firing space.

KEYWORDS: EEG,; short term memory; nonlinear; statistical

Most recent drafts arevalable as http://wwwingber.com/smni09_columnar gepdf . Early drafts can be
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This early report considered oscillations in quasi-linearized Hislgrange equations, while a later subse-
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1. Introduction to Originsof EEG

The origins and utility of observed electroencephalograEG) are not yet clearThat is, mag
neuroscientists bele that global regional astity supports such avelike cscillatory observations at
various frequencies, e.g., popularly designated as alpha, beta, theta, etc (Nunez, 1974; Nunez, 1981,
Nunez, 1995). Here, gional refers to major neocortical regions, e.g., visual, auditamnatic,
associatre, frontal, etc. Global refers to interactions among these regions.

Some other westigators hae owvn hav reasonable models of reladly local columnar activity can
support oscillatory interactions (Inghé883; Ingber 1985b). Herelocal refers to scales of interactions
among neurons across columns consisting of hundreds of neurons and macrocolumns consisting of
thousands of minicolumns. This local approach, using a Statistical Mechanics of Neocortical Interactions
(SMNI) has also included globalgienal interactions among distant local columnar activity (Ingber &
Nunez, 1990). SMNI has also demonstrated hwst likely states described by muéiiate probability
distributions nonlinear in their means andvamances, i.e., as calculated as Euler-Lagrange (EL)
equations directly from the SMNI Lagrangian. This Lagrangian is the argument in the exponent of the
SMNI probability distrilution. TheEL equations are #&eloped from a wariational principle applied to

this distribution, and thegive rise to a nonlinear string model used by most neuroscientists to describe
global oscillatory activity (Ingbed995a).

Just as a quantum string theory of neoconight some day describe global neocortical\atyti albeit
unlikely, it still is not appropriate or useful to discuss aspects of measured neocorticalStRiGrly, a
molecular theory of weathewer continents on Earth is not appropriate or useful to forecast daily weather
patterns. Bgond criteria of being appropriate or useful, Nature hasloleed structures at intermediate
scales in man biological as well as in mannon-biological systems to facilitate flows of information
between relately small and lage scales of aatity. This has been discussed in the SMNI papers with
respect to the deelopment of columnar physiology in neocortex, which can be described by a nonlinear
nonequilibrium multvariate statistical mechanics, a subfield of statistical mechanics dealing with
Gaussian Markvian systems with time-dependent drifts and correlated diffusions, with both drifts and
diffusions nonlinear in their multipleaviables. Map systems possess such structures at so-called
mesoscopic scales, intermediate between microscopic and macroscopic scales, where these scales are
typically defined spedif to each system, and where the mesoscopic scale typically facilitates information
between the microscopic and macroscopic scalgpically, these mesoscopic scalesvéaheir ovn
interesting dynamics. SMNI has described columnar activity to be factied mesoscopic scale
intermediate between macroscopic regional interactions and microseegiged synaptic and neuronal
interactions.

In this context, while EEG may %@ generators at microscopic neuronal scales and regional macroscopic
scales, this study was mwdied to irvestigate whether mesoscopic scales can support coluritivay f
activity at obsered multiple frequencies, e.g., alpha, beta, theta, not necessarily generate such
frequencies. Theshort answer is yes. The detailed support of this result requires quiteylength
calculations of the highly nonlinear mutiriate SMNI system.However, a gaphical presentation of the
multivariate EL equations presents an accurate as well asvetultpiction of these results, yielding
equations of graphs, instead of the nonlinear nauitite algebra, or instead of the computer code
generated by these equations (some of which are hundreds of thousands of lines long).

More recent work has deloped this project using the full nonlinear EL equations, requiring use of the
authors Adaptie Smulated Annealing (ASA) global sampling algorithm (Ingi2809).

Section 2 is a rewe of the SMNI model.

Section 3 presents calculations of the EL equations, which are based on direct calculations of the
nonlinear multvariate EL equations of the SMNI Lagrangian, giving most likely states of the system,
performed for three prototypical cases, predominately excitatory columnar firings, predominately
inhibitory columnar firings, and in between balanced columnar firings, with and without a centering
mechanism turned on which pulls more stable states into the phyisicgs franges. This centering
mechanism expresses experimentally observed changes in stochastic background of presynaptic
interactions during selewg atention. Thesealculations are repeated for the visual neocortex, which has
twice as may neurons/minicolumn as other neocortical regions.
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Section 4 takes an opportunity here to identify and corre@ aror in the original SMNI work which
has been propagated iwvep 30 papers up until n@. This error does not affect yrconclusions of
previous results, but it must be correcteDirect comparisons are made using EL results, which also
presents an opportunity to seewhoobust the SMNI model is with respect to changes in synaptic
parameters within their experimentally observed ranges.

Section 5 presents calculations of oscillatory statésien the EL calculations, irestigations are
performed for each of the prototypical cases to see if and where oscillatory behavior is observed within
experimentally observed ranges. These results also are presented graphically.

Section 6 is the conclusion, offering some conjecture on the utility of having colummway aetpport
oscillatory frequencies observedeo regons of neocortex, e.g., to support eeying local neuronal
information across regions as is observed in normal human activity.

