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ABSTRACT: It is demonstrated that local columnar firings of neocortex, as modeled by a Statistical
Mechanics of Neocortical Interactions (SMNI), supports multiple firing regions of multiple oscillatory
processing, at frequencies consistent with observed regional electroencephalography (EEG). Direct
calculations of the Euler-Lagrange (EL) equations which are derived from functional variation of the
SMNI probability distribution, giving most likely states of the system, are performed for three
prototypical cases, predominately excitatory columnar firings, predominately inhibitory columnar firings,
and in between balanced columnar firings, with and without a centering mechanism (based on observed
changes in stochastic background of presynaptic interactions) which pulls more stable states into the
physical firings ranges. These calculations are repeated for the visual neocortex, which has twice as many
neurons/minicolumn as other neocortical regions. Thenonlinearities lead to very long codes and here the
results are presented as graphs over the firing space.
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Most recent drafts are available as http://www.ingber.com/smni09_columnar_eeg.pdf . Early drafts can be
downloaded from http://ssrn.com/abstract=1357369 .

This early report considered oscillations in quasi-linearized Euler-Lagrange equations, while a later subse-
quent published study considers the full nonlinear system and gives more background and implications of
the calculations:
L. Ingber, “Statistical mechanics of neocortical interactions: Nonlinear columnar electroencephalography,”
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1. Introduction to Origins of EEG
The origins and utility of observed electroencephalography (EEG) are not yet clear. That is, many
neuroscientists believe that global regional activity supports such wav e-like oscillatory observations at
various frequencies, e.g., popularly designated as alpha, beta, theta, etc (Nunez, 1974; Nunez, 1981;
Nunez, 1995). Here, regional refers to major neocortical regions, e.g., visual, auditory, somatic,
associative, frontal, etc. Global refers to interactions among these regions.

Some other investigators have shown how reasonable models of relatively local columnar activity can
support oscillatory interactions (Ingber, 1983; Ingber, 1985b). Here,local refers to scales of interactions
among neurons across columns consisting of hundreds of neurons and macrocolumns consisting of
thousands of minicolumns. This local approach, using a Statistical Mechanics of Neocortical Interactions
(SMNI) has also included global regional interactions among distant local columnar activity (Ingber &
Nunez, 1990). SMNI has also demonstrated how most likely states described by multivariate probability
distributions nonlinear in their means and covariances, i.e., as calculated as Euler-Lagrange (EL)
equations directly from the SMNI Lagrangian. This Lagrangian is the argument in the exponent of the
SMNI probability distribution. TheEL equations are developed from a variational principle applied to
this distribution, and they giv e rise to a nonlinear string model used by most neuroscientists to describe
global oscillatory activity (Ingber, 1995a).

Just as a quantum string theory of neocortex might some day describe global neocortical activity, albeit
unlikely, it still is not appropriate or useful to discuss aspects of measured neocortical EEG.Similarly, a
molecular theory of weather over continents on Earth is not appropriate or useful to forecast daily weather
patterns. Beyond criteria of being appropriate or useful, Nature has developed structures at intermediate
scales in many biological as well as in many non-biological systems to facilitate flows of information
between relatively small and large scales of activity. This has been discussed in the SMNI papers with
respect to the development of columnar physiology in neocortex, which can be described by a nonlinear
nonequilibrium multivariate statistical mechanics, a subfield of statistical mechanics dealing with
Gaussian Markovian systems with time-dependent drifts and correlated diffusions, with both drifts and
diffusions nonlinear in their multiple variables. Many systems possess such structures at so-called
mesoscopic scales, intermediate between microscopic and macroscopic scales, where these scales are
typically defined specific to each system, and where the mesoscopic scale typically facilitates information
between the microscopic and macroscopic scales.Typically, these mesoscopic scales have their own
interesting dynamics. SMNI has described columnar activity to be an effective mesoscopic scale
intermediate between macroscopic regional interactions and microscopic averaged synaptic and neuronal
interactions.

In this context, while EEG may have generators at microscopic neuronal scales and regional macroscopic
scales, this study was motivated to investigate whether mesoscopic scales can support columnar firing
activity at observed multiple frequencies, e.g., alpha, beta, theta, not necessarily generate such
frequencies. Theshort answer is yes. The detailed support of this result requires quite lengthy
calculations of the highly nonlinear multivariate SMNI system.However, a graphical presentation of the
multivariate EL equations presents an accurate as well as intuitive depiction of these results, yielding
equations of graphs, instead of the nonlinear multivariate algebra, or instead of the computer code
generated by these equations (some of which are hundreds of thousands of lines long).

More recent work has developed this project using the full nonlinear EL equations, requiring use of the
authors Adaptive Simulated Annealing (ASA) global sampling algorithm (Ingber, 2009).

Section 2 is a review of the SMNI model.

Section 3 presents calculations of the EL equations, which are based on direct calculations of the
nonlinear multivariate EL equations of the SMNI Lagrangian, giving most likely states of the system,
performed for three prototypical cases, predominately excitatory columnar firings, predominately
inhibitory columnar firings, and in between balanced columnar firings, with and without a centering
mechanism turned on which pulls more stable states into the physical firings ranges. This centering
mechanism expresses experimentally observed changes in stochastic background of presynaptic
interactions during selective attention. Thesecalculations are repeated for the visual neocortex, which has
twice as many neurons/minicolumn as other neocortical regions.
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Section 4 takes an opportunity here to identify and correct a√2 error in the original SMNI work which
has been propagated in over 30 papers up until now. This error does not affect any conclusions of
previous results, but it must be corrected.Direct comparisons are made using EL results, which also
presents an opportunity to see how robust the SMNI model is with respect to changes in synaptic
parameters within their experimentally observed ranges.

Section 5 presents calculations of oscillatory states.Given the EL calculations, investigations are
performed for each of the prototypical cases to see if and where oscillatory behavior is observed within
experimentally observed ranges. These results also are presented graphically.

Section 6 is the conclusion, offering some conjecture on the utility of having columnar activity support
oscillatory frequencies observed over regions of neocortex, e.g., to support conveying local neuronal
information across regions as is observed in normal human activity.

2. Statistical Mechanics of Neocortical Interactions (SMNI)
Neocortex has evolved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions across regions of macrocolumns.This
common architecture processes patterns of information within and among different regions of sensory,
motor, associative cortex, etc.

