R R R R R R R R R R R R R R E R R R E E R R R E R R R R E R R E E R R e E R R R R E R R R R E R R R E|

==ROMA
A1 RE

UNIVERSITA DEGLI STUDI

COLLANA DEL
DIPARTIMENTO DI ECONOMIA

A SYSTEMATIC APPROACH FOR VALUING EUROPEAN-STYLE INSTALLMENT
OPTIONS WITH CONTINUOUS PAYMENT PLAN

Pierangelo Ciurlia

Working Paper n° 115, 2010

0| ERERERERIEREREREE R R R EEE R E R E R EEERE R R R EEE R E R E R EERE R R E R EEE R R R EEEEE R R E R EEE R R R R EEE R R R E R EE R

IERREREE R R EER R EEIE R R R R R E R R R R R R R R E R R R R R R R R E R R R R R EE )

0| RR R RERERRE R RERERRE R R R RERERE R R R R ERERE R R R R RER R R R R R REERERE R R R R R R R R R R R E R R R R R R ERRE R R R R R R R R R R EREEEEE])




I Working Papers del Dipartimento di Economia svolgono la funzione di divulgare tempestivamente, in
forma definitiva o provvisoria, i risultati di ricerche scientifiche originali. La loro pubblicazione ¢
soggetta all'approvazione del Comitato Scientifico.

Per ciascuna pubblicazione vengono soddisfatti gli obblighi previsti dall'art. 1 del D.L.L. 31.8.1945, n.
660 e successive modifiche.

Copie della presente pubblicazione possono essere richieste alla Redazione.

REDAZIONE:

Dipartimento di Economia

Universita degli Studi Roma Tre

Via Silvio D'Amico, 77 - 00145 Roma

Tel. 0039-06-57335655 fax 0039-06-57335771
E-mail: dip_eco@uniroma3.it




==ROMA
AsTRE

UNIVERSITA DEGLI STUDI

DIPARTIMENTO DI ECONOMIA

A SYSTEMATIC APPROACH FOR VALUING EUROPEAN-STYLE INSTALLMENT
OPTIONS WITH CONTINUOUS PAYMENT PLAN

Pierangelo Ciurlia

Comitato Scientifico:

F. De Filippis
A. Giunta

P. Lazzara

L. Mastroeni
S. Terzi



A systematic approach for valuing European-style installment options with
continuous payment plan

Pierangelo Ciurlia

Department of Economics, University of Rome IIl
Via Silvio D’Amico 77, 00145 Rome, Italy

Abstract

In this paper we present an integral equation approach for the valuation of European-style installment derivatives
when the premium payments, made continuously throughout the contract’s life, are assumed to be a function of the
asset price and time variables. The contribution of this study is threefold. First, we show that in the Black-Scholes
framework the option pricing problem can be formulated as a free boundary problem under very general conditions on
payoff structure and installment payment plan. Second, by applying a Fourier transform-based solution technique, we
derive a recursive integral equation for the free boundary along with a general integral representation for the option
initial premium. Third, within this systematic treatment of the European installment options, we propose a unified
and easily applicable method to deal with a broad range of monotonic payoff functions and continuous payment plans
depending on the time variable only. Finally, by using the illustrative example of European vanilla installment call
options, an explicit valuation formula is obtained for the class of linear time-varying installment payment functions.

Key words: Installment options; free boundary problem; Fourier transform; integral representations.
J.E.L. classification: D81, G13.

1. Introduction

Installment option contracts are exotic derivatives in which the premium (or price) is paid in installments of a
payment plan spread over the lifetime of the option, rather than as a lump-sum at time of purchase, and where it
can be allowed to lapse the contract at any payment date before maturity. Option holder’s right to drop the contract
can be viewed as an early exercise feature and leads to free boundary problems similar to that arising for standard
American options. An installment option with payments at pre-determined time intervals (usually monthly, quarterly
or annually) is referred to as a discrete-installment (DI) option, whereas its continuous-time equivalent in which the
payment plan is defined by allowing for the installment to be a function of the asset price and time variables is referred
to as a continuous-installment (CI) option. In this paper we consider the class of European-style CI options, in which
the buyer pays a small up-front premium at inception of the trade and then installments of a continuous payment plan
to acquire and keep the right, but not the obligation, to buy or sell the underlying asset at the maturity date. However,
the holder can choose at any time to terminate installment payments, in which case the option lapses with no further
payments on either side. -

There are relatively few and quite recent studies on installment options. A complete review of the literature on
this topics, with reference to both the type of installment payment plan (discrete or continuous) and style of exercise
(American or European), is here carried out and briefly discussed. Davis et al. [8] and Davis et al. [9] derive no-
arbitrage bounds for the initial premium of a European DI option and study static versus dynamic hedging strategies
within a Black-Scholes framework with stochastic volatility. Applying the concept of compound options, previously
considered by Geske [12] and Selby and Hodges [22], they intuitively show that holding an installment option is
equivalent to holding the underlying vanilla option plus the right to sell it at any installment date at a price equal
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to the net present value of all future installment payments. The latter security can be characterized as a Bermuda
compound put option written on the vanilla option with time-varying strike price. Ben-Ameur et al. [3] develops
a dynamic-programming procedure to price American DI options and investigates, within the geometric Brownian
motion framework, some properties of the installment option contract through theoretical and numerical analysis.
Extending the concept of compound options, Griebsch et al. [13] derives a closed-form solution to the initial premium
of a European DI option in the Black-Scholes model and examines the limiting case of an installment option with
continuous payment plan, for which he proves the equivalence to a portfolio consisting of a European vanilla option
and an American compound put on that contingent claim with time-dependent strike price. Alobaidi et al. [1] and
Alobaidi and Mallier [2] use a partial Laplace transform to solve the free boundary problem arising from the pricing of
European CI options. By applying this method, they obtain an integral equation for the position of the free boundary
and to deduce through an asymptotic analysis its behavior close to expiry. Ciurlia and Roko [5] and Ciudia [7]
propose three alternative approaches for the valuation of American and European CI options written on assets without
dividends or with constant continuous dividend yield. Their analysis can be applied to value derivative securities
and investment projects with a continuous payment plan. Ciurlia and Caperdoni [6] extends this pricing framework
to the theoretical case of perpetual CI options. The closed-form solution obtained when the underlying asset does
not pay dividends allow him to derive some analytical properties of the initial premium and the optimal boundaries.
Kimura [17] and Kimura [18] adopt the Laplace transform method to solve the valuation problems of American and
European CI options written on dividend-paying assets, obtaining integral representations for the initial premium, the
optimal stopping and exercise boundaries and some hedging parameters. Furthermore, Abelian theorems of Laplace
transforms allow them to characterize asymptotic properties of the free boundaries at both a time close and an infinite
time to expiration. Finally, Yi et al. [25] and Yang and Yi [24] consider parabolic variational inequalities arising from
European and American CI call options pricing, and prove the existence and uniqueness of solution to the problems
as well as the monotonicity and smoothness properties of the free boundaries.

