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Abstract 
The increasing attention given to global energy issues and the international policies needed to reduce greenhouse gas 
emissions have given a renewed stimulus to research interest in the linkages between the energy sector and economic 
performance at country level. In this paper, we analyse the causal relationship between economy and energy by 
adopting a Vector Error Correction Model for non-stationary and cointegrated panel data with a large sample of 
developed and developing countries and four distinct energy sectors. The results show that alternative country samples 
hardly affect the causality relations, particularly in a multivariate multi-sector framework. 

 
Keywords: Energy Sector, Panel Unit Roots, Panel Cointegration, Vector Error Correction Models, 
Granger Causality 
J.E.L. classification: C01, C32, C33; O13; Q43 
 
 
1. Introduction 

The increasing attention given to global energy issues and the international policies needed to 

reduce greenhouse gas (GHG) emissions have given a renewed stimulus to research interest in the 

linkages between the energy sector and economic performance at country level. The empirical 

analyses and the adopted models for investigating these linkages highly depend on the development 

level and economic structure of the countries considered. 

Toman and Jenelkova (2003) argue that most of the literature on energy and economic development 

discusses how development affects energy use rather than vice versa. This strand of literature 

considers economic growth as the main driver for energy demand and only advanced economies 

with a high degree of innovation capacity can decrease energy consumption without reducing 

economic growth. 

Stern and Cleveland (2004), on the other hand, have stressed the importance of considering the 

effect of changes in energy supply on economic growth in both developed and developing 

countries. If energy supply is considered a homogenous input for the production function, this 

means that if policy constraints affect energy supply, economic development is harmed. When 

energy services are differentiated, emphasizing the existence of higher and lower-quality forms of 

energy, society should make a choice in terms of an optimal energy mix, considering that higher-

quality energy services could produce increasing returns to scale. This means that energy regulation 

policies supporting the shift from lower-quality (typically less efficient and more polluting) to 

higher-quality energy services could provide impulse to economic growth rather than be detrimental 

                                                
* The authors gratefully acknowledge the support provided by the research network ENEA-INEA-UNIROMA TRE on 
“Integrating bottom-up and top-down energy models: the case of GTAP-E and Markal-Italy” of which this work is a 
part. The paper is the first step in a regional assessment of end-use energy sectors elasticities necessary to calibrate both 
GTAP-E and Markal. We are also indebted to Caterina Conigliani and Antonio Musolesi for their helpful suggestions. 
The usual disclaimers apply. 
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to the development process. 

If we consider energy consumption as a function of economic output, regulation and technical 

innovation, a suitable representation is the formalization provided in Medlock and Soligo (2001) as 

expressed in eq. [1]: 

 

)),(,,( tjtjtjtjtj pYpYfEC τ=  [1] 

 

where energy consumption (EC) at time t for each j-th end-use sector is a function of economic 

output (Y), energy prices (p) and technology (τ) which is expressed as a function of output level and 

energy prices. In this specification, public regulation in the energy sector is expressed in terms of 

energy prices and there is endogenous technical change given by (τ) as a function of the economy 

and prices. 

The opposite relation is adapted from Lee and Chang (2008) and Stern (2000), as expressed in eq. 

[2]: 

 

))(,,( tjtjtjtjtj pECLKfY =  [2] 

 

where economic output (Y) is a function of the capital stock (K), labour (L) and energy inputs (EC), 

here modelled as being strictly dependent on energy prices (p). This simple assumption is required 

if we consider that energy supply is often affected by exogenous elements such as international 

energy prices and public regulation, assuming that public regulation can be fully expressed by 

domestic energy prices. We are aware that this is a simplification but we also know that, in many 

cases, energy taxes in OECD countries constitute the greatest part of energy prices. 

These alternative views have important policy implications concerning, for example, aspects such 

as the development level of the considered country or the distributive effects related to the 

introduction of stringent energy (and environmental) regulations. 

By observing energy trends in the past five decades, energy used per unit of economic output 

(energy intensity) seems to have steadily declined especially in advanced economies. The principal 

reason for this evidence is the shift in energy use from direct use of fossil fuels to the use of higher 

quality fuels (from coal to natural gas) or electricity (Stern and Cleveland, 2004). 

If we consider highly industrialized countries, total energy use has increased, energy efficiency has 

improved and energy intensity - the energy necessary to produce output - has steadily fallen, 

especially in the industrial sector. Stabilization of greenhouse gas concentrations requires reductions 

in fossil fuel energy use which is a major essential input throughout all modern economies. If 
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energy conservation and a switch from fossil fuels to alternative energy sources can be effected 

using new energy efficient technologies, the trade-off between energy and growth becomes less 

severe. 

In order to obtain decoupled trends in the energy and economic sectors, an effort should be 

explicitly directed to possible win-win outcomes of energy (and environmental) regulation policies 

which are oriented towards technological innovation and productivity improvements. 

There are also changes in energy intensity that are not directly related to changes in the relative 

energy price but mainly explained by structural change in the productive composition (Stern, 1999). 