2.1. SMNI Tests on Short-Term Memory and EEG
The author has developed a statistical mechanics of neocortical interactions (SMNI) for human neocortex,
building from synaptic interactions to minicolumnar, macrocolumnar, and regional interactions in
neocortex. Since1981, a series of papers on the statistical mechanics of neocortical interactions (SMNI)
has been developed to model columns and regions of neocortex, spanning mm to cm of tissue, As
depicted in Figure 1, SMNI develops three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. SMNI has
developed conditional probability distributions at each level, aggregating up from the smallest levels of
interactions. In (a* ) synaptic inter-neuronal interactions, averaged over by mesocolumns, are
phenomenologically described by the mean and variance of a distribution Ψ. Similarly, in (a)
intraneuronal transmissions are phenomenologically described by the mean and variance of Γ.
Mesocolumnar averaged excitatory (E) and inhibitory (I ) neuronal firings M are represented in (a’).In
(b) the vertical organization of minicolumns is sketched together with their horizontal stratification,
yielding a physiological entity, the mesocolumn. In (b’) the overlap of interacting mesocolumns at
locationsr andr′ from timest andt + τ is sketched. In(c) macroscopic regions of neocortex are depicted
as arising from many mesocolumnar domains. (c’) sketches how regions may be coupled by long−ranged
interactions.

Most of these papers have dealt explicitly with calculating properties of short-term memory (STM)and
scalp EEG in order to test the basic formulation of this approach (Ingber, 1981; Ingber, 1982; Ingber,
1983; Ingber, 1984; Ingber, 1985b; Ingber, 1985c; Ingber, 1986b; Ingber & Nunez, 1990; Ingber, 1991;
Ingber, 1992; Ingber, 1994; Ingber & Nunez, 1995; Ingber, 1995a; Ingber, 1995b; Ingber, 1996b; Ingber,
1996a; Ingber, 1997; Ingber, 1998). The SMNI modeling of local mesocolumnar interactions
(convergence and divergence between minicolumnar and macrocolumnar interactions) was tested on STM
phenomena. TheSMNI modeling of macrocolumnar interactions across regions was tested on EEG
phenomena.

The EEG studies in previous SMNI applications were focused on regional scales of interactions.The
STM applications were focused on columnar scales of interactions.However, this EEG study is focused
at columnar scales, and it is relevant to stress the successes of this SMNI at this columnar scale, giving
support to this SMNI model in this context.

2.2. SMNI Description of STM

SMNI studies have detailed that maximal numbers of attractors lie within the physical firing space ofMG ,
where G = {Excitatory, Inhibitory} minicolumnar firings, consistent with experimentally observed
capacities of auditory and visual STM, when a “centering” mechanism is enforced by shifting background
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Fig. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions.

noise in synaptic interactions, consistent with experimental observations under conditions of selective
attention (Mountcastle, Andersen & Motter, 1981; Ingber, 1984; Ingber, 1985c; Ingber, 1994; Ingber &
Nunez, 1995). This leads to all attractors of the short-time distribution lying along a diagonal line inMG

space, effectively defining a narrow parabolic trough containing these most likely firing states.This
essentially collapses the two-dimensional MG space down to a one-dimensional space of most
importance. Thus,the predominant physics of STM and of (short-fiber contribution to) EEG phenomena
takes place in a narrow “parabolic trough” inMG space, roughly along a diagonal line (Ingber, 1984).

These calculations were further supported by high-resolution evolution of the short-time conditional-
probability propagator using PATHINT (Ingber & Nunez, 1995).SMNI correctly calculated the stability
and duration of STM, the primacy versus recency rule, random access to memories within tenths of a
second as observed, and the observed 7± 2 capacity rule of auditory memory and the observed 4± 2
capacity rule of visual memory.

SMNI also calculates how STM patterns (e.g., from a given region or even aggregated from multiple
regions) may be encoded by dynamic modification of synaptic parameters (within experimentally
observed ranges) into long-term memory patterns (LTM) (Ingber, 1983).

2.3. SMNI Description of EEG
Using the power of this formal structure, sets of EEG and evoked potential data from a separate NIH
study, collected to investigate genetic predispositions to alcoholism, were fitted to an SMNI model on a
lattice of regional electrodes to extract brain “signatures” of STM (Ingber, 1997; Ingber, 1998). Each
electrode site was represented by an SMNI distribution of independent stochastic macrocolumnar-scaled
MG variables, interconnected by long-ranged circuitry with delays appropriate to long-fiber
communication in neocortex. Theglobal optimization algorithm Adaptive Simulated Annealing (ASA)
(Ingber, 1989; Ingber, 1993a) was used to perform maximum likelihood fits of Lagrangians defined by
path integrals of multivariate conditional probabilities.Canonical momenta indicators (CMI) were
thereby derived for individual’s EEG data. The CMI give better signal recognition than the raw data, and
were used to advantage as correlates of behavioral states.In-sample data was used for training (Ingber,
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1997), and out-of-sample data was used for testing (Ingber, 1998) these fits.

These results gav e strong quantitative support for an accurate intuitive picture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

2.4. Generic Mesoscopic Neural Networks
SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) (Ingber, 1992), as
depicted in Figure 2, adding computational power to a similar paradigm proposed for target recognition
(Ingber, 1985a).

Fig. 2. Scales of interactions among minicolumns are represented, within macrocolumns,
across macrocolumns, and across regions of macrocolumns.

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
fi rings, or multivariate firings. The“weights,” or coefficients of functions of firings appearing in the drifts
and diffusions, are fit to incoming data, considering the joint Lagrangian (including the logarithm of the
prefactor in the probability distribution) as a dynamic cost function.This program of fitting coefficients
in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equations.A coarse deterministic estimate to
“predict” the evolution can be applied using the most probable path, but PATHINT has been used.
PATHINT, even when parallelized, typically can be too slow for “predicting” evolution of these systems.
However, PATHTREE is much faster.

2.5. ON Chaos in Neocortex
There are many papers on the possibility of chaos in neocortical interactions, including some that consider
noise-induced interactions (Zhou & Kurths, 2003). While this phenomena may have some merit when
dealing with small networks of neurons, e.g., in some circumstances such as epilepsy, these papers
generally have considered only too simple models of neocortex.

The author took a model of chaos that might be measured by EEG, developed and published by
colleagues (Nunez & Srinivasan, 1993; Srinivasan & Nunez, 1993), but adding background stochastic
influences and parameters that were agreed to better model neocortical interactions. The resulting
multivariate nonlinear conditional probability distribution was propagated many thousands of epochs,
using the authors PATHINT code, to see if chaos could exist and persist under such a model (Ingber,
Srinivasan & Nunez, 1996). There was absolutely no measurable instance of chaos surviving in this more
realistic context. Again, note this study was at the columnar scale, not the finer scales of activity of
smaller pools of neurons.