Among the most actively traded installment options throughout the world currently are the installment warrants
on Australian stocks listed on the Australian Stock Exchange and 10-year warrants with 9 annual payments offered
by Deutsche Bank. Installment options, which are also frequently traded in foreign exchange markets between banks
and corporates, introduce some flexibility in the liquidity management of portfolio strategies in that, instead of paying
a lump-sum for a derivative, the option holder will pay the installments as long as the need for being long in the
contract is present. Furthermore, the right of terminating the contract by halting the payments with no transaction
cost reduces the liquidity risk typically associated with other over-the-counter derivatives. Installment options can be
found embedded in other contract, including life insurance contracts, and are also frequently used in financing capital
investment projects with some examples given in Dixit and Pindyck [11]. In the field of real options a meaningful
model is that due to Majd and Pindyck [20], in which a firm invests in a project continuously and receives no payoff
until the project is complete. Although the model of Majd and Pindyck [20] bears many resemblances to a European
CI option, it also has some differences, notably that the project can be resumed at a later time without loss of earlier
capital outlays, whereas an installment option lapses if the holder halts installment payments.

The aim of this paper is to provide an integral equation approach to pricing European-style installment options with
continuous payment plan and general monotonic payoff function. The holder’s ability to halt installment payments by
dropping the option contract leads to a free boundary separating the region where it is advantageous to hold from that
in which early stopping is optimal. In theory, stopping strategy should take place only on this free boundary, which
itself is unknown and must be determined along with the up-front price. In order to obtain a general solution to this
wide class of free boundary problems we use an appropriate Fourier transform which allows us to derive an integral
expression for the initial premium function that involves the optimal stopping boundary. Although the focus is on
installment options, in principle our approach is general and applies to more complex derivatives.

The layout of the paper is as follows. Section 2 provides a formal definition of the CI option contract as well as
a proposition which shows how to derive within the standard Black-Scholes framework the inhomogeneous partial
differential equation (PDE) governing the initial premium function of such an option. Based on this key result, the
European CI options pricing problem is formulated as a free boundary problem for a general class of payoff structures
and payment plans. Section 3 proceeds to solve this class of pricing problems using the incomplete Fourier transform
(IFT) method. By inverting the solution of the transformed pricing problem a general integral expression for the initial
premium function is obtained. Section 4 gives a parametric representation of the solution to the European CI options
pricing problem which is similar to that first proposed by Kim [16] for standard American options. In §5 we present
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an application to the valuation of European vanilla CI call options; an explicit pricing formula is obtained for the class
of linear time-varying installment payment functions. Concluding remarks are formulated in §6, with a briefly review
of the basic properties and theorems of the IFT given in the Appendix.

2. Pricing in the Black-Scholes framework

In this section we briefly review the basic assumptions under the standard Black-Scholes framework and, after
giving a formal definition of a CI option contract, we derive the inhomogeneous PDE governing the price to be paid
at time of entering into the contract, hereafter called the initial (or up-front) premium, supplementary to a continuous
payment plan which is defined as a function of the asset and time variables. Using this key result we consider the free
boundary problem for the class of European-style CI options with general monotonic payoff function, to solve which
it is necessary to identify the so-called stopping region (i.e. the set of asset prices and times at which it is optimal to
drop the option contract).

2.1. Black-Scholes PDE for CI options

In the standard Black-Scholes framework it is assumed a financial market model with continuous trading, friction-
less, no-arbitrage opportunities, short-selling and consisting of only two assets:

1. arisk-free asset (e.g., abond) with price process B = (B);»o following a deterministic differential equation
dB; = rB.dt, .1

where r > 0 is the constant instantaneous risk-free interest rate;
- arisky asset paying continuous proportional dividends 6 > 0 and with price process § = ()0 governed by a
geometric Brownian motion

[

dS; = uS.dt + oS, dw,, 2.2

where u = (r — 6) is the expected rate of return per unit time and o > 0 is the instantaneous volatility per unit
time. The term dW; denotes increments of a standard Wiener process W = (W))>0 defined on a risk-neutral
probability measure O. If the risky asset is a stock (or equity) & equals zero, while if it is a foreign currency, &
is replaced by the foreign risk-free interest rate ry.

Definition 2.1. A CI option written on the underlying asset S with time of maturity T, payoff function H(Sy), at any
time t of exercise, and continuous payment plan which is expressed by the installment payment function L, = LS,
is a derivative contract defined by the following clauses:

e the holder pays at the time of purchase t € [0, T] a smaller up-front premium, and then a stream of installments
at the rate Ly = L(S, 1) per unit time throughout the whole life of the option, to acquire and keep the right, but
not the obligation, to buy (call option) or sell (put option) one share of the underlying asset at the fixed date T
(for European-style exercise) or at any time up to T (for American-style exercise),

o the holder is in no way obligated to continue paying installment premiums until the option expires, in that he
has the right to stop making payments, thereby terminating the contract with no claim on either side.

Note that for a CI option of European type, the holder can choose to stop paying installments only by dropping the
contract, while for an American CI option payments can be terminated by either exercising the option or dropping the
contract itself. The distinctive feature of a CI option, independently from the type of exercise, is that it gives the holder
the possibility to walk away from the contract at any time prior to maturity, which makes it necessary to determine
that it is known as the optimal stopping boundary, i.e., the trajectory of critical asset prices at which is advantageous
to stop installment payments by dropping the contract.

For a contingent claim of the form described by Definition 2.1, we denote the up-front price at time of purchase
t € [0,T] of the claim by V; = V(S,,1; L;), which depends on the current asset price S, time 7 and installment per unit
time L;. Let V(S,,1; L;) be a continuously differentiable function in # < T and a.e. twice continuously differentiable
in §;, and let L(S , 7) be a non-negative real-valued function of bounded variation on an open subset of R2. Applying
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1t6’s formula to V; and combining with eq. (2.2), the initial premium dynamics of the derivative asset is obtained as
follows

W ,

as

th:(E +/J tﬁ*‘é‘ lasz)dt‘l' S, W;, (23)