If the development process is in the deindustrialization phase, the increasing importance of value-

added produced by the service sector could lead to a global reduction in energy consumption due to 

a minor weight represented by energy-intensive industrial sectors. 

Nonetheless, empirical analysis has shown that energy regulations and the shifting in production 

structure do not necessarily lead to a consistent reduction in global energy consumption. This 

evidence is explained as a “rebound effect”, postulated first by Brookes (1990) and Khazzoom 

(1980). In some cases, energy-saving technical innovations tend to introduce more energy-using 

appliances to households and industries causing even more energy consumption as the money saved 

is spent on other goods and services which require energy to be produced. A stronger implication of 

the rebound effect is related to a reduction in energy prices that occurs when energy efficiency leads 

to a reduction in the energy demand (Binswanger, 2001). An innovation that reduces the amount of 

energy required to produce a unit of energy services lowers the effective price of energy services. 

This results in an increase in demand for energy services and therefore energy. The lower price of 

energy also results in an income effect that increases demand for all goods in the economy and 

therefore the energy required to produce them (Lovins, 1988; Newell et al., 1999; Popp, 2002). 

Therefore, if a delinking between economic growth and energy consumption is the aim of energy 

policies, policy makers should consider some form of energy regulation (taxes, price cap or other) 

that allows cost of energy services to remain unchanged provided that technological innovation 

lowers effective energy prices (Bentzen, 2004). 

Not many empirical studies have analysed this phenomenon by considering different economic 

sectors and have observed energy efficiency only at a general level. This has important policy 

implications. One of the most accurate contributions is the analysis by Zachariadis (2007) for G-7 

countries where energy-economy causality for the four energy sectors (industry, service, residential 

and transport) is analysed using alternative estimation methods for each country. If declining energy 

intensity is seen to be a valid pattern only for specific sectors and not for the whole economy, 

differentiated policy measures are required in order to obtain the best results in terms of decoupling 



 

 

7 

economic growth from energy consumption. As in Judson et al. (1999) and Medlock and Soligo 

(2001), the results are mixed if different energy sectors are considered. While the industrial sector 

shows a flat or declining energy/GDP ratio after the first oil shock, transport and household energy 

consumption is still increasing for advanced economies. 

There are many studies that investigate the strength of the structural linkage between energy and 

growth using time series analysis for single countries and, more recently, panel datasets. Recent 

efforts to adopt time series analysis for panel datasets have allowed the linkage between economic 

growth and energy demand to be examined in greater detail but results are still conflicting and often 

too partial to allow consistent policy suggestions. Far from being exhaustive and conclusive, the 

purpose of this paper is to shed some light on the possibility of obtaining a better understanding of 

causal linkages between the economy and energy consumption by analysing the main end-use 

energy sectors in a panel context. Moreover, accurate econometric models based on panel data 

allow estimating empirically the elasticity parameters which are necessary to calibrate energy 

simulation models when they work on aggregated regional data, as the vats majority of existing 

energy models (Löschel, 2002). 

The econometric strategy for analysis of this kind should account for a number of specific issues. 

The first one is the non-stationarity of the time series and appropriate panel unit root tests must be 

performed. Secondly, if the time series are non-stationary, a panel cointegration approach is needed 

to see if a long-run equilibrium relationship exists between non-stationary variables. We must then 

consider that there is a high probability that the included variables are endogenous so that the 

models should consider the existence of Granger causality. In a non-stationary and cointegrated 

panel with endogenous variables, a properly designed econometric specification is a necessary 

requirement for providing correct and unbiased estimations. 

This paper is different from previous contributions in several aspects. The sample adopted for the 

dataset is wider than other contributions based on the panel approach and includes 71 countries, 

thus allowing a number of considerations on different results emerging from alternative sub-

samples consisting of developed and developing countries. The analysis is carried out on the whole 

energy sector and on four distinct end-use sectors, industry, service, transport and residential, 

allowing for specific considerations to be made for each sector divided into the sub-samples 

examined in this paper. Comparing results from different sectors reinforces the need for a 

multivariate model that accounts for structural peculiarities of both sectors and countries. A first 

attempt is provided by including specific energy prices for each end-use sector for OECD countries 

and the results offer strong advice in favour of multivariate multi-sector models. 

The rest of the paper is structured as follows. Section 2 provides the methodological strategy for 
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addressing Granger causality in the energy sector with particular emphasis on contributions dealing 

with non-stationary and cointegrated panel dataset, Section 3 gives a description of the data used in 

the empirical analysis, Section 4 describes the econometric strategy and presents the empirical 

results and Section 5 concludes with some policy implications. 