2.6. Mathematical Development

2.6.1. Background
A spatial-temporal lattice-field short-time conditional multiplicative-noise (nonlinear in drifts and
diffusions) multivariate Gaussian-Markovian probability distribution is developed faithful to neocortical
function/physiology. Such probability distributions are a basic input into the approach used here.The
SMNI model was the first physical application of a nonlinear multivariate calculus developed by other
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mathematical physicists in the late 1970’s to define a statistical mechanics of multivariate nonlinear
nonequilibrium systems (Graham, 1977; Langouche, Roekaerts & Tirapegui, 1982).

This formulation of a multivariate nonlinear nonequilibrium system required an excursion in a proper
Riemannian geometry to study proper limits of short-time conditional probability distributions. Some
tangible spin-offs from this study included applications to specific disciplines such as neuroscience
(SMNI), finance (Ingber, 1990; Ingber, 2000), combat simulations (Ingber, 1993b), and nuclear physics
(Ingber, 1986a) In addition there were generic computational tools developed, for optimization and
importance-sampling with ASA (Ingber, 1993a), and for path-integral systems, including PATHINT
(Ingber, 2000; Ingber & Nunez, 1995). and PATHTREE (Ingber, Chen, Mondescuet al, 2001).

2.6.2. Application to SMNI
Some of the algebra behind SMNI depicts variables and distributions that populate each representative
macrocolumn in each region.

A derived mesoscopic LagrangianLM defines the short-time probability distribution PM of firings in a
minicolumn composed of∼102 neurons, by aggregating probability distributions of neuronal firings pσ j

,
given its just previous interactions with all other neurons in its macrocolumnar surround.G is used to
represent excitatory (E) and inhibitory (I ) contributions. G designates contributions from bothE andI .

PM =
G
Π PG

M [MG(r; t + τ )|MG(r′; t)]

=
σ j

Σ δ


 jE
Σσ j − M E (r; t + τ )




δ



 jI
Σσ j − M I (r; t + τ )





N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG

M ) ,

PM ≈(2π τ )−1/2g1/2 exp(−Nτ LM ) ,  (1)

LM = LE
M + L I

M = (2N )−1(Ṁ
G − gG)gGG′(Ṁ

G′ − gG′) + MG JG /(2Nτ ) − V ′ ,

V ′ =
G
ΣV ′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + N G tanhFG) , gGG′ = (gGG′)
−1 = δ G′

G τ −1N Gsech2FG , g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
, aG

G′ =
1

2
AG

G′ + BG
G′ ,

where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies, vG
G′ and φ G

G′ are
av eraged means and variances of contributions to neuronal electric polarizations.MG′ andN G′ in FG are
afferent macrocolumnar firings, scaled to efferent minicolumnar firings byN /N * ∼10−3, whereN * is the
number of neurons in a macrocolumn,∼105. Similarly, AG′

G and BG′
G have been scaled byN * / N∼103 to

keep FG invariant. V ′ are mesocolumnar nearest-neighbor interactions.JG was used in early papers to
model influences on minicolumnar firings from long-ranged fibers across regions, but later papers have
integrated these long-ranged fibers into the above framework as described below.

It is interesting to note that the numerator ofFG contains information derived from presynaptic firing
interactions. Thelocation of most stable states of this SMNI system are highly dependent on the
interactions presented in this numerator. The denominator ofFG contains information derived from
postsynaptic neuromodular and electrical processing of these firings. Thenonlinearities present in this
denominator most dramatically affect the number and nature of stable states at scales zoomed in at
magnifications of over a hundred times, representing neocortical processing of detailed information
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within a sea of stochastic activity.

2.6.3. Three Prototypical Firing Cases
Three Cases of neuronal firings were considered in the first introduction of STM applications of SMNI
(Ingber, 1984). Below is a short summary of these details.Note that while it suffices to define these
Cases usingFG , the full Lagrangian and probability distribution, upon which the derivation of the EL
equations are based, are themselves quite nonlinear functions ofFG , e.g., via hyperbolic trigonometric
functions, etc.

Since STM duration is long relative to τ , stationary solutions ofL can investigated to determine how
many stable minima << MG >> may simultaneously exist within this duration.However, time-dependent
folding of the full time-dependent probability distribution supports persistence of these stable states
within SMNI calculations of observed decay rates of STM (Ingber & Nunez, 1995).

It is discovered that more minima ofL are created, i.e., brought into the physical firing ranges, if the
numerator ofFG contains terms only inMG , tending to centerL aboutMG = 0. Thatis, BG is modified
such that the numerator ofFG is transformed to

F ′G =
−

1

2
A|G|

G′ v|G|
G′ MG′

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a′|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
, a′GG′ =

1

2
AG

G′ + B′GG′ , (2)

The most likely states of the “centered” systems lie along diagonals inMG space, a line determined by the
numerator of the threshold factor inF E , essentially

AE
E M E − AE

I M I ≈ 0 ,  (3)

noting that in F I I − I connectivity is taken to be very small relative to other pairings, so that
(AI

E M E − AI
I M

I ) is typically small only for smallM E .

Of course, any mechanism producing more as well as deeper minima is statistically favored. However,
this particular “Centering” mechanism has plausible support:MG(t + τ ) = 0 is the state of afferent firing
with highest statistical weight. I.e., there are more combinations of neuronal firings, σ j = ±1, yielding
this state than any other MG(t + τ ), e.g.,∼2N G+1/2(π N G)−1/2 relative to the statesMG = ±N G . Similarly,
M *G(t) is the state of efferent firing with highest statistical weight.Therefore, it is natural to explore
mechanisms which favor common highly weighted efferent and afferent firings in ranges consistent with
favorable firing threshold factorsFG≈0.

A model of dominant inhibition describes how minicolumnar firings are suppressed by their neighboring
minicolumns. For example, this could be effected by developing NN mesocolumnar interactions (Ingber,
1983), but here the averaged effect is established by inhibitory mesocolumns (Case I) by setting
AI

E = AE
I = 2AE

E = 0. 01N * /N . Since there appears to be relatively little I − I connectivity, set
AI

I = 0. 0001N * /N . The background synaptic noise is taken to beBE
I = BI

E = 2BE
E = 10BI

I = 0. 002N * /N .
As minicolumns are observed to have ∼110 neurons (visual cortex appears to have approximately twice
this density) (Mountcastle, 1978), and as there appear to be a predominance ofE over I neurons (Nunez,
1981), here take N E = 80 andN I = 30. UseN * /N = 103, vG

G′, and φ G
G′ as estimated previously. The

“threshold factors”FG
I for this I model are then

F E
I =

(0. 5M I − 0. 25M E + 3. 0)

π 1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

F I
I =

(0. 005M I − 0. 5M E − 45. 8)

π 1/2(0. 001M I + 0. 1M E + 11. 2)1/2
. (4)

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly
the step-function forms tanhFG

I in gG(t) changeMG(t) to MG(t + τ ). F I
I will cause afferent M I to fire

for most of its values, asM I ∼ − N I tanhF I
I will be positive for most values ofMG in F I

I , which is already
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weighted heavily with a term -45.8. Looking atF E
I , it is seen that the relatively high positive values of

efferentM I require at least moderate values of positive efferentM E to cause firings of afferentM E .