Proposition 2.1. Let us assume that the financial market model is specified by egs. (2.1-2.2) and that a contingent
claim with price process described by eq. (2.3) is to be priced. Then, to avoid risk-free arbitrage opportunities, the
initial premium function V; of any derivative written on S with continuous payment plan L, must satisfy the following
relationship

v, V; 1 2 S26 Vi

S tHSigg + 508t - V= L. 24

Proof. Let us now form a self-financing portfolio x = (7, 6), where 77 and 6 represent positions in the underlying asset
and the derivative security, respectively. Denoting by I1; := 7S, + 6V, the value at time ¢ of the portfolio and using
eqs. (2.2-2.3), we obtain the following dynamics for I,

dll, = n(dS,+6S,dt) + 6(dV, — L.df)

v, av, 1 o2 0%V,
o THSigg +37 g

aV,
7lus, +6S,+0( )]dt ( +06—S')0'S,dW,.
If we setp = —=A, with A := 9‘3‘;‘ , the dW-term in the I1-dynamics of the above equation vanishes completely, leaving
us with the equation

oV, v,

2
dIl, = 9( 5 -68,— —azsza Vi _ L,)dt. (2.5)

as 982

Using the standard hedging arguments, it is possible to show that the combination of long 6-amount of the derivative
security and short A-adjusted equivalent amount of the underlying asset produces a locally riskless portfolio, which
must grow at the risk-free rate r because of the requirement that the market is free of arbitrage possibilities. Then, by
the absence of arbitrage condition, we get that the following relation must hold

dIl, = r(nS, +6V,)dt
av,
= ro|V, - —S . .
y ( - 55 ,)dt 2.6)

Finally, by comparing eq. (2.5) with eq. (2.6) and rearranging terms, we find that V; satisfies eq. (2.4). O

Eq. (2.4) is a linear, second-order in § and inhomogeneous PDE of parabolic type, in which the term L, > 0
represents the continual input of cash via the installment premium: in a time period d¢ an amount L,df must be
paid to keep the derivative alive. If L; = 0, for all # > 0, we have the usual Black-Scholes PDE for stock options.
Independently from the type of exercise, eq. (2.4) is valid only on the continuation region, that is, on the subset of the
V-domain where it is advantageous to continue paying installment premiums since the derivative is worth more alive
than dead.

2.2. Free boundary problem formulation

We consider a European CI option on an asset whose price process § follows (2.2) with maturity date 7, payoff
function H(S r) and installment payment function L, = L(S, 7). Let VZ = VE(S,, t; L,) be the initial premium function
of this option, defined on the domain D = {(§, 7) € [0, c0)x [0, T]}. For each time ¢ € [0, T], there exists a critical asset
price, A; = A(t; L) for the call option and G; = G(t; L) for the put option, at which it is advantageous to terminate
installment payments by dropping the option contract. According to these critical asset prices, the initial premium
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function V/ satisfies the following conditions

For call option For put option
V=0, if §;€[0,A(] if §; € [Gy, ), 2.7
VE >0, if §; € (A;, ) if S; € [0,Gy). (2.8)

The optimal stopping (or free) boundary, which is the time path of critical asset prices, i.e., {A;}sjo,] for the call option
and {Gy}sepo0,17 for the put option, divide the domain D into a stopping region S and a continuation region C, that is

For call option For put option
S={(S,0e[0,A]x%[0,T]} S ={(S:,1 € [G,0) X [0,T]};
C = {(St’ t) € (Ah 00) X [O’ T]} C = {(St, t) € [Os Gt) X [09 T]}

To ensure that the fundamental constraint VF > Ois satisfied in the domain D, eq. (2.7) impose that, in the stopping
region &, the initial premium V¥ is equal to zero. By contrast, the inequality expressed in eq. (2.8) show that, in the
continuation region C, it is advantages to continue paying installment premiums since the option is worth more alive
than dead. The initial premium is given by eq. (2.7) if the asset price starts in S, so we assume that the option is alive
at the time ¢ > O of entering into the contract, i.e., S; € (4;,0) and S, € [0, G/) for call and put options, respectively.

The initial premium function V/ of the European CI option satisfies the inhomogeneous Black-Scholes PDE (2.4)
in C; that is,
thE 1 . 62 ‘/tE

ave )
2 2§
o TS5 v g,

-rVf=1L, onC. (2.9)

Extending the analysis of McKean [21], we determine that VF and the optimal stopping boundary, {A}fo.r; for the
call option and {G},co,r; for the put option, jointly solve a free boundary problem consisting of eq. (2.9) subject to
the following final and boundary conditions

For call option For put option
VE=H(S7), VE=H(S71), 0<S7 <00 (2.10)
lim V? =0, lim V? =0, 0<t<T, (2.11)
S A, S1G,
li 6Vf_0 i 6V'E—0 0<t<T 2.12
sih, 88 516, s si<t 2.12)

The value matching condition (2.11) implies that the initial premium function VZ is continuous across the free
boundary, Furthermore, the high contact condition (2.12) implies that also the slope VZ/3S is continuous. Egs. (2.11-
2.12) are jointly referred to as smooth fit conditions and ensure the optimality of the early stopping strategy.

We propose to solve the general pricing problem expressed by eqs. (2.9-2.12) with the integral representation
method first introduced in Kim [16] and then developed in Jacka [14], Carr et al. [4] and Jamshidian [15]. Taking the
free boundary problem formulation, we use the IFT technique to solve the inhomogeneous Black-Scholes PDE for
European-style contingent claims with generic payoff and installment payment functions.

3. Solving the European CI options pricing problem

3.1. Transformed pricing problem

In order to transform the inhomogeneous Black-Scholes PDE (2.9) to an equation with constant coefficients, we
set §; = ¢ and ¢ = T — 7. It follows that the transformed function v, = v(x, 7) is defined by

V(i) =V(Ee',T-1)=v(x,1), 3.1
5



on the continuation regione C, described now by

For call option ) For put option

C, ={(x,7) € (Ina,,0) X [0,T]} C, ={(x,7) € (—o0,lng;) X [0, T]},

where a, = a(t; ;) = A(T - 7; L) and g, = g(7; ;) = G(T — 7; L) denote the transformed stopping boundaries of call
and put options, respectively. The transformed inhomogeneous Black-Scholes PDE for v, is then

v, 1 8%, v,
31_—_50'25;2-+p5;—rv,—l7, on C,, (32)

withp = (r-6 - % o), I, = l(x,7) = L(e*, T — 7) and associated initial and boundary conditions given by

For call option For put option
vo = h(x), vo = h(x), —00 < x < 00, (3.3)
lim v, =0, lim v, =0, 0<7t<T,; (3.4
x|Ina, xTIng:
dv, . O,
—_—= O’ 1 - = 0, < T; .
i, B <, B O<7 33

where the payoff function is defined now by A(x) = H(e").
In order to be able to apply integral transform methods to solve PDE (3.2) for v(x, 7), we will consider the domain
D, = {(x,7) € R x [0, T]} by expressing eq. (3.2) for call and put options, respectively, as follows

v, 1 ,0%, v,

W(x—lnaT)(E;— EO’ 92 —p§+rv,+lf)— 0, (3.6)
v, 1 ,0%v,  ov. _

W(lng,—x)(a—‘r—zo' 92 -—p—a7+rvr+lf)—0, (37)

with the initial and boundary conditions that remain unchanged and where 7 (x) is the Heaviside step function, defined
as