 

 

2. Econometric models for an analysis of causality between energy and economic growth 

To date, empirical findings on the causal relationship between energy consumption and economic 

growth have been mixed, depending on the functional form adopted, the econometric approach 

used, the time periods and the sample of countries analysed. Based on the methodology used, the 

literature on the relationship between energy use and economic growth can be divided into four 

generations. Interest in the subject dates back to a pioneering study by Kraft and Kraft (1978) who 

examined the relationship in the USA and found evidence of causality running from income to 

energy consumption. Several studies on the USA followed (for example, Akara and Long, 1980; Yu 

and Wang, 1984), and also on other developed countries (Yu and Choi, 1985). First-generation 

studies assumed that the time series examined were stationary and they were based on a traditional 

VAR methodology (Sims, 1972) and Granger causality testing (1969). Subsequent studies 

recognized the non-stationarity of the data series and they therefore performed cointegration 

analysis in order to investigate the relationships. Second-generation studies, based on the Granger’s 

two-stage procedure (Granger, 1988), tested pairs of variables for cointegrating relationships and 

used estimated Error Correction Models (ECM) to test for Granger causality, concentrating their 

attention mainly on transition economies (Cheng and Lai, 1997) and developing countries (Nachane 

et al., 1988). Third-generation literature used multivariate estimators (Johansen, 1991), facilitating 

the estimation of systems where restrictions on cointegrating relations can be tested and, at the same 

time, the possibilities of short-run adjustment can be investigated. Johansen’s approach also allows 

for more than two variables in the cointegrating relationship (see, among others, Masih and Masih, 

1996; Stern, 2000; Asafu-Adjaye, 2000; Oh and Lee, 2004). Fourth-generation studies employ 

recently developed panel methods to test for unit roots, cointegration and Granger causality (Al-

Iriani, 2006; Lee, 2007, 2008; Mahadevan and Asafu-Adaye, 2007). 

Pooling increases the sample size considerably, allowing for higher degrees of freedom and more 

accurate and reliable statistical tests; it also reduces collinearity between regressors. Another 

advantage of using panel cointegration is that it allows for heterogeneity between countries. 

Furthermore, the number of observations available when testing the stationarity of the residual 

series in a level regression is greatly increased in a panel framework and this can substantially 
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increase the power of the cointegration tests (Rapach and Wohar, 2004). 

Very broadly speaking, the test for causal relationship between energy consumption and economic 

growth in a panel context is usually conducted in three steps. First, the order of integration in the 

economic and energy time series variables is tested. Second, having established the order of 

integration in the series, panel cointegration tests are used to examine the long-run relationships 

between the variables in question. Granger (1981) showed that when the series are integrated of 

order one (they result stationary after first differencing), linear combinations might exist by virtue 

of which the series become stationary without differencing. Such series are called cointegrated. If 

integration of order one is found, the next step is to use cointegration analysis to investigate the 

existence of a long-run relationship between the set of integrated variables in question. When 

cointegration is found, the problems of differencing, represented by the loss of information on any 

long-run relationships between variables, can be avoided: a Vector Autoregression model (VAR) 

can be used to check whether a stationary linear combination of non-stationary variables exists 

implying that a long-run equilibrium relationship holds between the variables. Then, the last phase 

is represented by employing dynamic panel causality tests in order to evaluate the short-run and 

log-run direction of causality between the variables examined. 

 

2.1 Unit root tests for panel data 

One of the primary reasons for the utilization of a panel of cross section units for unit root tests is to 

increase statistical power of their univariate counterparts. The traditional augmented Dickey–Fuller 

test (ADF) (Dickey-Fuller, 1979) of unit root is characterized by having a low power in rejecting 

the null of no stationarity of the series, especially for short-spanned data. Recent developments in 

the literature suggest that panel based unit root tests have higher power than unit root tests based on 

individual time series. Panel data techniques could also be preferable because of their weak 

restrictions; indeed, they capture country-specific effects and heterogeneity in the direction and 

magnitude of the parameters across the panel. In addition, these techniques allow the model that is 

to be estimated to be selected with a high degree of flexibility, proposing a relatively wide range of 

alternative specifications, from models with constant and deterministic trend up to models with no 

constant and no trend; within each model, there is the possibility of testing for common time effects. 

Nonetheless, testing the unit root hypothesis with panel data is not without some additional 

complications. Panel data are generally characterized by unobserved heterogeneity with parameters 

that are cross-section specific whereas in some cases, it is not appropriate to consider independent 

cross section units (it is the case for real exchange rates as mentioned in Breitung and Pesaran, 

2005). Finally, the test outcomes are difficult to interpret because the rejection of the null of no unit 
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root means that a significant fraction of cross section units is stationary but there is no explicit 

mention of the size of this fraction. 

Recent developments in the panel unit root tests include Levin et al. (2002) (herein referred to as 

LLC), Im et al. (2003) (herein referred to as IPS), Breitung (2000) (herein referred to as BRT), 

Maddala and Wu (1999), Choi (2001) and Hadri (2000). The basic autoregressive model can be 

expressed as follows: 

 

ititiitiit Xyy εδρ ++= −1  [3] 

 

where i=1, 2, …, N represent countries observed over periods t=1, 2, …, T, Xit are exogenous 

variables in the model including any fixed effects or individual trend, ρi are the autoregressive 

coefficients, and εit is a stationary process. If ρi <1, yi is said to be weakly trend-stationary. On the 

other hand, if ρi =1, then yi contains a unit root. LLC, BRT, and Hadri tests assume that the εit are 

IID (0, σe
2) and ρi =ρ for all i; this implies that the coefficient of yit-1 is homogeneous across all 

cross section units of the panel and that individual processes are cross-sectionally independent. 