2. Statistical Mechanics of Neocortical I nteractions (SMNI)

Neocorta has e&olved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions acrggmseof macrocolumns.This
common architecture processes patterns of information within and amdéengrdifregions of sensqry
motor, associatve @rtex, etc.

2.1. SMNI Testson Short-Term Memory and EEG

The author has deloped a statistical mechanics of neocortical interactions (SMNI) for human negcorte
building from synaptic interactions to minicolumpamacrocolumnar and regional interactions in
neocorte. Sincel981, a series of papers on the statistical mechanics of neocortical interactions (SMNI)
has been deloped to model columns andgiens of neocortex, spanning mm to cm of tissue, As
depicted in Figure 1, SMNI delops three biopysical scales of neocortical interactions: (A)H@’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(¢c’) macroscogionse SMNI has
developed conditional probability distributions at eachele aggraaing up from the smallestels of
interactions. In (&) synaptic inter-neuronal interactions,veeaged ®er by mesocolumns, are
phenomenologically described by the mean and variance of a wdistnibW. Smilarly, in (a)
intraneuronal transmissions are phenomenologically described by the meanargamtcey of I'.
Mesocolumnar eraged excitatoryK) and inhibitory () neuronal frings M are represented in (a’)n

(b) the vertical aganization of minicolumns is sketched together with their horizontal stetdn,
yielding a physiological entifythe mesocolumn. In (b") theverlap of interacting mesocolumns at
locationsr andr' from timest andt + r is sketched. Inc) macroscopic regions of heocorte depicted

as arising from manmesocolumnar domains. (c’) sketchesviregons may be coupled by long-ranged
interactions.

Most of these papers V& dealt explicitly with calculating properties of short-term memory (STand

scalp EEG in order to test the basic formulation of this approach (Jntgk; Ingber 1982; Ingber

1983; Ingber1984; Ingber 1985b; Ingber1985c; Ingber1986b; Ingber & Nunez, 1990; Inghei991;
Ingber 1992; Ingber1994; Ingber & Nunez, 1995; Inghel995a; Ingberl995b; Ingber1996b; Ingber
1996a; Ingber 1997; Ingber 1998). The SMNI modeling of local mesocolumnar interactions
(corvergence and diergence between minicolumnar and macrocolumnar interacticasYagted on STM
phenomena. Th&MNI modeling of macrocolumnar interactions across regions was tested on EEG
phenomena.

The EEG studies in pvious SMNI applications were focused on regional scales of interacticms.
STM applications were focused on columnar scales of interactidowever, this EEG study is focused
at columnar scales, and it is nent to stress the successes of this SMNI at this columnar soaleg gi
support to this SMNI model in this context.

2.2. SMNI Description of STM

SMNI studies hee cetailed that maximal numbers of attractors lie within the physical firing spadé of
where G = {Excitatory Inhibitory} minicolumnar irings, consistent with experimentally obseuv
capacities of auditory and visual STM, when a “centering” mechanism is enforced by shifting background
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Fig. 1. lllustrated are three biophysical scales of neocortical interactions:” X&xjfa
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions.

noise in synaptic interactions, consistent wigpeximental observations under conditions of selecti
attention (Mountcastle, Andersen & Mottd®81; Ingber 1984; Ingber 1985c; Ingber1994; Ingber &
Nunez, 1995). This leads to all attractors of the short-time distribution lying along a diagonalNifie in
space, déctively defining a narrev parabolic trough containing these most likely firing statébis
essentially collapses the dvdimensional M€ space down to a one-dimensional space of most
importance. Thughe predominant pisics of STM and of (short-fiber contribution to) EEG phenomena
takes place in a namo"parabolic trough” inVI® space, roughly along a diagonal line (Ingli®g4).

These calculations were further supported by high-resolutiolut®n of the short-time conditional-
probability propagator usingAPHINT (Ingber & Nunez, 1995) SMNI correctly calculated the stability
and duration of STM, the primacrersus recencrule, random access to memories within tenths of a
second as observed, and the observe@ tapacity rule of auditory memory and the observi+ 2
capacity rule of visual memory.

SMNI also calculates o STM patterns (e.g., from a\gn regon or een aggregaed from multiple
regions) may be encoded by dynamic mimdifion of synaptic parameters (withirkperimentally
observed ranges) into long-term memory patterns (LTM) (Ind9&B).

2.3. SMNI Description of EEG

Using the pwer of this formal structure, sets of EEG amnbked potential data from a separate NIH
study collected to inestigate genetic predispositions to alcoholism, wéted to an SMNI model on a
lattice of regional electrodes to extract brain “signatures” of STM (Indi®&7; Ingber 1998). Each
electrode site was represented by an SMNI digioh of independent stochastic macrocolunstaled

MC variables, interconnected by long-ranged circuitry with delays appropriate to ibmwg-f
communication in neocorte Theglobal optimization algorithm Adapg Smulated Annealing (ASA)
(Ingber 1989; Ingber 1993a) vas used to perform maximum likelihood fits of Lagrangians defined by
path integrals of mublariate conditional probabilities.Canonical momenta indicators (CMI) were
thereby denied for individual's EEG data. The CMI ge letter signal recognition than thewaata, and
were used to advantage as correlates of behavioral stateample data was used for training (Ingber
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1997), and out-of-sample data was used for testing (Ing@@8) these fits.