1, x>0
Hx) =11, x=0 (3.8)
0, x<0

From the static replication arguments one can establish the following no-arbitrage bounds on the initial premium
v(x,7) of a European CI option

For call option

lim [W(x,‘r)— f I(x, &) e"4dE
0

x—Ina;

<v(x,7) < lime*, VYr e(0,T];
For put option

lim . [W(x, T) — f I(x,8) e"fdf] <v(x,7) < lim W(x,7), VY7 €(0,T];
o x——00

x—=Ing/

where W(x,7) is the expected present value of the payoff at time to maturity 7, while the integral term represents the
discounted value of the installment payment stream over the option’s lifetime. Note that for a European CI call and
put option, with payoff h(x) monotonically increasing and decreasing function of the variable x = In S, the initial
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premium function v(x,7) is unbounded above and bounded, respectively. Although v(x, ) is integrable, and so its
Fourier transform does exist, the conditions required for Theorem A.3 do not hold because lim,_,., v(x,7) = oo and
lim,—, o, v(x,7) < oo for call and put options, respectively. In order to treat this kind of complication we will replace
the functionv : D, C R* - R{ by areal-valued function y(x, T) on D, satisfying conditions in Theorem A.3.

3.2. Application of the IFT

In this section we will show how the IFT method can be applied to solve the free boundary problem expressed by
eqs. (3.3-3.5) and (3.6), in order to obtain an integral representation for initial premium and optimal boundary of the
European CI call option. By applying the same results, the solution to the corresponding free boundary problem for
the European CI put option, specified by egs. (3.3-3.5) and (3.7), is achieved.

In order to apply our Fourier transform in a mathematically rigorous way to reduce PDE (3.6) to an ordinary
differential equation (ODE) whose solution is readily obtainable, the function v(x,7) of a European CI call option is
replaced by the still-integrable function y(x,7) := e™* v(x,7) for which the condition lim,_,., y(x,7) = O does hold.
Writing v, and its derivatives in term of y, and substituting into eq. (3.6), yields

621' 67 1 -X
a:;—(p+0’2)alx+(r—p—§0'2)yf+e l‘r)=09 (39)

H(x—1Ina,) (% - %0'2

with the associated initial and boundary conditions (3.3-3.5) expressed now by

Yo = e *h(x), —00 < X < 00 (3.10)
lim y, =0, 0<7<T, (3.11)
x)Ina,
. (Oy- _
Jim ( - +y,) =0, 0<t<T. 3.12)

Now we can use the Fourier transform operator, whose key property of converting differentiation into multiplication
by a power of w allows us to reduce the new PDE with constant coefficients to a far more tractable ODE.

Proposition 3.1. By applying the definition of IFT to eq. (3.9), we obtain

3y, 1 w [0%y- 0y,
f’*’“’{air} = S OF { o } +9f“”°°{f;}"”f"“”{yf}—fw{uf}, (3.13)

where 0= (p +02), ¥ = (r —p — 0%/2) and u; = u(x,7) := e *l(x, 7).

Proof. From Proposition A.2, we see that #%* is the IFT operator with respect to x, since it is equivalent to the
standard Fourier transformation applied to functions y(x, 7) and /(x, 7) in the continuation region C,. O

In the following proposition we establish three specific properties related to Fourier transforms of derivatives of
yr that will allow us to convert eq. (3.13) into an ODE for ¥ * {y,}.

Proposition 3.2. Let 7 {y;} = $(w, 7) be the IFT with respect to x of the Sfunction y. = y(x,7), Then, there exist
the following three identities for F% © {y,}

5"“"“‘{%} = iw H(w,7);

2
9"’“”‘”{%} = - H(w,7);

ox2
Ay _ 9w, 7)
ac,00 IV | _
F { or } -
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Proof. From Theorem A.3, we have

dy- 1 —iwln . :
a0 JTL _ _ - miwlna,
F { O } = e xdﬂm y(x,7) + iwH(w, T),

and by use of the boundary condition (3.11), the first identity is obtained. The proof of the second identity follows
easily from the repeated application of Theorem A.3 and using simultaneously the boundary conditions (3.11) and
(3.12). Finally, to prove the third identity, we note that

9
or

where a; = da(t;l;)/dr. Rearranging the above result and then applying the boundary condition (3.11), we get

00

= @ iwinag 1 wx Oy
f e y(x, T)dx| = == 7M™ lim y(x,T) + f e — (x,7)dx,
Ina: ar x|lIna, Ina. or

oG- 2 ). O

Note that in deriving the above three identities, we make use of the smooth fit conditions given in egs. (3.11-3.12),
which also assure that the function y(x,7) and its first partial derivative dy,/dx are bounded at the lower bound of
the continuation region C,, where boundary conditions are to be applied since by construction the function y(x, 7)
converges to zero as x — oo.

Proposition 3.3. The IFT of the inhomogeneous Black-Scholes PDE (3.13) with respect to x satisfies the Sfollowing

ODE
@, a?
dr 2
with the initial condition % *{y(x, 0)} = $(w, 0) calculated from eq. (3.10).

W - Biw + 19) Pw,7) = —w, T), (3.14)

Proof. Taking eq. (3.13), which is the IFT of eq. (3.9) with respect to x, and using the three identities of Proposition
3.2, gives

Bwn)

0.2
P (—— W - Biw + 19) H(w,T) = —(w,T).

2

Finally, the initial condition is obtained by definition. O

Instead of solving a PDE for the function y(x, 7), we are now faced with the simpler task of solving the ODE (3.14)
for the function $(w, 7). This can then be inverted via the inverse Fourier transform as stated in Proposition ?? to
recover the desired function y(x, 7). Before concluding this section, we obtain the solution to eq. (3.14).

Proposition 3.4. The solution $(w, ) to the ODE (3.14) is given by

- ﬁ 2 — Biw + O 2 i
$(w,7) = H(w, O)e ( 7 Wt )T - f AT “”"’“’)"‘”a(w, s)ds. (3.15)
o
Proof. Note that the ODE (3.14) is of the form
ay R .
o (W, 7) + (WP (W, T) = —it(w, 5),

where
2

o(w) = (%— w? - Giw + 19).



Using the integrating factor ¢#)", the solution to the ODE (3.14) may be expressed as

Hw, 7" — H(w,0) = — f S, s)ds,
0

which is readily reduced to eq. (3.15). d

3.3. Inversion of the IFT

Given the solution $(w, 7) to the ODE (3.14), we now proceed to show how it can be recovered the function y(x,7),
recalling that it is only a suitable transformation of the initial premium function v(x, 7) of a European CI call option
in the (x, 7) plane.