Pesaran and Smith (1995) stressed the importance of parameter heterogeneity in dynamic panel data 

models and analysed the potentially severe biases that could arise from including it in an 

inappropriate manner. 

Of the different panel unit root tests developed in the literature, LLC and IPS seem to be the most 

popular. Both of the tests are based on the ADF principle. However, LLC assumes homogeneity in 

the dynamics of the autoregressive coefficients for all panel members. In contrast, IPS allows for 

heterogeneity in these dynamics (namely, it allows for a heterogeneous coefficient of yit-1); 

therefore, it is described as a heterogeneous panel unit root test. This assumption is particularly 

reasonable since imposing uniform lag length among different countries is likely to be 

inappropriate: slope heterogeneity appears to be more reasonable when cross-country data are used 

and where heterogeneity could arise from different economic conditions and levels of development 

in each country. Moreover, IPS proposes averaging the augmented Dickey-Fuller (ADF) tests, that 

is it

p

j jitijit u
i +=∑ = −1

εφε , allowing for different orders of serial correlation. 

If this expression is transformed into the equation [3], the IPS test specifies a separate ADF 

regression for each cross-section as expressed in eq. [4]: 

 

ititi

p

j jitijitiit uXyy
i +++= ∑ = −− δεφρ
11  [4] 

where pi is the number of lags in the ADF regression and the error terms uit are assumed to be 
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independently and normally distributed random variables for all i and t with zero means and finite 

heterogeneous variances σ2
i. Both pi and the lag order φ in [4] are allowed to vary among cross-

sections. The null hypothesis is that each series in the panel contains a unit root (ρi =1 for all i) 

whereas the alternative hypothesis is that at least one of the individual series in the panel is 

stationary (ρi <1 for at least one i). The test statistic is normally distributed under H0 and the critical 

values for given values of N and T are provided in Im et al. (2003). 

With regard to the stationarity tests, it could be appropriate to account for structural breaks in the 

data series. As shown by Perron (1989), allowing for a structural break when testing for a unit root 

is extremely important: in fact, a structural break can be mistaken for a non-stationarity process. As 

a result, subsequent studies have modified the test so that it allows for one unknown breakpoint that 

can be determined endogenously from the data. The first test was proposed by Perron (1989) and it 

does not work in a panel context: it is able to capture a structural break that produces different 

consequences, namely a temporary or permanent change in level, a permanent change in the slope 

and a permanent change both in level and slope. The asymptotic critical values for t statistics are 

tabulated in Andrews and Zivot (1992). Carrion-i-Silvestre et al. (2005) developed a method which 

is able to test the null hypothesis of panel stationarity while allowing for multiple structural breaks. 

Panel members may have a varying number of structural breaks and these may have different 

effects on each individual time series. The test of the null hypothesis of stationarity in a panel 

context could also follow Hadri (2000) who designed a test statistic that is the average of the 

univariate stationarity test in Kwiatkowski et al. (1992). 

In our study, we have considered several alternative unit root tests such as LLC, IPS and BRT 

whereas a robustness check has been carried out on single cross section units to investigate the 

existence of structural breaks. We have not performed panel unit root tests with structural breaks 

because we are aware that it is almost impossible to have homogeneous breaks in time series in a 

significantly heterogeneous panel like the one we have considered especially for variables such as 

income and energy consumption. We have therefore checked for non-stationarity in single time 

series with structural breaks, finding that most of cross section units are characterized by I(1) series 

and very few of them result I(0) in levels when structural breaks are considered. 

 

2.2 Panel cointegration 

Earlier tests of cointegration include the simple two-step test by Engle and Granger (1987) or, 

alternatively, the Engle and Yoo (1987) three-step procedure; both methods cannot deal with 

situations where more than one cointegrating relationship is possible. Conversely, Johansen’s 

Vector Auto Regression (VAR) test of integration (Johansen, 1988) uses a system approach to 
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cointegration that allows determination of up to r linearly-independent cointegrating vectors (r ≤ g-

1, where g is the number of variables tested for cointegration). Johansen’s procedure is useful when 

conducting individual cointegration tests but does not deal with cointegration test in panel settings 

since it threats the cointegrating vector as homogeneous across members. 

Pedroni’s cointegration tests (1999, 2000) allow for cross-sectional interdependence with different 

individual effects in the intercepts and slopes of the cointegrating equation. This technique 

significantly improves the conventional cointegration analysis applied on single country series: in 

fact, data are pooled to determine the common long-run relationship and, at the same time, the 

cointegrating vectors are allowed to vary across the panel units. 

Pedroni (1999, 2000) suggests two types of residual-based tests for the test of the null of no 

cointegration in heterogeneous panels. For the first type, four tests are based on pooling the 

residuals of the regression along the within-dimension of the panel (panel tests); for the second 

type, three tests are based on pooling the residuals of the regression along the between-dimension of 

the panel (group tests)1. In both cases, the hypothesized cointegrating relationship is estimated 

separately for each panel member and the resulting residuals are then pooled in order to conduct the 

panel tests. The estimators used in the computation of the test statistics average the individually 

estimated coefficients for each member; each of the test statistics is able to accommodate individual 

specific short-run dynamics, individual specific fixed effects and deterministic trends (within-

dimension) as well as individual specific slope coefficients (between-dimension). 