These results aye strong quantitatie sipport for an accurate intuie gcture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or beharal phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

2.4. Generic Mesoscopic Neural Networks

SMNI was applied to a parallelized generic mesoscopic neuraloriestW{MNN) (Ingbey 1992), as
depicted in Figure 2, adding computational power to a similar paradigm proposedyémré@ognition
(Ingber 1985a).

Fig. 2. Scales of interactions among minicolumns are represented, within macrocolumns,
across macrocolumns, and across regions of macrocolumns.

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
firings, or multvariate frings. The'weights; or coefficients of functions of firings appearing in the drifts

and diffusions, are fit to incoming data, considering the joint Lagrangian (including tréHag of the
prefactor in the probability distribution) as a dynamic cost functidhis program of fitting codifcients

in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically \eaemt representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equatidn&oarse deterministic estimate to
“predict” the eolution can be applied using the most probable path, BIHINT has been used.
PATHINT, even when parallelized, typically can be toowléor “predicting” evolution of these systems.
However, PATHTREE is much faster.

2.5. ON Chaosin Neocortex

There are manpapers on the possibility of chaos in neocortical interactions, including some that consider
noise-induced interactions (Zhou & Kurths, 2003). While this phenomena maystrae merit when
dealing with small netarks of neurons, e.g., in some circumstances such as epitapsg papers
generally hae mnsidered only too simple models of neocortex.

The author took a model of chaos that might be measured by EEGopml and published by
colleagues (Nunez & Sriwvasan, 1993; Srinesan & Nunez, 1993), but adding background stochastic
influences and parameters that were agreed to better model neocortical interactions. The resulting
multivariate nonlinear conditional probability distribution was propagatedyntlasusands of epochs,

using the authorsATHINT code, to see if chaos could exist and persist under such a model ,(Ingber
Srinivasan & Nunez, 1996). There was absolutely no measurable instance of chaosgimthis more

realistic contgt. Again, note this study as at the columnar scale, not the finer scales of activity of
smaller pools of neurons.

2.6. Mathematical Development

2.6.1. Background

A spatial-temporal latticei¢ld short-time conditional multiplicate-noise (nonlinear in drifts and
diffusions) multvariate Gaussian-Madvian probability distribution is deloped faithful to neocortical
function/physiology Such probability distribtions are a basic input into the approach used HEne.

SMNI model was theirfst physical application of a nonlinear mudfiiate calculus desloped by other
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mathematical physicists in the late 19/® cefine a statistical mechanics of mu#iiate nonlinear
nonequilibrium systems (Graham, 1977; Langouche, Roekaerts & Tirapegui, 1982).

This formulation of a multariate nonlinear nonequilibrium system required aouesion in a proper
Riemannian geometry to study proper limits of short-time conditional probability distns. Some
tangible spin-offs from this study included applications to spediisciplines such as neuroscience
(SMNI), finance (Ingber1990; Ingber 2000), combat simulations (Inghet993b), and nuclear phics
(Ingber 1986a) In addition there were generic computational tool®lajged, for optimization and
importance-sampling with ASA (Inghefl993a), and for path-integral systems, includirAl RINT
(Ingber 2000; Ingber & Nunez, 1995). andPHTREE (Ingber Chen, Mondesceat al, 2001).

2.6.2. Application to SMNI
Some of the algebra behind SMNI depicts variables and distributions that populate each repessentati
macrocolumn in each region.

A derived mesoscopic Lagrangiahy, defines the short-time probability disttition Py, of firings in a
minicolumn composed dfiLl(? neurons, by agggeting probability distrilitions of neuronalifings Ps;»

given its just prgious interactions with all other neurons in its macrocolumnar surroGni. used to
represent excitatory=) and inhibitory () contributions. G designates contributions from bdghand| .

Puw =1 PRIME(r; t+ 1) MC(r'; 1)]
G

O o OnN
=Y oY oj - ME(r;t+ )@ oy - M'(r; t+ 1)1 Po,
o [JE alnll 0

=1 (2nrg®®) ™ exp(-N7L) ,
G
Pu=(2nt) g2 exp(-N7Ly) @)

Ly =L+ L = CN) Y (M® - ¢®)gee(M® - g%) + MCJg/(2N7) -V’

<
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G

g® = -1 }(M® + N®tanhF®) , g°¢ = (ggg)* = & 1 INCsecRF€ | g = det(ggg) ,
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(V& — aShSING - L ABlvEIM®) .
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((2)[(VEN? + (AN (@EING + AGIMEYHZ -~ 2

where AS, and BE are minicolumnaaveraged inter-neuronal synapticfiehcies, v& and ¢g are
avaaged means and variances of contiimns to neuronal electric polarizationsl® andN® in F€ are
afferent macrocolumnairings, scaled to efferent minicolumnar firings ByN * (1103, whereN * is the
number of neurons in a macrocolunii0°. Similarly, AS andBE have teen scaled b * /NI10° to
keep FC invariant. V' are mesocolumnar nearest-neighbor interactidkiswas wsed in early papers to
model influences on minicolumnar firings from long-ranged fibers acrggsns but later papers V&
integrated these long-ranged fibers into thevati@mevork as described beho

It is interesting to note that the numeratorFSf contains information deréd from presynapticifing
interactions. Thdocation of most stable states of this SMNI system are highly dependent on the
interactions presented in this numeratdhe denominator oF® contains information deréd from
postsynaptic neuromodular and electrical processing of tivgsgsf Thenonlinearities present in this
denominator most dramaticallyfa€t the number and nature of stable states at scales zoomed in at
magnifcations of @er a hundred times, representing neocortical processing of detailed information
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within a sea of stochastic activity.