The centering effect of the I model, labeled here as the IC model, is quite easy for neocortex to
accommodate. For example, this can be accomplished simply by readjusting the synaptic background
noise fromBG

E to B′GE ,

B′GE =
[V G − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

E vG
E N E ]

vG
E N G

(5)

for both G = E and G = I . In general, BG
E and BG

I (and possiblyAG
E and AG

I due to actions of
neuromodulators, andJG constraints from long-ranged fibers) are available to zero the constant in the
numerator, giving an extra degree(s) of freedom to this mechanism.(If B′GE would be negative, this leads
to unphysical results in the square-root denominator ofFG . Here, in all examples where this occurs, it is
possible to instead find positive B′GI to appropriately shift the numerator ofFG .) In this context, it is
empirically observed that the synaptic sensitivity of neurons engaged in selective attention is altered,
presumably by the influence of chemical neuromodulators on postsynaptic neurons (Mountcastle,
Andersen & Motter, 1981).

By this Centering mechanism,B′E
E = 1. 38andB′I

I = 15. 3,andFG
I is transformed toFG

IC,

F E
IC =

(0. 5M I − 0. 25M E )

π 1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

F I
IC =

(0. 005M I − 0. 5M E )

π 1/2(0. 001M I + 0. 1M E + 20. 4)1/2
. (6)

Note that, aside from the enforced vanishing of the constant terms in the numerators ofFG
I , the only other

changes inFG
I moderately affect the constant terms in the denominators.

The other “extreme” of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (Case E) by using the same parameters{BG

G′, vG
G′,φ G

G′, AI
I } as in the I

model, but settingAE
E = 2AI

E = 2AE
I = 0. 01N * /N . This yields

F E
E =

(0. 25M I − 0. 5M E − 24. 5)

π 1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

F I
E =

(0. 005M I − 0. 25M E − 25. 8)

π 1/2(0. 001M I + 0. 05M E + 7. 24)1/2
. (7)

The negative constant in the numerator ofF I
E inhibits afferent M I fi rings. Althoughthere is also a

negative constant in the numerator ofF E
E , the increased coefficient of M E (relative to its corresponding

value in F E
I ), and the fact thatM E can range up toN E = 80, readily permits excitatory firings throughout

most of the range ofM E .

Applying the Centering mechanism to E,B′E
I = 10. 2andB′I

I = 8. 62. The net effect inFG
EC, in addition to

removing the constant terms in the numerators ofFG
E , is to change the constant terms in the denominators:

12.3 inF E
E is changed to 17.2 inF E

EC, and 7.24 inF I
E is changed to 12.4 inF I

EC.

Now it is natural to examine a balanced Case intermediate between I and E, labeled here as Case B.This
is accomplished by changingAE

E = AI
E = AE

I = 0. 005N * /N . This yields

F E
B =

(0. 25M I − 0. 25M E − 4. 50)

π 1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
B =

(0. 005M I − 0. 25M E − 25. 8)

π 1/2(0. 001M I + 0. 050M E + 7. 24)1/2
. (8)



Lester Ingber - 9 -

Applying the Centering mechanism to B,B′E
E = 0. 438andB′I

I = 8. 62. The net effect in FG
BC, in addition

to removing the constant terms in the numerators ofFG
B , is to change the constant terms in the

denominators: 8.30 inF E
B is changed to 7.40 inF E

BC, and 7.24 inF I
B is changed to 12.4 inF I

BC.

2.6.4. Inclusion of Macroscopic Circuitry

The most important features of this development are described by the LagrangianLG in the negative of
the argument of the exponential describing the probability distribution, and the “threshold factor” FG

describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, theJG terms can be dropped, and more realistically replaced by a modified
threshold factorFG ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
,

(9)

a‡E
E′ =

1

2
A‡E

E′ + B‡E
E′ .

Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have
been added, whereN‡E might be on the order of 10% ofN ∗: Of the approximately 1010 to 1011

neocortical neurons, estimates of the number of pyramidal cells range from 1/10 to 2/3.Nearly every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 1010.

The long-ranged circuitry was parameterized (with respect to strengths and time delays) in the EEG
studies described above. In this way SMNI presents a powerful computational tool to include both long-
ranged global regional activity and short-ranged local columnar activity.

2.7. Portfolio of Physiological Indicators (PPI)
The SMNI distributions present a template for distributions of neocortical populations. The Trading in
Risk Dimensions (TRD) project illustrates how such distributions can be developed as a Portfolio of
Physiological Indicators (PPI) (Ingber, 2005), to calculate risk and uncertainty of functions, e.g., functions
of Ideas, dependent on events that impact populations of neurons (Ingber, 2006b).

It is clear that the SMNI distributions also can be used to process different imaging data beyond EEG,
e.g., also MEG, PET, SPECT, fMRI, etc., where each set of imaging data is used to fit it own set of
parameterized SMNI distributions using a common regional circuitry. (Different imaging techniques may
have different sensitivities to different synaptic and neuronal activities.) Then,portfolios of these imaging
distributions can be developed to describe the total neuronal system, e.g., akin to a portfolio of a basket of
markets. For example, this could permit the uncertainties of measurements to be reduced by weighting
the contributions of different data sets, etc.Overlaps of distributions corresponding to different subsets of
data give numerical specificity to the values of using these subsets.

It is to be expected that better resolution of behavioral events can be determined by joint distributions of
different imaging data, rather than by treating each distribution separately.

2.7.1. Local Versus Global Influences
Another twist on the use of this approach is to better understand the role of local and global contributions
to imaging data.EEG data is often collected at different electrode resolutions. Cost functions composed
of these different collection-method variables can be used to calculate expectations over their imaging
portfolios. For example, relative weights of two scales of collection methods can be fit as parameters, and
relative strengths as they contribute to various circuitries can be calculated.This method will be applied
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to determine the degree of relevance of local and global activity during specific tasks. If some tasks
involve circuitry with frontal cortex, then these methods may contribute to the understanding of the role of
consciousness.