Other residual-based panel cointegration tests include the contribution by Westerlund (2005) that is 

based on variance ratio statistics and does not require corrections for the residual serial correlations, 

Persyn and Westerlund (2008) that develops an error correction based cointegration test and 

Westerlund and Edgerton (2008) that takes into account the existence of structural breaks within the 

panel.2 

In our empirical estimations we have adopted Pedroni cointegration tests and the Westerlund test 

(2005) for a robustness check because they perform well in heterogeneous panels in which both N 

and T are of moderately large dimension. 

                                                
1 The seven Pedroni tests are based on the estimated residuals from the following long-run model: 

it

m

j ijtijitit xy εβα ++= ∑ =1

 where 
ittiiit

w+= − )1(ερε  are the estimated residuals from the panel regression. The null 

hypothesis tested is whether ρi is unity. The seven statistics are normally distributed. The statistics can be compared to 
appropriate critical values: if critical values are exceeded, then the null hypothesis of no cointegration is rejected, 
implying that a long-run relationship between the variables does exist; the relevant critical values can be found in 
Pedroni (1999). With a null of no cointegration, the panel cointegration test is essentially a test of unit roots in the 
estimated residuals of the panel: in the presence of a cointegrating relation, the residuals are expected to be stationary. 
These tests reject the null of no cointegration when they have large negative values except for the panel-v test which 
rejects the null of cointegration when it has a large positive value. However, according to Pedroni (2004), r and pp tests 
tend to under-reject the null in the case of small samples. 
2 Several other panel cointegration tests have been developed very recently but a comprehensive examination of this 
topic is beyond the scope of this paper. For a high-quality review, see Breitung and Pesaran (2005). 
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2.3 Testing Granger causality for non-stationary cointegrated panels 

Whilst acknowledging the problems associated with small samples, panel data are increasingly used 

to test for causality between variables: using panel data allows us to obtain more observations by 

pooling the time series data across sections leading to higher power for the Granger causality tests. 

Johansen’s VAR procedure and Pedroni’s heterogeneous panel cointegration are only able to 

indicate whether or not the variables are cointegrated and if a long run relationship exists between 

them. Since they do not indicate the direction of causality when the variables are cointegrated, 

causality is tested by the two-step Engle-Granger causality procedure using a Vector Error 

Correction Model (VECM). 

Having established a cointegrating relationship, the next step is to estimate the long-run equilibrium 

relationship given by the Error Correction Term (ECT henceforth). which is a measure of the extent 

by which the observed values in time t-1 deviate from the long-run equilibrium relationship. Since 

the variables are cointegrated, any such deviation at time t-1 should induce changes in the values of 

the variables in the next time point in an attempt to force the variables back to the long-run 

equilibrium relationship. 

The long-run equilibrium coefficients can be estimated by using single equation estimators such as 

the fully modified OLS procedures (FMOLS) developed by Pedroni (2000), the dynamic OLS 

(DOLS) estimator from Saikkonen (1991), the pooled mean group estimator (PMG) proposed in 

Pesaran et al. (1999) or by using system estimators as panel VARs estimated with Generalized 

Method of Moments (GMM) or Quasi Maximum Likelihood (QML). Single equation approaches 

assume there is homogeneity between cross section units for the long-run relationship whereas 

short-run dynamics are allowed to be cross-section specific. While this restriction may seem too 

severe for some variables, on the other hand, allowing all parameters to be panel-specific would 

considerably reduce the appeal of a panel data approach (Breitung and Pesaran, 2005). 

In our study, we have performed a single equation estimator in the form of the FMOLS developed 

by Pedroni (2000) for the estimation of the residuals which will be included in the panel VECM as 

the error correction terms (ECTs). The FMOLS estimator has been applied to as many single 

equations as the number of the variables included in the VECM that are I(1) and cointegrated. For 

bivariate models, we have therefore estimated ECTs as the residuals ( itε  and itη  respectively) from 

the two following equations: 

 

ittiiiiti ENtY εβδα +++= ,,  

 [5] 
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ittiiiiti YtEN ηβδα +++= ,,  

 

whereas for multivariate models with prices, we have estimated ECTs (
it

ε , 
it

η , 
it

ϕ  respectively) 

from the following three separate equations: 

 

ititiitiiiit
PENtY εγβδα ++++=  

ititiitiiiit
PYtEN ηγβδα ++++=  [6] 

ititiitiiiit
ENYtP ϕγβδα ++++=  

 

An alternative approach for the calculation of the cointegrating relationship is the error correction-

based pooled mean estimator (PMG) developed by Pesaran et al. (1999), represented by eq. [7]: 

 

( ) i,t

q

s

si,t

y

j

p

j

ji,t

y

ji,ti,ti,t ∆EN∆YENY∆Y εβαγφ ++++= ∑∑
=

−
=

−−
01

1  [7] 