2.6.3. ThreePrototypical Firing Cases

Three Cases of neuronal firings were considered in the first introduction of STM applications of SMNI
(Ingber 1984). Belav is a $iort summary of these detail®ote that while it sdfces to define these
Cases using®, the full Lagrangian and probability distution, upon which the desdtion of the EL
equations are based, are themselves quite nonlinear functidfs, efg., via hyperbolic trigonometric
functions, etc.

Since STM duration is long relaé o 7, Sationary solutions of. can irvestigated to determine ho
mary stable minima < ME > may simultaneouslyxst within this duration.However, time-dependent
folding of the full time-dependent probability disuiibn supports persistence of these stable states
within SMNI calculations of observed decay rates of STM (Ingber & Nunez, 1995).

It is discavered that more minima of are created, i.e., brought into theypital firing ranges, if the
numerator ofF® contains terms only iMG, tending to centeL aboutM® = 0. Thatis, B® is modifed

such that the numerator Bf is transformed to

1 .
- Alg,lvlgll\/le 1
Fie = : ; g =-AG+BE, 2)
((2)[(VED? + (AGh21(a'§ING + p ASIME))Y2 2

The most lilely states of the “centered” systems lie along diagonaSrspace, a line determined by the
numerator of the threshold factorfi¥, essentially

AEME - AEM' =0, ®)

noting that inF' | =1 connectity is taken to be ery small relatie © other pairings, so that

(AEME — AlM") is typically small only for smalME.

Of course, am mechanism producing more as well as deeper minima is statistiaathed. Havever,

this particular “Centering” mechanism has plausible suppdfi(t + 7) = 0 is the state of afferentring

with highest statistical weight. l.e., there are more combinations of neunongs$ fo; = £1, yielding

thls state than another MS(t + 7), e.g.,[2N“*2(7NC) ™2 relative © the stateM® = +NC. Similarly,
M"C(t) is the state of efferent firing with highest statistical weighherefore, it is natural toxplore

mechanisms whichaffar common highly weighted efferent and afferent firings in ranges consistent with

favorable firing threshold factors®=0.

A model of dominant inhibition describeswaaninicolumnar frings are suppressed by their neighboring
minicolumns. Br example, this could be effected byweeping NN mesocolumnar interactions (Ingber
1983), but here thevearaged dfect is established by inhibitory mesocolumns (Case 1) by setting
AL = AF =2AE =0.0IN"/N. Since there appears to be relaly litle | -1 connectivity set
=0.000NN /N. The background synaptic noise is taken t@pe= BE = 2BE = 10B] = 0. 002N"/N.
As minicolumns are observed toved 1110 neurons (visual coreappears to hae gproximately twice
this density) (Mountcastle, 1978), and as there appear to be a predomlnErmeeof neurons (Nunez,
1981), here tak NE =80 andN' =30. UseN'/N =10 v&, and ¢S as estimated pvéously. The
“threshold factors'FC for this | model are then

¢ (0.5M'-0.29MF +3.0)
' 20, 10" +0.09MF + 9. 80)2

ol (0.008' —0.5MF -45.8) @

' 20,00 +0. IME +11. 22
In the prepoint-discretized deterministic limit, the threshold factors determine when \arsinbothly
the step-function forms tarf# in g®(t) changeM®(t) to MS(t + 7). F! will cause aferentM' to fire

for most of its values, adl' O- N' tanhF| will be positive for most values of1€ in F/, which is already
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weighted heavily with a term -45.8. Looking l&f, it is seen that the relatily high positie values of
efferentM’ require at least moderate values of pesitferentM £ to cause firings of afferem o

The centering ééct of the | model, labeled here as the IC model, is quite easy for neotmrte
accommodate. df example, this can be accomplished simply by readjusting the synaptic background
noise fromB¢ to B'E,

1 1
VO - (5 A% + BENEN' - 2 AQVENE]
= VENG (5)

for both G=E and G=1. In general, BS and BY (and possiblyAS and A® due to actions of
neuromodulators, andg constraints from long-ranged fibers) aneilable to zero the constant in the
numeratorgiving an extra dgree(s) of freedom to this mechanistif. B'S would be neaive, this leads

to unphysical results in the square-root denominatéif Here, in all examples where this occurs, it is
possible to instead find posiéi B'C to appropriately shift the numerator Bf.) In this context, it is
empirically observed that the synaptic sem#itiof neurons engaged in seleetidatention is altered,
presumably by the influence of chemical neuromodulators on postsynaptic neurons (Mountcastle,
Andersen & Motter1981).