Proposition 3.5. By applying the inverse Fourier transform to eq. (3.15) and the definition of the Heaviside step
Junction, we obtain the following representation for the function y(x,t)

Y(x,T) 1= 01X, 1) = ya(x, T), Ina, < x < oo, (3.16)

with

U_iwz_ iw +
yi(x,7) = F ! {5}((0, 0) e_( Tl ‘9)1};

)
-5 o? - biw+ 9 |(r-s
y2(x,7) 1= F 1 {fe (2 ; 19)( )ﬁ(w, s)ds}.
0

As it will be shown in the following proposition, to determine explicit expressions for the functions y1(x,7) and
y2(x,7) we use the Convolution Theorem for Fourier transform, which subsequently involves evaluating integrals of
the exponential of a quadratic function.

Proposition 3.6. In the representation of eq. (3.16) the functions N1(x,7) and y,(x,7) can be expressed respectively

as
erTx _Guipry
1) = Y fmj0+ e 2t h(udu (3.17)
n o A _(x—u;p(r—s»z
)’z(x, T) =e j: ’fh\]as m e 20%(-s) l(u, s)duds. (3.18)

Proof. Let us first consider the definition of y; (x, 7)
—(0-2i w? - Biw + 19)1'
nx1) = F 7w, 0)e :

This inverse Fourier transform can be evaluated by the Convolution Theorem A 4, i.e., by making use of the following
identity

1
7—'_1 {F(w, T1 )G(w9 TZ)} = ’\/_2_71' - f(x - f’ T1 )g(f’ TZ)dfa (319)

where F(w, ;) and G(w, ;) are the Fourier transforms with respect to x of the functions f(x,71) and g(x, 72), respec-
tively. In order to apply the above result, we first let

Fw, ) = e_(§wz_gw+ﬁ)1,

9



Applying the inverse Fourier transform, we get

1 o _ et _(ren?
flx, 1) = P iwl (x+9-r)]e O i = e 207,
—c0 Tt

where the last expression is obtained by setting 1, = "72 T and 4 = i[-(x + 67)], with n = 0, and making use of the
following identity

2

&
fq e_/hwz_,{zwa)ndw = (_1)” % :/:nelbh y (320)
—0c0 2

in which 1; and A, are complex functions not involving the integration variable w, with Re(1;) > 0 and n € IN,.
Substituting p = (r — 6 — 02/2) into the expression of ¢ and rearranging terms of (x + 6r)2, the function f(x, 71) can
be simplified as follows

e—(r—p—o'z 12)r _ (2 +02242xp7)+ (02 +2p) 20 + 2x027) X (xtpry?
e 20T = e 2t

oVr o\t

Next we let G(w, T2) = $(w, 0). Hence, we have

f(x,Tl) =

8(x,72) = H(x-1Inap: )y(x,0)
= H(x - Inag: )e h(x).

Substituting for f(x — &,7;) and g(¢, 1) into eq. (3.19) and using the Heaviside step function on the continuation
region C,, we obtain eq. (3.17).
The function y,(x, 7) can be written as

2 )
»x7) = F {f'e_(Tw“pW”)(T_s)i(w, S)ds}
o

(2w iw + B|(T—s)
= fﬁ""l {e(2w+ " )(T )ﬁ(w,s)}ds.
0

Since the above integral can be evaluated using the Convolution Theorem A .4, we let

foud

- w2—0m+19)(‘r—s)
Flw,m)=e ( 2 ;

G(w9 72) = ﬁ((t), S)'
Applying now the inverse Fourier transform to the functions F(w, 1) and G(w, T5), we get

e_.g(f_s) B [J|:+é)(‘r-s)]2

fot) = 1 e'UTJ WA (r—s) — iw[~(x+8(T—s))] e PTGy = £ 3%
Vzﬂ —0 TNT—8§

8(x,72) = H(x — Inas)e™ I(x, s);

where, setting 4, = "72 (T —s)and A; = i[-(x + (7 — 5))], with n = 0, the last expression of f(x, 1) is obtained by
identity (3.20). Now, it is quite easy to express function f(x,7,) in the following form

e 0= [x+p(‘r-—s)]z+[(t7'2+2p)cr2('r—.~:)z + Zxaz('r—s)] e Ta=9)=x [x+,a(‘r—s)]2

f(xv‘rl) = e 20?7 = ———¢ 202t
oc\r -5 or
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Finally, substituting for f(x — £,71) and g(¢, 71) into eq. (3.19), yields

% r(r-5)-(x-6) _[x—£+p(r—s)]2(H )
- c 20%(t—5) —1Inay)e* I, s)dE |ds,
y2(x,7T) f( » ame (f na )e &, s) f) S,

which is readily reduced to eq. (3.18) once the Heaviside step function on C, is used. a

Using the explicit expressions of y; (x, 7) and y(x, 7) given by Propositions 3.6 and recovering v(x, 7) as e*y(x, ),
we obtain for the initial premium of a European CI call option with generic payoff and continuous payment plan the
following integral representation

e ’T 00 (x—u+ e‘r)z
v(x,T) =

e 2% h(udu
oV2nt

e~T(T=9) ["’ s P("_s)]z
_ ————¢ 229 [(u,s)duds, 321
0 ﬁ:, TN2r(T - 5) ( ( )

Inay+

for 7 € (0, T] and x € (In a,, ).

In a similar way, by expressing PDE (3.7) and associated conditions (3.3-3.5) in terms of the newly defined
auxiliary function y(x,7) := e*v(x,7) we are able to apply the IFT - since the required condition lim,_,_, y(x,7) = 0
is fulfilled - and then, by making use of identities similar to those in Proposition 3.2, to obtain the solution H(w, T) to
the resulting ODE. Hence, taking the inverse Fourier transform of this solution in conjunction with the Convolution
Theorem A.4 and then recovering the original function v(x, 7), we derive for the initial premium of a European CI put
option the following integral representation

e’ In go+ (x—u+ E)z

v(x,T) = e 2% h(udu
o V2nr J-
f fngs or=s) _%l o
- e ——————30 =S u, s)duds, 322
0 Jow OTN2r(T-75) @ 5) ( )

for T € (0,7T] and x € (—o0,1n g;).

Egs. (3.21) and (3.22) express the up-front prices of European CI call and put options in terms of the respective
optimal stopping boundary. Although this free boundary remains unknown, we are able to obtain a recursive integral
equation that determine it by requiring the expression for v(x, 7) to satisfy the boundary condition (3.4). Therefore,
by using our Heaviside step function, the optimal stopping boundary is found to satisfy the following relationship

For call option For put option

0=v(na,7) 0=v(ng,,7). (3.23)

Finally, it is important to note that by using the IFT method an analytical expression for v(x, T) has been derived
without specifying the functional forms of h(x) and /(x,7), beyond a few basic properties. A result of comparable
generality cannot be easily obtained when using alternative methods (e.g., Kim’s (1990) compound option approach),
and illustrates the main advantage attainable by using integral transform techniques. Hence, to price a European CI
option with monotonic payoff structure and installment payment function of bounded variation, one must first solve
integral equation (3.23) using numerical methods to find the optimal stopping boundary, since analytical solution
seems impossibile. Once this is found, the function v(x, 7) can be evaluated via numerical integration.