 

where φ is the error correction speed of adjustment parameter to be estimated, γ is a (k x 1) vector of 

parameters, ( )i,ti,t ENY γ+−1  is the error correction term, α are p parameters to be estimated, β are q 

parameters to be estimated, p and q represent the number of lags for the economic variable and the 

energy variable respectively and itε  is the error term. In addition to the traditional dynamic fixed 

effects models, PMG takes into account pooled mean group estimators, meaning that only the 

coefficient associated with the long-run relationship is homogeneous for all the cross section units 

(γ in eq. [7]) while allowing for maximum heterogeneity for the short-run dynamics ( y

jα  and y

jβ  

coefficients j∀ ). Nonetheless, the ECT obtained by the eq. [7] is quite different from an FMOLS 

estimation and does not seem appropriate for our purpose.3 

The second step for building a Granger causality model with a dynamic error correction term based 

on Holtz-Eakin et al. (1988) is to incorporate the residuals from the first step into a panel VECM. 

Generally, the GMM technique developed by Arellano and Bond (1991) can be adapted to estimate 

the panel VARs, using lags of the endogenous variables as instruments in order to arrive at unbiased 

and consistent estimates of the coefficients. In a panel of N countries covering T years, the bivariate 

                                                
3 The FMOLS estimator is preferred to the DOLS because in the latter the co-variates are included in first differences 
and not in levels. Moreover, according to Pedroni (2001) and Breitung and Pesaran (2005), FMOLS and DOLS 
estimators possess the same asymptotic distribution and they can perform poorly if the number of time periods is 
smaller than 20. In our case the OECD sample covers 45 years whereas the Full sample and the NO-OECD samples rely 
on 35 years. FMOLS is therefore a suitable estimator. 



 

 

15 

vector auto-regressions with fixed effects have the following form: 
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where Yi,t and ENi,t are the two cointegrated variables for country i at time t; ηi and φi are individual 

fixed and time effects for the i-th panel member and ui,t and vi,t are the random disturbances whose 

distribution approximates normal. 

The specifications of model [8] as a set of equations imply that the error terms are orthogonal to the 

fixed and time effects as well as the lag values of the endogenous variables. In the equations [8], the 

lagged dependent variables are correlated with the error terms, including the fixed effects. Hence, 

OLS estimates of the above model will be biased: this is resolved by removing the fixed effects by 

differencing. The resulting model is therefore as follows: 
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However, differencing introduces a simultaneity problem because lagged endogenous variables on 

the right-hand side are correlated with the differenced error term. In addition, heteroschedasticity is 

expected to be present because heterogeneous errors might exist with different panel members in 

the panel data. To deal with these problems, once the fixed effects have been removed by 

differencing, an instrumental variable procedure is adopted to estimate the model using 

predetermined lags of the system variables as instruments in order to produce consistent estimates 

of the parameters. A widely used estimator for a system of this type is the panel generalized method 

of moments (GMM) estimator proposed by Arellano and Bond (1991). The final dynamic error 

correction model can be specified as follows: 
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where ey

i,tECT ,

1−  are the lagged residuals derived from the long-run cointegrating relationship in eq. 

[5], ey

i

,δ  and ey

i

,γ  are the short-run adjustment coefficients and ui,t and vi,t are disturbance terms 

assumed to be uncorrelated with mean zero. In these models, the optimal lag length for the two 

variables (m and q respectively) can be determined by the Akaike or the Schwarz Information 

Criteria and an instrumental variable estimator must be used because of the correlation between the 

error term and the lagged dependent variables. 

The source of causation can be identified by testing the significance of the coefficients of the 

dependent variables in equations [10]. First, for weak Granger causality, we test H0:
ey

i

,δ  = 0 and 

ey

i

,γ  = 0, i∀  in equations [8].4 Masih and Masih (1996) and Asafu-Adjaye (2000) interpreted the 

weak Granger causality as a short-run causality in the sense that the dependent variable responds 

only to short term shocks to the stochastic environment. Next, the presence (or absence) of long-run 

causality can be reviewed by examining the significance of the speed of adjustment ey

i

,β  (namely, 

the coefficients of ey

i,tECT ,

1−  which represents how fast deviations from the long-run equilibrium are 

eliminated following changes in each variable). The significance of ey

i

,β  determines the long-run 

relationship in the cointegrating process and movements along this path can therefore be considered 

permanent. Finally, it is also desirable to check whether the two sources of causation are jointly 

significant: a joint test on the error correction term and respective interactive terms (namely, the 

lagged variables of each VECM variable) can then be performed to investigate strong causality (Oh 

and Lee, 2004). This kind of causality shows which variables tolerate the burden of a short-run 

adjustment so that a long-run equilibrium following a shock to the system is established (Asafu-

Adjaye, 2000): if there is no causality in either direction, the ‘neutrality hypothesis’ holds, 

otherwise, univocal or bi-directional causality exists. Since all the variables are entered into the 

model in stationary form, a standard Wald F-test can be used to test the null hypothesis of no 

                                                
4 A variable xt is defined to be statistically weakly exogenous with respect to the variable yt if it satisfies 

( ) ( ),...,,...,;,..., 212121 −−−−−− = tttttttt xxxEyyxxxE
 

where E is the mathematical expectation operator and xt and yt are variables with t =1,…,n time observations (Engle et 

al., 1983). 
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causality (or weak exogeneity of the dependent variable). 