By this Centering mechanisrB!E = 1. 38andB'| = 15. 3,andF’ is transformed td 2.,
cE . (0.5M' —0.25vF)
' 120, 1M" +0.09ME +10. 4p2

1G
B'E

. (0.008M' —0.5MF) ©)
' 120,00 +0.IME +20. 42

Note that, aside from the enforceahishing of the constant terms in the numeratoisfthe only other
changes ifF ¢ moderately affect the constant terms in the denominators.

The other “extreme” of normal neocorticatifigs is a model of dominant excitation, effected by
establishing xcitatory mesocolumns (Case E) by using the same pararfBfgrsS, ¢3., A} as in the |
model, but settingAE = 2AL = 2AF = 0. 0IN"/N. This yields

ce (0.25M' —0.5MF - 24. 5)
72(0.05M' +0.10MF +12. 32

(0.005M' —0.25MF - 25. 8)
71/2(0. 00IM" +0.05M  +7. 2432
The n@aive mnstant in the numerator &f. inhibits aferent M i rings. Althoughthere is also a
negaive mnstant in the numerator &, the increased coégient of ME (relative © its corresponding

value in FF), and the dct thatM = can range up tolE = 80, readily permits excitatory firings throughout
most of the range d¥l ©.

Applying the Centering mechanism toEE = 10. 2andB'| = 8. 62. The net effect ifF &, in addition to
removing the constant terms in the numeratorg gf is to dhange the constant terms in the denominators:
12.3inFE is changed to 17.2 iR, and 7.24 inFL is changed to 12.4 iRk

Now it is natural to examine a balanced Case inter[nediate between | and E, labeled here asi@ise B.
is accomplished by changirf = AL = AF =0.005N"/N. This yields

£ (0.25M' -0.25M" - 4.50)
712(0. 050V F +0. 05aM' +8. 3012’

Fe= (7

(0.008M' - 0.25M°F - 25. 8)

Fy = . _ .
® " 72(0.00M' +0.05ME +7. 24)2

(8)
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Applying the Centering mechanism to BE = 0. 438andB'| = 8. 62. The net dict in F§¢, in addition
to removing the constant terms in the numeratorsFf is to change the constant terms in the
denominators: 8.30 iRE is changed to 7.40 iR, and 7.24 inF} is changed to 12.4 iRjc.

2.6.4. Inclusion of Macroscopic Circuitry

The most important features of thisvdlepment are described by the Lagrangighin the ngaive o
the argument of the exponential describing the probability disioilb, and the “thresholdaétor” FC
describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, thé; terms can be dropped, and more realistically replaced by aietbdif
threshold factoF©,

L1 . .1 .
o (Ve - aSVEIN® - . ASIVEIME - afFVE N*E - . AEVEME)
= 5 ’ 2 - ’ ’
((,T/z)[(vlgl)z + (gdg,')Z](aQNG + . AISIMG + aE?NiE + . AfIin?MiE ))1/2

C))
ofE = 1 ptE , piE
Er - 2 Er EI .

Here, aferent contributions fronN*E long-ranged excitatory fibers, e.g., cortico-cortical neuronge ha
been added, wherdl** might be on the order of 10% di"”: Of the approximately 18 to 10
neocortical neurons, estimates of the number of pyramidal cells range from 1/10 tée2/8y every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 10

The long-ranged circuitry was parameterized (with respect to strengths and time delays) in the EEG
studies described ab® In this way SMNI presents a powerful computational tool to include both long-
ranged global regional activity and short-ranged local columnar activity.

2.7. Portfolio of Physiological I ndicators (PPI)

The SMNI distributions present a template for disiiitns of neocortical populations. The Trading in
Risk Dimensions (TRD) project illustratesvin@uch distributions can be ddoped as a Portfolio of
Physiological Indicators (PPI) (Inghe2005), to calculate risk and uncertainty of functions, e.g., functions
of Ideas, dependent omeants that impact populations of neurons (IngB6606b).

It is clear that the SMNI distrittions also can be used to process different imaging data beyond EEG,
e.g., also MEG, PETSPECT, fMRI, etc., where each set of imaging data is used to fit it own set of
parameterized SMNI distributions using a commanawmal circuitry (Different imaging techniqgues may

have dfferent sensitiities to different synaptic and neuronal eities.) Thenportfolios of these imaging
distributions can be deloped to describe the total neuronal system, e.g., akin to a portfolio of a basket of
markets. For example, this could permit the uncertainties of measurements to be reduced by weighting
the contributions of different data sets, efverlaps of distributions corresponding to different subsets of
data gve rumerical specificity to the values of using these subsets.

It is to be &pected that better resolution of behavioranes can be determined by joint distributions of
different imaging data, rather than by treating each distribution separately.

2.7.1. Local Versus Global I nfluences

Another twist on the use of this approach is to better understand the role of local and globaiticostrib

to imaging data.EEG data is often collected at different electrode resolutions. Cost functions composed
of these different collection-methodnables can be used to calculate expectatioes their imaging
portfolios. For example, relate weights of two scales of collection methods can be fit as parameters, and
relatve grengths as thecontribute to various circuitries can be calculatddhis method will be applied
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to determine the degree of redace of local and global activity during spécifasks. If some tasks
involve drcuitry with frontal cortex, then these methods may coutetio the understanding of the role of
consciousness.