2.8. Application to Ideas by Statistical Mechanics (ISM)
These kinds of applications of SMNI and TRD to PPI have obvious counterparts in an AI approach to
Ideas by Statistical Mechanics (ISM). ISM is a generic program to model evolution and propagation of
ideas/patterns throughout populations subjected to endogenous and exogenous interactions. The program
is based on the author’s work in SMNI, and uses the author’s ASA code (Ingber, 1993a) for optimizations
of training sets, as well as for importance-sampling to apply the author’s copula financial risk-
management codes, TRD (Ingber, 2005), for assessments of risk and uncertainty. This product can be
used for decision support for projects ranging from diplomatic, information, military, and economic
(DIME) factors of propagation/evolution of ideas, to commercial sales, trading indicators across sectors of
financial markets, advertising and political campaigns, etc.It seems appropriate to base an approach for
propagation of ideas on the only system so far demonstrated to develop and nurture ideas, i.e., the
neocortical brain (Ingber, 2006a; Ingber, 2007; Ingber, 2008).

3. Euler-Lagrange (EL) Equations
To inv estigate dynamics of multivariate stochastic nonlinear systems, such as neocortex presents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear diffusions in particular are typically washed out.Here, path integral
representations of systems, otherwise equivalently represented by Langevin or Fokker-Planck equations,
present elegant algorithms by use of variational principles leading to Euler-Lagrange equations
(Langouche, Roekaerts& Tirapegui, 1982).

The Euler-Lagrange equations are derived from the variational principle possessed by the SMNI
LagrangianL, essentially the counterpart to force equals mass times acceleration,

∂
∂t

∂L

∂(∂Φ/∂t)
+

∂
∂x

∂L

∂(∂Φ/∂x)
−

∂L

∂Φ
= 0 .  (10)

where x represent the independent dynamical variable. Below there are two variables {M E , M I }
considered with two coupled equations. The result is

α
∂2Φ
∂t2

+ β
∂2Φ
∂x2

+ γ Φ −
∂F

∂Φ
= 0 .  (11)

because the determinant prefactorg defined above also contains nonlinear details affecting the state of the
system. Sinceg is often a small number, distortion of the scale ofL is avoided by normalizingg/g0,
where g0 is simply g evaluated atM E = M‡E′ = M I = 0. Φ was dev eloped in earlier papers to be the
measured scalp electric potential, a function of the underlying columnar firings (Ingber & Nunez, 1990).

If there exist regions in neocortical parameter space such that we can identifyβ /α = −c2, γ /α = ω 2
0 (e.g.,

as explicitly calculated using the centering mechanism),

1

α
∂F

∂Φ
= −Φ f (Φ) ,  (12)

and we take x to be one-dimensional in the narrow parabolic trough described above, then we recover the
nonlinear string model mentioned in the Introduction.

The most-probable firing states derived variationally from the path-integral Lagrangian as the Euler-
Lagrange equations represent a reasonable average over the noise in the SMNI system, which can be
equivalently written as a Langevin system of coupled stochastic differential equations, a multivariate
Fokker-Planck partial differential equation, or as a path-integral over a conditional probability distribution
(Ingber, 1982; Ingber, 1983).

For many studies, the noise cannot be simply disregarded, as demonstrated in other SMNI STM and EEG
studies, but for the purpose here of demonstrating the existence of multiple local oscillatory states that can
be identified with EEG frequencies, the EL equations serve very well.



Lester Ingber - 11 -

Note that there can be a dozen spatial-temporal coupled EL equations for SMNI systems even for local
studies, as derived in previous SMNI papers (Ingber, 1983; Ingber, 1995a).

Previous SMNI EEG studies have demonstrated that simple dispersion relations derived from the EL
equations support the local generation of alpha frequencies as observed experimentally as well as deriving
diffusive propagation velocities of information across minicolumns consistent with other experimental
studies.. Theearliest studies simply used a driving forceJG MG in the Lagrangian to model long-ranged
interactions among fibers (Ingber, 1982; Ingber, 1983). Subsequentstudies considered regional
interactions driving localized columnar activity within these regions (Ingber, 1996b; Ingber, 1997; Ingber,
1998). Thisstudy considers self-sustaining EEG activity within columns.

In this study, we consider a fully coupled local system ofE − I fi ring states, without any other ad hoc
driving forces.

cEË
12 M̈

E + cEĖ
13 Ṁ

E + cEĖ
2

21 (Ṁ
E
)2 + cE İ

22 Ṁ
I + cE İ

2

23 (Ṁ
I
)2 + cEE

11 M E + cE
51 1 = 0

c I Ë
32 M̈

I + c I Ė
33 Ṁ

E + c I Ė
2

41 (Ṁ
E
)2 + c I İ

42Ṁ
I + c I İ

2

43 (Ṁ
I
)2 + c I E

31 M I + c I
52 1 = 0 (13)

This set of coupled EL equations is in terms of 14 coefficients, each of which is a function of the two
fi ring states,c = c(M E , M I ). Thedouble-digit subscripts{cij} are used to identify row-column graphs in
figures below.

That is, the highly nonlinear EL equations have been greatly simplified by imagining that at each point in
the numerical mesh describing the firing space{M E , M I } a Taylor expansion of each term in the EL
equations is performed, keeping coefficients up to order{MG , Ṁ

G
, (Ṁ

G
)2 with a residual term constant at

this point in this firing space. It is noted that some areas of coarser mesh exhibit similar structures, and
this is the basis of looking further for oscillatory behavior within these ranges of columnar firings.

3.1. Maxima, Gnuplot and C codes
Maxima output can be directly converted to Fortran, and then the f2c utility can be used to generate C
code. However, that C code is barely readable and thus hard to maintain.Instead, Maxima output can be
directly processed afew simple Unix scripts to generate very decent standard C code.If the columnar
parameters are left unspecified, then some of the EL coefficients can be as long as several hundred
thousand lines, but which compile well under gcc/g++. This code can be useful for future fits of these
parameters to actual clinical data, similar to the EEG project discussed above.

A great advantage of using an algebraic language like Maxima over numerical languages like C/C++ is
that highly nonlinear expressions can be processed before numerical specifications, often keep small but
important scales without losing them to round-off constraints.

The numerical output of Maxima is then developed by Gnuplot (Williams & Kelley, 2008) into graphs
presented here.

3.2. Results
Calculations of coefficients of EL equations were performed for three prototypical firing case established
in earlier SMNI papers (Ingber, 1984), predominately excitatory (E), predominately inhibitory (I) and
balanced about evenly (B). More minima can be brought within physical firing ranges when a
“Centering” mechanism is invoked (Ingber, 1984), by tuning the presynaptic stochastic background, a
phenomena observed during selective attention, giving rise to cases EC, IC and BC. The states BC are
observed to yield properties of auditory STM, e.g., the 7± 2 capacity rule and times of duration of these
memory states (Ingber, 1984; Ingber, 1985c).

It is observed that visual neocortex has twice the number of neurons per minicolumn as other regions of
neocortex. In the SMNI model this gives rise to fewer and deeper STM states, consistent with the
observed 4± 2 capacity rule of these memory states. These calculations are cases ECV, ICV and BCV.