If we consider a third variable related to energy prices in a multivariate context, the panel VECM 

results as follows: 
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Other approaches can be developed that reflect different methods of testing for Granger causality: 

an Autoregressive Distributed Lag (ARDL) model or a vector autoregressive (VAR) model with 

augmented lag order to allow for the implementation of the Dolado-Lütkepohl (1996) and Toda-

Yamamoto (1995) methods. Altinay and Karagol (2005), Lee (2006), Wolde-Rufael (2006), and 

Zachariadis (2007) constitute examples of studies in which these methods have been employed. 

Nonetheless, we have adopted the panel VECM approach because of its extreme flexibility and, 

above all, because it allows heterogeneous panels to be used and serial correlation and 

heteroschedastic standard errors to be corrected. 

 

 

3. Dataset analysis 

As we have seen in the literature review, there are many recent contributions addressing causal 

relationships between the energy sector and economic performance. Most of them analyse the 

question from a country level perspective comparing the results of VAR models for different 

countries, mainly divided into homogeneous groups on the basis of development level, geographical 

areas or other common characteristics. A single country analysis is rarely followed by a panel 

framework (as in Al-Iriani, 2006; Al-Rabbaie and Hunt, 2006; Chen and Lee, 2007; Lee, 2005, 

2006; Lee and Chang, 2005, 2007, 2008; Mahadevan and Asafu-Adjaye, 2007; Mehrara, 2007), and 

the panel datasets account for a small number of countries. In our work, we have collected 

information on 71 countries, divided into two groups: OECD, with 26 countries, and NO-OECD, 

with 45 countries, as listed in Table A1 in the Appendix. The countries included in the OECD group 

are quite homogeneous whereas in the NO-OECD group, countries are quite heterogeneous both 

with regard to development level and policy settings. A future research task could be a more 
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detailed investigation of group-specific effects by analysing the same relationships inside different 

sub-groups. 

The dataset we construct combines several sources. For the energy sectors, we have collected data 

from the IEA publications on OECD and NO-OECD energy balances, containing annual data on 

energy final consumption for the whole economy and for the main sectors, as industry, commerce 

and public services, transport and residential sector, all expressed in terms of kg of oil equivalent. 

All information on economic performance in the different sectors is taken from the World Bank 

dataset on World Development Indicators (WDI). More specifically, we have considered the gross 

domestic product, the value added of industry and service, the household final consumption 

expenditures, all considered in terms of per capita constant 2000 US$. We chose to adopt household 

final consumption expenditure for modelling the residential sector because this comprises the data 

covering the largest country sample. An alternative variable is the final consumption expenditures 

(as proposed by Zachariadis, 2007) but it is strongly and positively correlated with household final 

consumption expenditure and would not provide additional information in our model. 

For the transport sector, we have used the GDP as the economic dimension, which is a common 

choice in literature. In Table 1, all variables are defined and associated with the acronyms used in 

the econometric estimates where i stands for countries and t for time period (year). 

 

<<<  INSERT HERE TABLE 1  >>> 

 

Data for energy prices are provided by IEA statistics on energy prices and taxes (quarterly) for 

OECD countries only for the time period 1978-2005. We have collected data for the whole energy 

sector and the four specific end-use sectors we have included in our analysis. We have considered 

four different energy prices: total energy price, total industry price, total household price and total 

gasoline price (all expressed in terms of constant 2000 US$ per toe). We have decided to use the 

total industry price both for the industrial and the service sector even though many contributions 

affirm that the best price variable for service is the cost of electricity. In our dataset, the electricity 

price is often missing or not complete throughout the time period thus consistently reducing the 

number of observations. We have performed a simple correlation analysis where the electricity 

price is highly correlated with all the other energy prices but mostly with total industry price. 

We are aware that we could specify energy sectors with prices even for NO-OECD countries by 

using the general Consumer Price Index as a proxy of energy price (as suggested in Zachariadis, 

2007) but we have preferred to adopt sector-specific energy prices to obtain more accurate estimates 

of price elasticities, because CPI does not account homogenously for energy services in all 



 

 

19 

countries. 

For bivariate models, data availability allows considering the period 1970-2005 for the full sample 

and the NO-OECD sample whereas for OECD countries, the time series cover the period 1960-

2005. For multivariate models including energy prices, we have a reduced sample with only OECD 

countries in the period 1978-2005. Considering the wide divergence among countries, both in the 

energy sectors and in economic performance, we have considered per capita levels and we have 

then transformed all data into natural logarithms because of the high variance in levels between 

developed and developing countries. 