2.8. Application to Ideas by Statistical Mechanics (ISM)

These kinds of applications of SMNI and TRD to PRIehabvious counterparts in an Al approach to
Ideas by Statistical Mechanics (ISM). ISM is a generic program to mudkitien and propagation of
ideas/patterns throughout populations subjected to endogenous and exogenous interactions. The program
is based on the authemork in SMNI, and uses the auth®ASA code (Ingberl993a) for optimizations

of training sets, as well as for importance-sampling to apply the amthopula financial risk-
management codes, TRD (Ingh2005), for assessments of risk and uncertaifiyis product can be
used for decision support for projects ranging from diplomatic, information, miliégad; economic
(DIME) factors of propaation/evolution of ideas, to commercial sales, trading indicators across sectors of
financial markets, advertising and political campaigns, ktseems appropriate to base an approach for
propagtion of ideas on the only system so far demonstrated ieogeand nurture ideas, i.e., the
neocortical brain (Ingbe006a; Ingber2007; Ingber2008).

3. Euler-Lagrange (EL) Equations

To investigate dynamics of multariate stochastic nonlinear systems, such as neaqgaeeents, it is not
sensible to simply apply simple mean-field theories which assume sharply peakedtdisgjlsince the
dynamics of nonlinear diffusions in particular are typically washed ddére, path intgral
representations of systems, otherwise enmtly represented by Langevin ookkerPlanck equations,
present elgant algorithms by use of aviational principles leading to Euler-Lagrange equations
(Langouche, Roekaer&Tirapegui, 1982).

The EulerLagrange equations are ded from the variational principle possessed by the SMNI
LagrangianL, essentially the counterpart to force equals mass times acceleration,

9 oL 9 o oL _
t 9@P/At)  Ox d(@PIIX) D

where x represent the independent dynamicatiable. Belo there are tw variables{ME, M'}
considered with tw coupled equations. The result is
0’0 %D oF

aat2+ aX2+y(D GCD_O' (11)
because the determinant @etorg defined abee dso contains nonlinear detaildedting the state of the
system. Sincey is often a small numbedistortion of the scale ok is avoided by normalizingg/go,
where g, is simply g evduated atME = M* = M' =0. ® was devdoped in earlier papers to be the
measured scalp electric potential, a function of the underlying columnar firings (Ingber & Nunez, 1990).

If there exist rgions in neocortical parameter space such that we can id@tify —c?, y/a = j (e.g.,
as explicitly calculated using the centering mechanism),

1 oF

— — =—0f(P), 12

35 = 0f@ (12)
and we tak x to be one-dimensional in the nasrparabolic trough described al® then we receer the
nonlinear string model mentioned in the Introduction.

The most-probable firing states dexd variationally from the path-integral Lagrangian as the Euler
Lagrange equations represent a reasonalB@@ge @er the noise in the SMNI system, which can be
equivalently written as a Langevin system of coupled stochastferdiitial equations, a multriate
Fokker-Planck partial dierential equation, or as a path-integratrca conditional probability distribtion
(Ingber 1982; Ingber1983).

For mary studies, the noise cannot be simply digrded, as demonstrated in other SMNI STM and EEG
studies, ht for the purpose here of demonstrating the existence of multiple local oscillatory states that can
be identified with EEG frequencies, the EL equationsesezwy well.

(10)
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Note that there can be a dozen spatial-temporal coupled EL equations for SMNI systerios cal
studies, as denéd in previous SMNI papers (Inghet983; Ingber1995a).

Previous SMNI EEG studies ka cemonstrated that simple dispersion relationsvdérirom the EL
equations support the local generation of alpha frequencies as observed experimentally as watigas deri
diffusive propagtion \elocities of information across minicolumns consistent with otRpermental
studies.. Thesarliest studies simply used a driving fotkgM® in the Lagrangian to model long-ranged
interactions among fibers (Inghed982; Ingber 1983). Subsequenstudies considered gmnal
interactions driving localized columnar activity within thesgioas (Ingber1996b; Ingber1997; Ingber
1998). Thisstudy considers self-sustaining EEG activity within columns.

In this study we onsider a fully coupled local system Bf-1 firing states, without gnother ad hoc
driving forces.

e e e e _
Cz M +CiyM™ +c5 (M7 +c5 M +c33 (M)? +ciT ME+051=0

ClEM' +CIEME +ChE (ME)2 + clhM' + i (M')2 +ciEM! +cly1=0 (13)
This set of coupled EL equations is in terms of 14 fodehts, each of which is a function of theotw

firing statesc = ¢(ME, M"). Thedouble-digit subscriptfc;;} are used to identify w-column graphs in
figures belw.

That is, the highly nonlinear EL equationsddeen greatly simplified by imagining that at each point in
the numerical mesh describing the firing spéab®, M'} a Taylor expansion of each term in the EL
equations is performed, keeping dogénts up to ordefMS, M€, (M®)2 with a residual term constant at
this point in this firing space. It is noted that some areas of coarser wteBh similar structures, and
this is the basis of looking further for oscillatory behavior within these ranges of columnar firings.