Calculations here took into account that regions of smallMG have more detailed structure for the most
interesting Centered cases, by stepping the mesh according to
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∆MG = floor((abs(MG)/10+ 1)) . (14)

This discrete mesh develops MG space into 1908 point for non-visual cortex and 3216 points for visual
cortex. All graphs presented here invoked some thresholds to present structures within physical ranges of
experimentally observed phenomena. All absolute values lying outside of these thresholds are not plotted
(although they are retained in data files). Plotsof the EL coefficients used thresholds of 0.5. Plots of the
Lagrangian used thresholds of 0.5.(Earlier SMNI studies set Lagrangian thresholds at 0.04.) Cases E,
EC and ECV are given in Figures 3-5. Cases I, IC and ICV are given in Figures 6-8. Cases B, BC and
BCV are given in Figures 9-11.

It is interesting to note some relationships between the “mass x acceleration” term of the EL equations,
essentially the diffusion times the second derivatives of MG , with the string-“force” term proportional to
MG to motivate looking for oscillatory states.However, only complete calculations involving all terms
can deliver the results given below.
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Fig. 3. Euler-Lagrange coefficients for Excitatory neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 4. Euler-Lagrange coefficients for Excitatory Centered neocortical columnar firings.
See Eq. (13) for identification of graphs with EL coefficients {cij}. Bottom right corner
graph (location 53) is the Lagrangian.
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Fig. 5. Euler-Lagrange coefficients for Excitatory Centered Visual neocortical columnar
fi rings. SeeEq. (13) for identification of graphs with EL coefficients {cij}. Bottom right
corner graph (location 53) is the Lagrangian.
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Fig. 6. Euler-Lagrange coefficients for Inhibitory neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 7. Euler-Lagrange coefficients for Inhibitory neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 8. Euler-Lagrange coefficients for Inhibitory neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 9. Euler-Lagrange coefficients for Balanced neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 10. Euler-Lagrange coefficients for Balanced neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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Fig. 11. Euler-Lagrange coefficients for Balanced neocortical columnar firings. SeeEq. (13)
for identification of graphs with EL coefficients{cij}. Bottom right corner graph (location
53) is the Lagrangian.
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4. Correction of sqrt(2) Error

A √2 error has been propagated in a series of papers spanning 1981-2008.As first published in 1982
(Ingber, 1982), in the calculation of

pσ j
= π −

1

2

∞

(σ j F j√ π /2)
∫ dz exp(−z2) =

1

2
[1 − erf (σ j F j√ π /2)], (15)

F j = (V j −
k
Σ a jk v jk)/[π

k′
Σ a jk′(v

2
jk′ + φ2

jk′)]
1

2 . (16)

the last equation,F j should be corrected with a√2, as in

F j = (V j −
k
Σ a jk v jk)/[(π /2)

k′
Σ a jk′(v

2
jk′ + φ2

jk′)]
1

2 . (17)

This also similarly affects all mesocolumnar averages over neuronal F j , yielding FG factors in
subsequent algebra.

In this paper, calculations of the Balanced centered case with this√ (2) error is case BC2, to be compared
with calculations of case BC.This error has no dramatic consequences on other results derived in the
above papers. Thisis because in all these papers, regarding (v2

jk′ + φ2
jk′), only numerical values of 0.12

values have been used forv2
jk′ andφ2

jk′. Thus, this would only have the numerical effect of increasingφ
by a factor of 1.73 (a number not well established experimentally): 0.12 + 0. 12 = 0. 02 → 2(0. 02)= 0. 04
= 0. 12 + √ 0. 03

2
= 0. 12 + 0. 1732, whereqv jk′ is the mean andqφ2

jk′ is the variance ofΓ, in mV, of the
postsynaptic response toq quanta. Therefore,this also presents an opportunity to see how robust the
SMNI model is with respect to changes in synaptic parameters within their experimentally observed
ranges.

The nature of the modifications is illustrated in Figure 12, to be compared with results using the correct
equations in Figure 10. While care has been taken to use only neocortical parameters with values within
experimental observations, these values can range substantially, and so any results such as those presented
here could be just as reasonable if interpolated or reasonably extrapolated between these two figures.
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Fig. 12. Euler-Lagrange coefficients for Balanced neocortical columnar firings with original
√2 error. See Eq. (13) for identification of graphs with EL coefficients{cij}. Bottom right
corner graph (location 53) is the Lagrangian.
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5. Oscillatory States Supported by SMNI EL Equations
After the Taylor expansions are taken, each of the EL terms in the neighborhood of theM-dependent
terms is assumed to have a dependence,

MG → MG exp(−iωG t) (18)

whereωG (independentω E andω I ) can be complex, and for brevity the same notationMG is used in the
ωG-transformed space. The real part ofωG represents oscillatory states, while the imaginary part
represent attenuation in time of these states. If in fact there are some finite neighborhoods inMG space
that supports realω , with only modest attenuation, then it can be claimed that these neighborhoods
support oscillatory states. The motivation of this study was to seek such states within experimentally
observed ranges and to see if there could be multiple frequencies spanning observed theta, alpha and beta
frequencies.

Note that if the time scales of postsynaptic response,τ , is on the order of 10 msec, thenωGτ (which is
what is being calculated) on the order of 1 is equivalent to a frequency νG = ωG /(2π ) on the order of 16
cps (Hz) which is close to the range of observed alpha rhythms (considered to be 8-12 Hz).

At each point inMG space a simple generalization of Newton’s method, mnewton within Maxima set to a
limit of 50 iterations per point in firing space, was used to try to solve the couple EL equations for
complexωG . In some instances no reasonable neighborhoods for realωG could be found.The code
mnewton is called 109,150 times (with 50 iterations per each call) for the calculations presented here, and
this routine was clearly picked solely for its speed.All graphs presented here invoked some thresholds to
present structures within physical ranges of experimentally observed phenomena. All absolute values
lying outside of these thresholds are not plotted (although they are retained in data files). Plotsof the
frequencies used thresholds of 10.0. (The can be many roots at higher and lower values due to
combinations of polynomials and sinusoidal functions inωG .) As can be seen in the graphs in Figures
13-17, there are many regions supportingωGτ ranging from 0.1 to 10.