4. A representation of the solution to the European CI option pricing problem

The Fourier transform method allows us to handle a wide class of payoff structures and continuous payment plans
in a general form, as demonstrated by integral representations (3.21) and (3.22) of the initial premium of European
call and put options, respectively. Although alternative approaches, such as Kim [16] and Carr et al. [4], are tied rather
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strongly to the explicit form of the payoff being considered, the results they obtain are much easier to interpret in an
economic sense. Thus, to ensure that our Fourier transform technique is seen to be both applicable to a wide class of
derivatives and economically meaningful, we will derive a parametric representation of the solution to the European
CI option pricing problem by assuming that L(S, 7) is a function of time 7 only.

4.1. Kim's representation of the European CI option initial premium

Although it is convenient to define the initial premium in terms of time to maturity T = T'—¢, the log-transformation
S = € has little economic interpretation. Furthermore, it is not possible to apply directly the integral representa-
tions (3.21) and (3.22) once the functional forms of H(S ) and L(S;, t) are specified. For these reasons we will derive
a parametric representation of the up-front price in terms of the original variable, S,, and setting only some basic
properties of the functions H(S;) and L(S, 7).

Proposition 4.1. Let H(S ) be a monotonic increasing function of S, for t > 0, and L(S,t) = L(f) be an integral
Junction with respect to t, for t > O, and defined for any S, > 0. Then, the initial premium function C(S,,7) of a
European CI call can be expressed as

HES ;- a)C(S, 1) = C‘Z«S(S:, T) - AC(Sn T a('))a 4.1

witha, < §; < oo, fort € (0,T), and where

2

!Z(u))
1S, a0+, 7) -3
S, e f ) e dz(u)

CZS(Sn T) :

0 et m
(S, a9+, T) e_f(;L))Z
+e’”£: 0 = W= a o 42)
A(Ss,15a()) = fr 3] or & dn(u)d¢, @3)

are the generalized Black-Scholes European call pricing formula and the expected present value of payment stream
along the optimal stopping boundary, respectively. Furthermore, the free boundaries a. is given by

0= c;(ar,7) = A°ar, T5a()). @.4)

Proof. Let us consider the first integral term in the right hand side of eq. (3.21). Now by adding and subtracting the
term /' (x) := dh(x)/dx to the integrand, yields

wn = = 7 S = F S d
vi(x,7) = e 2%t W (w)du+ e 201 u) — b (w))du
! o V2x1 Jinay. oV2r 1 Jmay. LA W]

= Li(x,7)+ L(x,7).

Multiplying and dividing by e* in the integrand and rearranging terms, the integral I (x, 7) can be written as follows

2
—rr ’ [u —-(x+(o+ 0'2)1] o2
L(x,7) = ¢ W) e 202t erteTt Trdu,
o V2t Jinay: et

and recalling that p = r — § — /2, we obtain for I, (x, ) the following expression

_1_[u-(x+(p+a'z)r)]z

Wwe 2 T

L(x,T) = €*¢™ lim (u ) du.
€= Jnagr € o\2nt
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Setting 2(u) := &7 and by defining di (x, y, ) 1= DL yielg

2

(U
I o (B W
1(x,7) =€’ dz(u).

o e \n
Similarly, the integral I;(x, T) can be written as
1 x—u+e‘r]z
bx,7) =€ i f [ - ¥ ) g
x,7) = e lim u) — W (4)] ————du.
2 €79 Jlnay: oV2nt
Setting { (1) := x—_cr“—\f;ﬂ and by defining d,(x,y,7) := li%/zéﬂ we obtain
2
F(e’,%ﬁ‘r) e—@
L(x, Ty =" [A(w) — I (w)] d{(u).
2 n N

For the second integral term in the right hand side of eq. (3.21), by splitting up the interval of integration at a point
¢ € (Inag, o), as c tends to infinity we get

1 e~T(T=s) _%[X—u+f’("'-s)]2 l
v (x,7) = im —_— TNT=s s)du|ds.
2(7) »f[c"m»fln‘a, T \2x(r - s) ) ]

X=u+p(T-5)

Performing the change of variable n(u) := s and using the above definition of d,(, -, ), yields

2
h(e*, as, T—s5) ’ )e_(_'(;i
va(x,7) = f f ens I(s)dn(u)ds.
2 0 -0 V27(

Substituting the new expressions of v;(x,7) and v,(x, 7) into eq. (3.21), rearranging terms and reverting back to the
original space-variable via §; = €*, we obtain eq. (4.1) in conjunction with the expressions (4.2) and (4.3) defining
(81, 7) and AS(S;,7;a()), respectively. Finally, because early stopping decision is optimal when S; = a,, by
applying the value-matching condition (3.23) we get eq. (4.4). O

Proceeding in a way similar to that described above, we obtain a parametric representation of the solution (3.22)
to the pricing problem of European CI put options. Thus, if H(S,) is a monotonic decreasing function of S,, for
t 20, and L(S,,?) = L(?) is an integrable function of # for any S, > 0, then the initial premium function P(S,;,7) of a
European CI put can be expressed as

H(ge = SHPS1,7) = pr(S 1) — A(S4, 73 8()), @.5)

with —oc0 < §; < g,, for T € (0, T], and where

2

@)
d1(S1, 80+, T) W -3
Ste-&rf (u) e dz(u)

BS —
pg (St9 T) L o e ,\/2_”-
N d2(S+, 80+ 7) , e—@
e f 1 = 01—z 6)
dy(S+, 8¢, T) e‘@
A STig() = f 70 @7
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are the generalized Black-Scholes European put pricing formula and the expected present value of payment stream
along the optimal stopping boundary, respectively. Furthermore, if we evaluate P(S,,7) at §, = &r, We obtain the
following recursive integral equation for the free boundaries g

0=p;(gnT) = N(gr, 7 8()). 4.8

Since the solution forms (4.1-4.3) and (4.5-4.7) were first found for the case of standard American options by an
approach due to Kim [16], we henceforth refer to these as Kim’s representations for the initial premium of a European
CI call and put option, respectively.

5. An example: European vanilla CI call options with linear installment payment function

Now we want to consider an interesting class of examples which illustrates the flexibility and generality of the
results in this paper. The following proposition gives an explicit formula for the up-front price of European CI call
options with well-known payoff specification and installment payment function of linear form.