3.1. Maxima, Gnuplot and C codes

Maxima output can be directly ceated to Fortran, and then the f2c utility can be used to generate C
code. Havever, that C code is barely readable and thus hard to mainitastead, Maxima output can be
directly processed dew simple Unix scripts to generate very decent standard C clbdbe columnar
parameters are left unspecified, then some of the Elficieeits can be as long asvaml hundred
thousand lines, but which compile well under gcc/g++. This code can be useful for figtuwkethese
parameters to actual clinical data, similar to the EEG project discussesl abo

A great advantage of using an algebraic languageMaxima &er numerical languages kkC/C++ is
that highly nonlinear expressions can be processed before numericatapeos, often keep smalub
important scales without losing them to rounfleainstraints.

The numerical output of Maxima is thenvdeped by Gnuplot (Williams & Klley, 2008) into graphs
presented here.

3.2. Results

Calculations of codiftients of EL equations were performed for three prototypigagfcase established

in earlier SMNI papers (Ingbefl984), predominately excitatory (E), predominately inhibitory (1) and
balanced aboutvenly (B). More minima can be brought within ysical firing ranges when a
“Centering” mechanism is woked (Ingbet 1984), by tuning the presynaptic stochastic background, a
phenomena observed during selestitention, gving rise to cases EC, IC and BC. The states BC are
obsened to yield properties of auditory STM, e.g., the Z capacity rule and times of duration of these
memory states (Ingbet984; Ingber1985c).

It is observed that visual neocotteas twice the number of neurons per minicolumn as other regions of
neocorte. In the SMNI model this ges rise to faver and deeper STM states, consistent with the
observed 4 2 capacity rule of these memory states. These calculations are casdFGW¥id BCV.

Calculations here took into account that regions of si&llhave nore detailed structure for the most
interesting Centered cases, by stepping the mesh according to
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AMC = floor ((abs(M€)/10+ 1)) . (14)

This discrete mesh delops M€ space into 1908 point for non-visual certand 3216 points for visual

cortex. All graphs presented here/iked some thresholds to present structures withipsptal ranges of
experimentally observed phenomena. All absolute values lying outside of these thresholds are not plotted
(although thg are retained in datdlés). Plotsof the EL co€ficients used thresholds of 0.5. Plots of the
Lagrangian used thresholds of O.@arlier SMNI studies set Lagrangian thresholds at 0.04.) Cases E,
EC and ECV are gen in Hgures 3-5. Cases |, IC and ICV areaji in Figures 6-8. Cases B, BC and

BCV are gven in Fgures 9-11.

It is interesting to note some relationships between the “mass x acceleration” term of the EL equations,
essentially the diffusion times the second diives o M€, with the string-“force” term proportional to

M€ to motwate looking for oscillatory statesHowever, only complete calculations Wolving all terms

can delver the results gien below.
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Fig. 3. EulerLagrange codifcients for Excitatory neocortical columndnirfigs. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 4. EulerLagrange codifcients for Excitatory Centered neocortical columriengds.
See Eq. (13) for identification of graphs with EL doménts{c;}. Bottom right corner
graph (location 53) is the Lagrangian.
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Fig. 5. EulerLagrange codicients for Excitatory Centeredidtial neocortical columnar
firings. Seekq. (13) for identification of graphs with EL céiefents{c;}. Bottom right
corner graph (location 53) is the Lagrangian.
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Fig. 6. EulerLagrange codifcients for Inhibitory neocortical columnadrifigs. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 7. EulerLagrange codifcients for Inhibitory neocortical columnadrifigs. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 8. EulerLagrange codifcients for Inhibitory neocortical columnadrifigs. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 9. EulerLagrange codifcients for Balanced neocortical columniaings. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 10. EulerLagrange codifcients for Balanced neocortical columniainfys. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location

53) is the Lagrangian.
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Fig. 11. EulerLagrange codifcients for Balanced neocortical columniainfys. SeeEq. (13)
for identification of graphs with EL coetients{c;}. Bottom right corner graph (location

53) is the Lagrangian.
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4. Correction of sqrt(2) Error

A V2 aror has been propagated in a series of papers spanning 198140@8st published in 1982
(Ingbet 1982), in the calculation of

1 00
Po, = T 2 dz exp(—zz) = % [1 - erf(ojF;vnl2)], (15)

1
Fi=(V; _%ajkvjk)/[ngajk'(vjzk’ + @)z (16)
the last equatiorEj should be corrected withv&®, as in
1
Fi=(- % aV[(ml2) kZ aje (Vi + @)z . (17)

This also similarly décts all mesocolumnarverages w@er neuronal F;, yielding FC factors in
subsequent algebra.

In this papercalculations of the Balanced centered case withti® error is case BC2, to be compared
with calculations of case BCThis error has no dramatic consequences on other resulisddierithe
above papers. Thids because in all these papergarding (vlzk, + gaJ?k.), only numerical values of @2
values hae keen used fovjzk. and qzsz Thus, this would only hee the numerical effect of increasing
by a factor of 1.73 (a number not well established experimentall{3:+®. 12 = 0. 02 - 2(0.02)= 0. 04

= 0.12+70.03 = 0.12+0.173, whereqve is the mean andgj, is the variance of, in mV, of the
postsynaptic response tpquanta. Thereforehis also presents an opportunity to sew lmobust the
SMNI model is with respect to changes in synaptic parameters within ttpgrimentally obsered
ranges.