In clinical settings is observed that frequencies understood as alpha often in fact show components of
varying frequencies especially around 8-13 Hz. When even higher resolutions of EEG are obtained, e.g.,
below the scalp, multiple components are more obvious, and even local patches of EEG may be observed
(Nunez & Srinivasan, 2006; Nunez, 2009).
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Fig. 13. Real (oscillatory) frequency solutions for Balanced, Excitatory and Inhibitory
neocortical columnar firings, in columns 1-3 resp.Rows 3 and 4 are these cases with the
centering mechanism. Solutions in rows 1 and 3 areω E , rows 2 and 4 areω I .
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Fig. 14. Imaginary (attenuated) frequency solutions for Balanced, Excitatory and Inhibitory
neocortical columnar firings, in columns 1-3 resp.Rows 3 and 4 are these cases with the
centering mechanism. Solutions in rows 1 and 3 areω E , rows 2 and 4 areω I .
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Fig. 15. Real (oscillatory) frequency solutions for Balanced, Excitatory and Inhibitory visual
neocortical columnar firings, with the centering mechanism, in columns 1-3 resp.Solutions
in row 1 areω E , row 2 areω I .
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Fig. 16. Imaginary (attenuated) frequency solutions for Balanced, Excitatory and Inhibitory
visual neocortical columnar firings, with the centering mechanism, in columns 1-3 resp.
Solutions in row 1 areω E , row 2 areω I .



Lester Ingber - 29 -

ωE-BC2rl

       5
       0
      -5

-80-60-40-20  0  20 40 60 80ME -30-20-10 0
 10 20 30

MI

-10
-5
 0
 5

 10

ωI-BC2rl

       5
       0
      -5

-80-60-40-20  0  20 40 60 80ME -30-20-10 0
 10 20 30

MI

-10
-5
 0
 5

 10

ωE-BC2im

       5
       0
      -5

-80-60-40-20  0  20 40 60 80ME -30-20-10 0
 10 20 30

MI

-10
-5
 0
 5

 10

ωI-BC2im

       5
       0
      -5

-80-60-40-20  0  20 40 60 80ME -30-20-10 0
 10 20 30

MI

-10
-5
 0
 5

 10

Fig. 17. For Balanced neocortical columnar firings with original√2 error, with the centering
mechanism, real (oscillatory) frequency solutions are in column 1 and imaginary (attenuated)
frequency solutions are in column 2. Solutions in row 1 areω E , row 2 areω I .
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6. Conclusion on Conjecture of Neocortical Information Processing

It is reasonable to conjecture that if columnar firings of short-ranged fibers MG can oscillate within
harmonics of long-ranged fibers M *‡E , this could facilitate information processed at fine neuronal and
synaptic scales to be carried across minicolumns and regional columns with relative eff i ciency. Note that
this activity is at levels of 10−2 or 10−3 of the Lagrangian defining a small scale for STM, i.e., “zooming
in” to still within classical (not quantum) domains of information.

While attractor states have been explicitly detailed in previous papers for several SMNI models, here
oscillatory states have been calculated throughout the range of firing space.Clearly, oscillations within
the columnar attractors should naturally have longer lifetimes, but given that long-ranged fiber
interactions across regions can constrain columnar firings, it is useful to at least see how oscillations may
be supported even in limited ranges of such constrained firings.

For example, during slow theta — often preset during sleep, during alpha — often present during
“relaxed” attention, and during faster beta — often present during intense concentration, information
inherent in dynamic STM firings as well as in relatively static synaptic parameters, are often merged into
associative neocortex, and during conscious selective attention frontal cortex often controls processing of
this information. The use of global carrier frequencies could aid in the noise suppression to convey this
information.

Acknowledgments

I thank Andrew Bennett for bringing the√2 error to my attention.



Lester Ingber - 31 -

REFERENCES

Graham, R.(1977) Covariant formulation of non-equilibrium statistical thermodynamics. Zeitschrift fu¨r
Physik. B26,397-405.

Ingber, L. (1981) Tow ards a unified brain theory. Journal Social Biological Structures. 4, 211-224.
[URL http://www.ingber.com/smni81_unified.pdf]

Ingber, L. (1982) Statistical mechanics of neocortical interactions. I. Basic formulation.Physica D. 5,
83-107. [URLhttp://www.ingber.com/smni82_basic.pdf]

Ingber, L. (1983) Statistical mechanics of neocortical interactions. Dynamics of synaptic modification.
Physical Review A. 28, 395-416. [URL http://www.ingber.com/smni83_dynamics.pdf]

Ingber, L. (1984) Statistical mechanics of neocortical interactions. Derivation of short-term-memory
capacity. Physical Review A. 29, 3346-3358. [URL http://www.ingber.com/smni84_stm.pdf]

Ingber, L. (1985a) Statistical mechanics algorithm for response to targets (SMART), In: Workshop on
Uncertainty and Probability in Artificial Intelligence: UC Los Angeles, 14-16 August 1985,
American Association for Artificial Intelligence, 258-264. [URL
http://www.ingber.com/combat85_smart.pdf]

Ingber, L. (1985b) Statistical mechanics of neocortical interactions. EEG dispersion relations.IEEE
Transactions Biomedical Engineering. 32, 91-94. [URL http://www.ingber.com/smni85_eeg.pdf]

Ingber, L. (1985c) Statistical mechanics of neocortical interactions: Stability and duration of the 7+-2
rule of short-term-memory capacity. Physical Review A. 31, 1183-1186. [URL
http://www.ingber.com/smni85_stm.pdf]

Ingber, L. (1986a) Riemannian contributions to short-ranged velocity-dependent nucleon-nucleon
interactions. Physical Review D. 33, 3781-3784. [URL
http://www.ingber.com/nuclear86_riemann.pdf]

Ingber, L. (1986b) Statistical mechanics of neocortical interactions.Bulletin American Physical Society.
31, 868.

Ingber, L. (1989) Very fast simulated re-annealing.Mathematical Computer Modelling. 12(8), 967-973.
[URL http://www.ingber.com/asa89_vfsr.pdf]

Ingber, L. (1990) Statistical mechanical aids to calculating term structure models.Physical Review A.
42(12), 7057-7064. [URL http://www.ingber.com/markets90_interest.pdf]

Ingber, L. (1991) Statistical mechanics of neocortical interactions: A scaling paradigm applied to
electroencephalography. Physical Review A. 44(6), 4017-4060. [URL
http://www.ingber.com/smni91_eeg.pdf]

Ingber, L. (1992) Generic mesoscopic neural networks based on statistical mechanics of neocortical
interactions. Physical Review A. 45(4), R2183-R2186. [URL
http://www.ingber.com/smni92_mnn.pdf]

Ingber, L. (1993a) Adaptive Simulated Annealing (ASA).Global optimization C-code. Caltech Alumni
Association. [URLhttp://www.ingber.com/#ASA-CODE]

Ingber, L. (1993b) Statistical mechanics of combat and extensions, In: Tow ard a Science of Command,
Control, and Communications, ed. C. Jones.American Institute of Aeronautics and Astronautics,
117-149. [ISBN 1-56347-068-3. URLhttp://www.ingber.com/combat93_c3sci.pdf]