Proposition 5.1. Let H(S 1) and L(¢) be given respectively by
HEST)=Er-K"
Ly=T"2irg, osis<T

where (x)* = max(x, 0) and K 2 0 is the exercise (or strike) price of the option, and where q; and qr are fixed positive
constants with either 0 < g, < g7 or 0 < gr < q;. Then, the initial premium function C(S,,7) of a European CI call in
eq. (4.1) can be expressed as

CS,1) = S, N(di(S1,K, 7)) = Ke " N(dy(S 1, K, 7)) - g1 f €TINS 1, ag, T - £))déE
0

Lar - 90 f e TOEN(dy(S 1, ap, T - £))dE, 6.1

with ar < §; < 0o and where N(-) is the standard normal cumulative distribution function given by

NQ@) = v%fy 1% v,

The recursive integral equation (4.4) for the optimal stopping boundary a, can be written as

0 = a, e N(dy(ar, K, 7)) = Ke"N(ds(ar, K, 7)) - gr f e ON(dy(ar, ag, T - £))dE
0

. ‘”%‘10 f' ¢OE N(dy(ar, ag, 7 - £))dE. (5.2)
0

Proof. If now we set H(S 7) = max(St — K, 0), this implies that h(x) = max(e* — K, 0) and then /’(x) = max(e*, 0).
By substituting for 4(«) and its first derivative into eq. (4.2), simplifying and using the definition of standard normal
cumulative distribution function, we can express c2*(S;, 7) as

Cis(s s T) = St e_d‘rN(dl (S t Ao+, T)) - Ke—’urN(dl (Sls ap+, T))a
where ag+ := limr—o- 4v, i.e., the optimal stopping boundary at the maturity date T, is equal to the strike price K as

proven in Ciurlia [7] and Kimura [18]. Furthermore, setting /(§) = ﬂTl‘ﬁ (T - & + g; and substituting this expression
for I(¢) into eq. (4.3), we can simplify A°(S,,7;a(-)) as follows

K (Smia0) = [0 (qr - L0 NS, a7 - £
14



Substituting for c3°(S;, 7) and A°(S,, 7; a(-)) into eq. (4.1) and applying the definition of the Heaviside step function,
yields the explicit expression (5.1) for the initial premium function C(S,, 7). Finally, if we evaluate C(S,,7) at S, = a,,
we obtain the integral equation (5.2) for the free boundary a.. O

Remark. While the above proposition is fully sufficient to dealing with European vanilla CI call options when
the payment plan is a linear function of time, we note for completeness that we can give the following abstract
characterization of a wide class of contingent claims. European-style vanilla installment derivatives with continuous,
positive and linear strictly increasing or decreasing installment payment function L(#) on time interval [0, T'] are given
by setting 0 < g; < gr or 0 < gr < g, respectively. It is worth noting that the special case ¢, = g7 = ¢ corresponds to
the class of installment derivatives with constant payment stream, previously treated in the literature (see, for instance,
Ciurlia [7] and Kimura [18]), whereas the Black-Scholes option pricing model is recovered in the limiting case as
q: — 0* A gr — 0%,

6. Conclusions

In this paper we have examined the valuation of European continuous-installment options when the payment plan
is a function of the asset price and time variables. By expressing this class of option pricing problems as a free
boundary problem under very general conditions, and then applying the incomplete Fourier transform technique, we
were able to provide optimal stopping strategies and valuation formulas based only on knowing a few basic properties
of payoff and installment payment functions. This high degree of flexibility and robustness substantially simplifies
the pricing of these derivatives because it reduces the determination of the initial premium and free boundary to the
identification of some key parameters. In the case of a constant installment option the pricing formula of Ciurlia [7]
and Kimura [18] is easily derived once a specific form of the installment payment function has been identified.

Although our focus is on options, our approach is general and applies to more complex derivatives. For instance,
many of our results, which leads to a unified treatment of the pricing of European installment options with general
monotone payoff functions, can be extend to cover convex or concave payoff structures. Examples include not only the
well known option trading strategies, such as strangles and condors, but also a class of installment derivatives whose
initial premium satisfies the inhomogeneous partial differential equation, though the final and boundary conditions
for these claims may be changed. When the underlying asset price is modeled by a more general diffusion process
(e.g. jump-diffusion models), this approach is amenable to further extensions and can be used to construct an analytic
treatment of a range of valuation and hedging problems.

Finally, the most challenging issue concerns the class of high-dimensional problems that arise, for example, in
pricing options on multiple assets and in pricing options under additional risk factors such as stochastic volatility,
interest rates and exchange rates. While it is possible to extend our approach to handle low-dimensional problems
involving direct numerical integration, it does not resolve the general multidimensional case. For future research in
the field, other numerical procedures such as Monte Carlo simulation may be more appropriate to deal with high-
dimensional pricing problems.
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A. The incomplete Fourier transform: Basic properties and theorems

Here we present a collection of results concerning the application of the standard Fourier transform to the class
of absolutely integrable functions on a finite or semi-infinite interval. Finally, the convolution theorem for Fourier
transforms is formulated.

Definition A.1 (Fourier transform and its inverse). The Fourier transform of a function f : R — R is denoted by
F{f(x)} = F(w) and defined by the integral

FU/) = Fw) = v—lz_; f : e f(x)dx,

where F is called the Fourier transform operator or the Fourier transformation.
The inverse Fourier transform, denoted by ¥ ~{F(w)} = f(x), is defined by

FHF W)} = f(x) = % “* F(w)dw,

where F 1 is called the inverse Fourier transform operator.

Theorem A.1. Let F{f(x)} = F(w) be the Fourier transform of a function f : R — R. Then, F{f(x)} satisfies the
Sfollowing properties

(@) (Shifing)  F{f(x-a)}=e ™ F(f(x)};

1
®)  Scalingy  Fflax)}= =F{f(0}

|al
©  (Conjugate)  F {2} =F(f®)}
(d)  (Translation)y  F(e** f(x)} = F(w - a);
(e)  (Linearity)  Flaifi(x) + a2 (%)} = aiF [i(x)} + & F {f(x)}, Vay,a; € C;
(N ualiyy  FIF) = f(-w).

Proof. To prove (a), we have, by definition,

Flic-a) = —— f ¢ fx - a)dx

V2r
= % | Ef@de (x-a=§
= UF(f(x).