The nature of the modiifations is illustrated in Figure 12, to be compared with results using the correct
equations in Figure 10. While care has beeenak use only neocortical parameters with values within
experimental obseations, these values can range substantaty so ag results such as those presented
here could be just as reasonable if interpolated or reasonably extrapolated betwee o thegse sy
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Fig. 12. EulerLagrange codicients for Balanced neocortical columnar firings with original
V2 aror. See Eq. (13) for identification of graphs with EL doeients{c;}. Bottom right
corner graph (location 53) is the Lagrangian.
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5. Oscillatory States Supported by SMNI EL Equations

After the Taylor expansions are taken, each of the EL terms in the neighborhood Mfdlependent
terms is assumed tovea aépendence,

ME _ MC exp(-iwgt) (18)

wherewg (independentse andw,) can be complex, and for hiigy the same notatioM € is used in the
wg-transformed space. The real part of represents oscillatory states, while the imaginary part
represent attenuation in time of these states. If in fact there are imitmedighborhoods iM® space

that supports reab, with only modest attenuation, then it can be claimed that these neighborhoods
support oscillatory states. The mwation of this study was to seek such states withipeamentally

obsened ranges and to see if there could be multiple frequencies spanning observed theta, alpha and beta
frequencies.

Note that if the time scales of postsynaptic responsis, on te order of 10 msec, thevsr (which is
what is being calculated) on the order of 1 is edent to a frequencvg = wg/(2m) on the order of 16
cps (Hz) which is close to the range of observed alpha rhythms (considered to be 8-12 Hz).

At each point inM® space a simple generalization ofiNen’s method, mnewton within Maxima set to a

limit of 50 iterations per point in firing space, was used to try toestile couple EL equations for
complexwg. In some instances no reasonable neighborhoods foragalould be found.The code
mnewton is called 109,150 times (with 50 iterations per each call) for the calculations presented here, and
this routine was clearly picked solely for its spe@dl.graphs presented herevioked some thresholds to
present structures within physical ranges xpegimentally observed phenomena. All absoludues

lying outside of these thresholds are not plotted (althoughdteeretained in datalés). Plotsof the
frequencies used thresholds of 10.0. (The can beymaots at higher and \eer values due to
combinations of polynomials and sinusoidal functionguin) As can be seen in the graphs in Figures
13-17, there are mgmegons supportingygr ranging from 0.1 to 10.

In clinical settings is obseed that frequencies understood as alpha often in fagt sbmponents of
varying frequencies especially around 8-13 Hz. Whemdigher resolutions of EEG are obtained, e.q.,
below the scalp, multiple components are more obvious, aedlecal patches of EEG may be obsmtv
(Nunez & Srinvasan, 2006; Nunez, 2009).
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Fig. 13. Real (oscillatory) frequeycsolutions for Balanced, Excitatory and Inhibitory
neocortical columnar firings, in columns 1-3 redpows 3 and 4 are these cases with the
centering mechanism. Solutions in rows 1 and Jwgrgrows 2 and 4 arew, .
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Fig. 14. Imaginary (attenuated) frequsnsolutions for Balanced, Excitatory and Inhibitory
neocortical columnar firings, in columns 1-3 redpows 3 and 4 are these cases with the
centering mechanism. Solutions in rows 1 and Jwgrgrows 2 and 4 arew, .
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Q'Icvlm

Fig. 15. Real (oscillatory) frequepnesolutions for Balanced, Excitatory and Inhibitory visual
neocortical columnarirings, with the centering mechanism, in columns 1-3 ré&gutions
inrow 1 ae wg, row 2 ae w, .
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Fig. 16. Imaginary (attenuated) frequsnsolutions for Balanced, Excitatory and Inhibitory
visual neocortical columnatirings, with the centering mechanism, in columns 1-3 resp.
Solutions in rav 1 are wg, row 2 ae w; .
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Fig. 17. For Balanced neocortical columnarifigs with originalv2 error, with the centering
mechanism, real (oscillatory) frequereplutions are in column 1 and imaginary (attenuated)
frequeng solutions are in column 2. Solutions invd. are wg, row 2 ae w, .
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6. Conclusion on Conjecture of Neocortical Information Processing

It is reasonable to conjecture that if columnar firings of short-rangedsfM® can oscillate within
harmonics of long-rangedbers M **E, this could facilitate information processed at fine neuronal and
synaptic scales to be carried across minicolumns and regional columns witte rffiatiengy. Note that
this activity is at leels of 102 or 10° of the Lagrangian defining a small scale for STM, i.e., “zooming
in” to still within classical (not quantum) domains of information.

While attractor states i@ keen explicitly detailed in previous papers fovesal SMNI models, here
oscillatory states v been calculated throughout the rangeiohd space.Clearly, oscillations within
the columnar attractors should naturallyvénalonger lifetimes, but gen that long-ranged itber
interactions across regions can constrain columnar firings, it is useful to at leasvseEeilations may
be supportedwen in limited ranges of such constrained firings.

For example, during skv theta — often preset during sleep, during alpha — often present during
“relaxed” attention, and duringa$ter beta — often present during intense concentration, information
inherent in dynamic STM firings as well as in reldly static synaptic parameters, are oftengadrinto
associatie reocort&, and during conscious selegtidtention frontal corte often controls processing of
this information. The use of global carrier frequencies could aid in the noise suppressiovetottsn
information.
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