Ingber, L. (1994) Statistical mechanics of neocortical interactions: Path-integral evolution of short-term
memory. Physical Review E. 49(5B), 4652-4664. [URL http://www.ingber.com/smni94_stm.pdf]

Ingber, L. (1995a) Statistical mechanics of multiple scales of neocortical interactions, In: Neocortical
Dynamics and Human EEG Rhythms, ed. P.L. Nunez. Oxford University Press, 628-681.[ISBN
0-19-505728-7. URLhttp://www.ingber.com/smni95_scales.pdf]

Ingber, L. (1995b) Statistical mechanics of neocortical interactions: Constraints on 40 Hz models of
short-term memory. Physical Review E. 52(4), 4561-4563. [URL
http://www.ingber.com/smni95_stm40hz.pdf]



Lester Ingber - 32 -

Ingber, L. (1996a) Nonlinear nonequilibrium nonquantum nonchaotic statistical mechanics of neocortical
interactions. Behavioral and Brain Sciences. 19(2), 300-301.[Invited commentary on Dynamics
of the brain at global and microscopic scales: Neural networks and the EEG, by J.J. Wright and
D.T.J. Liley. URL http://www.ingber.com/smni96_nonlinear.pdf]

Ingber, L. (1996b) Statistical mechanics of neocortical interactions: Multiple scales of EEG, In: Frontier
Science in EEG: Continuous Wav eform Analysis (Electroencephalography Clinical
Neurophysiology Suppl. 45), ed. R.M. Dasheiff & D .J. Vincent. Elsevier, 79-112. [Invited talk to
Frontier Science in EEG Symposium, New Orleans, 9 Oct 1993. ISBN 0-444-82429-4.URL
http://www.ingber.com/smni96_eeg.pdf]

Ingber, L. (1997) Statistical mechanics of neocortical interactions: Applications of canonical momenta
indicators to electroencephalography. Physical Review E. 55(4), 4578-4593. [URL
http://www.ingber.com/smni97_cmi.pdf]

Ingber, L. (1998) Statistical mechanics of neocortical interactions: Training and testing canonical
momenta indicators of EEG. Mathematical Computer Modelling.27(3), 33-64. [URL
http://www.ingber.com/smni98_cmi_test.pdf]

Ingber, L. (2000) High-resolution path-integral development of financial options.Physica A. 283(3-4),
529-558. [URLhttp://www.ingber.com/markets00_highres.pdf]

Ingber, L. (2005) Trading in Risk Dimensions (TRD). Report 2005:TRD. Lester Ingber Research.
[URL http://www.ingber.com/markets05_trd.pdf]

Ingber, L. (2006a) Ideas by statistical mechanics (ISM).Report 2006:ISM. Lester Ingber Research.
[URL http://www.ingber.com/smni06_ism.pdf]

Ingber, L. (2006b) Statistical mechanics of neocortical interactions: Portfolio of physiological indicators.
Report 2006:PPI. Lester Ingber Research. [URL http://www.ingber.com/smni06_ppi.pdf]

Ingber, L. (2007) Ideas by Statistical Mechanics (ISM). Journal Integrated Systems Design and Process
Science. 11(3), 31-54. [SpecialIssue: Biologically Inspired Computing.]

Ingber, L. (2008) AI and Ideas by Statistical Mechanics (ISM), In: Encyclopedia of Artificial
Intelligence, ed. J.R. Rabuñal, J.Dorado & A.P. Pazos. InformationScience Reference, 58-64.
[ISBN 978-1-59904-849-9]

Ingber, L. (2009) Statistical mechanics of neocortical interactions: Nonlinear columnar
electroencephalography. NeuroQuantology Journal. 7(4), 500-529. [URL
http://www.neuroquantology.com/journal/index.php/nq/article/view/365/385]

Ingber, L., Chen,C., Mondescu,R.P., Muzzall,D. & Renedo, M. (2001) Probability tree algorithm for
general diffusion processes. Physical Review E. 64(5), 056702-056707. [URL
http://www.ingber.com/path01_pathtree.pdf]

Ingber, L. & Nunez, P.L. (1990) Multiple scales of statistical physics of neocortex: Application to
electroencephalography. Mathematical Computer Modelling. 13(7), 83-95.

Ingber, L. &  Nunez, P.L. (1995)Statistical mechanics of neocortical interactions: High resolution path-
integral calculation of short-term memory. Physical Review E. 51(5), 5074-5083. [URL
http://www.ingber.com/smni95_stm.pdf]

Ingber, L., Srinivasan, R. & Nunez, P.L. (1996) Path-integral evolution of chaos embedded in noise:
Duffing neocortical analog. Mathematical Computer Modelling. 23(3), 43-53.[URL
http://www.ingber.com/path96_duffing.pdf]

Langouche, F., Roekaerts,D. & Tirapegui, E. (1982) Functional Integration and Semiclassical
Expansions. Reidel,Dordrecht, The Netherlands.

Mountcastle, V.B. (1978) An organizing principle for cerebral function: The unit module and the
distributed system, In: The Mindful Brain, ed. G.M. Edelman & V.B. Mountcastle.Massachusetts
Institute of Technology, 7-50.

Mountcastle, V.B., Andersen,R.A. & Motter, B.C. (1981)The influence of attentive fixation upon the
excitability of the light-sensitive neurons of the posterior parietal cortex. Journalof Neuroscience.



Lester Ingber - 33 -

1, 1218-1235.

Nunez, P.L. (1974) The brain wav e equation: A model for the EEG.Mathematical Bioscience.21,
279-297.

Nunez, P.L. (1981)Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press,
London.

Nunez, P.L. (1995) Neocortical Dynamics and Human EEG Rhythms. OxfordUniversity Press, New
York, NY.

Nunez, P.L. (2009)Brain, Mind, and the Structure of Reality. Oxford University Press, London.

Nunez, P.L. & Srinivasan, R. (1993) Implications of recording strategy for estimates of neocortical
dynamics with electroencephalography. Chaos. 3(2),257-266.

Nunez, P.L. & Srinivasan, R. (2006) Electric Fields of the Brain: The Neurophysics of EEG, 2nd Ed..
Oxford University Press, London.

Schelter, W. (2009) Maxima. DOE, http://maxima.sourceforge.net.

Srinivasan, R. & Nunez, P.L. (1993) Neocortical dynamics, EEG standing wav es and chaos, In:
Nonlinear Dynamical Analysis for the EEG, ed. B.H. Jansen & M. Brandt.World Scientific,
310-355.

Williams, T. & Kelley, C. (2008) Gnuplot. Dartmouth, http://gnuplot.sourceforge.net.

Zhou, C. & Kurths, J. (2003) Noise-induced synchronization and coherence resonance of a Hodgkin-
Huxley model of thermally sensitive neurons. Chaos. 13,401-409.