The proofs of results (b)-(e) follow easily from the definition of the Fourier transform. We give a proof of the duality
property (f). We have, by definition,

109 = —= [ e Fwn =7 Fw)

Interchanging x and w, and replacing w by —w, we obtain
1 A
f~w =——fe'“”"dex=7"F(x . 0O
) = . (€9 {F(x)}
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Proposition A.1. Let f : (a,b) C R — R be a function defined on a finite real segment (a, b). If the x-domain is
extended to all real numbers by expressing f(x) as

[H® - x) = H(a - 0] f (%),

with H (x) the Heaviside step function given by

1, x>0
Hx) =1 L, =
0, x<0

then the incomplete Fourier transform (IFT), denoted by F*°{f(x)} = F(w), is defined as
1 ,
Fol f)} = Fw) = — | ™ f(x)dx. Al
{f(0} N f (A1
Proof. We have, by definition,

1 <.
FH® -0 - Ha- 0] fx) = o f e HBb - x) - H(a - D] f(x)dx,

and applying the linearity of the integral operator, yields

1 A .
Fof(x) = ﬁ(f e"“‘"f(x)dx—f e"“’”f(x)dx)
%Ul_i)xpm ( f ’ e f(x) dx + fb eTiwx f(x)dx),

which is expression (A.1). O

Proposition A.2. The IFT of a function f : (—c0,b) C R — R, denoted as F~>b(f(x)} = F(w), is given by

1 .
Fol f(x)} = — e~ f(x)dx. A2
{f)} = ) S (A2)
The IFT of a function f : (a,) C R — R, denoted as F**{f(x)} = F(w), is given by
1 .
ForAf@)) = — f"“ e f(x)dx. A3
{f} = ). f) (A3)
Proof. Taking the limit of eq. (A.1) as either a — —co or b — 0, we obtain eq. (A.2) and eq. (A.3), respectively.
O
Proposition A.3. The inverse Fourier transform of a function f : (a,b) C R — R, denoted by F~'(F(w)} = f(x), is
given by
FYE(w)} = fx) = % f (fb 7% £(x) dx) €“*dw, a<x<b. (A4

Proof. Let g(x) = [H(b — x) - H(a — x)] f(x) be a function defined for all x € R. Then, applying the inverse Fourier
transform operator to g(x), yields

gx) = \/% K; (% ]:: e'i‘”fg(f';df) e duw, —00 < x < 00,



According to the definition of the Heaviside step function, the right- and left-hand sides of the above expression can

be written respectively as

1 “ (1 . ‘
S =—= T i b-§&) - - dél e *d
o @fm(vz—nf: [Hb~&) - Hla-OfE) f)e "
B ?.irr e [uli’f‘oo ( fv eSO dE+ f e fE) df)] ¥ dw
= % ]—‘: (f e—iaiff@:) df)ei“’xdw,
S, a<x<b
LHS = (Ho-9-Ha-0)@=1L2 coavasy
0, x<aV x>b

Putting together, we have

[H® - x) - H(a - x)]f(x) = % ] (f X&) df)ei‘”"dw, —00 < X < 00,

or alternatively

% B (j: R i(3) df) e dw, a<x<b

1f (fa e (&) df)ei‘”"dw, x=aVx=b [O
T J-c b

fx) =

Proposition A.4. The inverse Fourier transform of a function f : (-=0,b) C R — R, denoted by F~'{F(w)} =

is given by
1 - ;
FUHE (W)} = fx) = > (fb e f(x) dx) e“*dw, —o0<x<b.
The inverse Fourier transform of a function f : (a,00) C R — R, denoted by F 1 {F(w)} = f(x), is given by

FHE(w)} = f(x) = 2-1; (fw % £(x) dx) e“*dw, a<x<oo.

S,

(A.S)

(A.6)

Proof. Taking the limit of eq. (A.4) as either a — —co or b — co, we obtain eq. (A.5) and eq. (A.6), respectively.

O

Theorem A.2. Let f : [a,b] C R — R be continuously differentiable for all x € (a,b) and such that f(x) is bounded

as x = a* and x — b~. Then, the following equality holds

1

a,b| ¢/ -
Fof (0} o

7 £®) = e f(@)] + (i) F@w).
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Proof. We have, by definition,

1 .
F@2Uf ()} = Wor €% ' (x)dx.

Integrating by parts, the right-hand side can be rewritten as

e wx f(x)dx,

€7i9% f(x) ]” iw

RHS:[ Vor " Vax o

which is expression (A.7). O

Theorem A.3. If f : (—o0,b] C R — R is bounded, continuously differentiable and f(x) — 0 as x — —co, then

1 )
F b (%)) = —=e7“b £(b) + (iw)F (w). A8
If f : [a,00) C R — R is bounded, continuously differentiable and f(x) — 0 as x — oo, then
1 .
FEOUL @)} = ——=€™f(a) + (iw)F (w). (A9
Vo )
Proof. Taking the limit of eq. (A.7) as either a — —oo0 or b — oo, we obtain eq. (A.8) and eq. (A.9), respectively.

O

A repeated application of Theorems A.2 and A.3 to higher derivatives gives the following two corollaries.

Corollary A.1. If f : [a,b] C R — R is continuously n-times differentiable for all x € (a,b) and such that f®(x) is

bounded as x —» a* and x - b™, fork=0,1, 2, ..., n— 1, then
1 n
FEP ) = ——[e"“"” (i)™ f(b)

—gTiwa Z(iw)f“‘f""ﬁ(a)] + (i)' F(w). (A.10)
j=1

Corollary A.2. If f : (—00,b] C R — R is bounded, continuously differentiable and f®(x) —» 0 as x — —oo, for
k=0,1,2,...,n=1, then

FoH O] = = e Y ) 00 + (01 F ), (AL
=

If f : [a,00) € R — R is bounded, continuously differentiable and f®(x) — O as x — o, fork=0,1,2, ..., n—1
then

»

FAfP @) = - sz_ﬂ e 3 (i)™ f7D(a) + (i) F (). (A.12)
j=1

Definition A.2 (Convolution). The convolution of two integrable functions f, g : R — R, denoted by f(x) * g(x), is
defined by

F) % g(x) = \/;2_” f : Fx - D).
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Theorem A.4 (Convolution Theorem). Let {f(x)} = F(w) and F{g(x)} = G(w) be the Fourier transforms of
Junctions f(x) and g(x), respectively. Then, for the convolution f(x) x g(x) the following equalities hold

F{f(x)  g(0)} = F(w)G(w),
or
fx) * g(x) = FH{Fw)G(w)},

or, equivalently,

f - Og@dE = f 4 F ()G (w)dw.

-0

Proof. Using the definition of the standard Fourier transform, we have

Ff(x) * g(x)}

3 [ ewas [ - g

B 2L7r RO | O f(x- Hdx
= o [ s [ e Gg=
= G(w)F(w).
This completes the proof. O
It can be readily verified that the convolution has the following algebraic properties

(a) (Commutative) frxg=gxf;

) (Associative) (fxg*xh=fx(gxh),

(c)  (Distributive)  fx(g+h) = fxg+ fxh

(d  (dentity)  fx V216=f= V2no« f.
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