Figures 1 and 2 report some trends in the energy sector for the period 1960-2005 in terms of total 

energy consumption. It is clear that only the industrial sector has experienced an incisive change 

after the first oil crisis in 1972-1973 with a consistent reduction in consumption path allowing for 

an almost non-increasing energy trend. On the contrary, the other sectors, especially transport, show 

rising consumption for the entire period, without significant changes. If the same distinction among 

sectors is applied to the sample of NO-OECD economies, the picture changes radically and all the 

sectors have increasing trends in energy consumption. A short period of reduction in energy 

consumption was experienced only by the industry sector across 1994-2001 followed by a sharp and 

prolonged increase. 

 

Figure 1 – Trends in energy consumption for OECD countries (ktoe) 
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Source: our processing of IEA data (2008) 

 

The energy trend for all the sectors in NO-OECD countries is hardly affected by the sharp increase 

after the 1992-1994 period experienced by many countries caused by the inclusion of a specific 

energy source “Combustible Renewables and Waste” in the IEA Energy Balances which is highly 

consistent for countries such as China, Congo, India and Indonesia, thus producing a noticeable 
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structural break. We have considered this shock in the energy variables by modelling a country-

specific time dummy for that period. 

Figure 1 and 2 clearly show how drawing conclusions from aggregated data on the energy sector 

and on the whole economy could lead to distortive policy measures. Furthermore, disaggregated 

models for distinct sectors are useful for calculating specific income and price elasticities, thus 

comparing countries and regions with different development levels and also the potential divergent 

effects of different policy settings. 

 

Figure 2 – Trends in energy consumption for NO-OECD countries (ktoe) 
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Source: our processing of IEA data (2008) 

 

The analysis of the dataset is started by testing the statistical properties of the time series. First, the 

stationarity of variables is investigated: we have performed the following unit root tests for panel 

data: IPS (Im et al., 2002), BRT (Breitung, 2000) and LLC (Levin et al., 2003). Tests have been 

computed under two different specifications, represented by the inclusion of individual effects or 

individual effects and trends as reported in Table 2. 

The unit root hypothesis cannot be rejected when the variables are taken in levels and any causal 

inference from the series in levels would therefore be invalid. However, when using the first 

differences, the null of unit roots is strongly rejected at the 1% significance level for all series. 

Therefore, it is concluded that all the series are non-stationary and integrated of order one. This 

finding is confirmed by all the tests employed in all the three alternative country samples that we 

have examined, the full sample, the OECD and the NO-OECD sample. 

 

<<<  INSERT HERE TABLE 2  >>> 
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Energy prices are also I(1) - specified as total energy price, energy price for industry, energy price 

for households and gasoline price - because the series became stationary after first differencing 

(Table 3). 

 

<<<  INSERT HERE TABLE 3  >>> 

 

For a robustness check of the stationarity results, we performed two alternative unit root tests - the 

Zivot-Andrews test (Andrews and Zivot, 1992) that allows for a single structural break and the 

CLEM test (Clemente et al., 1998) that allows for two structural breaks - on the single time series to 

check for the existence of one or multiple structural breaks as suggested in Lee and Chang (2007), 

and the series still remain non-stationary and integrated of order one I(1) for the vast majority of the 

cross section units. 

Having established that all the variables to be used in the estimation are I(1), we then proceeded to 

test whether a long-run relationship existed between them using Pedroni’s heterogeneous panel 

cointegration tests. The Pedroni heterogeneous panel statistics (1999) reject the null of no 

cointegration when they have large negative values except for the panel-v test which rejects the null 

of cointegration when it has a large positive value. The results shown in Table 4, associated with 

bivariate models, suggest a rejection of the null hypothesis of no cointegration at least at the 5% 

significance level. Therefore, a long-run relationship exists between economic and energy variables, 

both for the whole economy and the different sectors examined, with some cautions on two 

specifications: the residential sector for NO-OECD sample, and the transport sector for OECD 

countries. 

 

<<<  INSERT HERE TABLE 4  >>> 

 

An analysis of cointegration on multivariate models including energy prices for the OECD sample 

strongly supports the existence of a long-run relationship demonstrating that the inclusion of prices 

allows to reinforce the statistical robustness of the linkages between the variables examined here. 

Tests conducted on the period 1960-2005 for bivariate models show cointegration only in a 

homogeneous panel setting whereas in the period 1978-2005, full heterogeneity is allowed, as has 

already been found by Al-Rabbaie and Hunt (2006). On the other hand, the tests on multivariate 

models were computed on the period 1978-2005 with full heterogeneity (Table 5). 

 

<<<  INSERT HERE TABLE 5  >>> 
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The existence of structural breaks may significantly affect the panel cointegration results. We have 

not applied the test developed by Westerlund and Edgerton (2008) on cointegration for dependent 

panels with structural breaks but we have performed the alternative Persyn and Westerlund panel 

cointegration test to check for robustness of the results obtained with the Pedroni tests. In this case, 

the null hypothesis is the absence of cointegration with two tests performed on individual panel 

members and two tests applied to the panel as a whole (Persyn and Westerlund, 2008). Even in this 

case, the panel cointegration tests revealed the existence of a long-run cointegrating relationship 

between the economic and the energy dimensions in all the five specifications we adopted (general, 

and the four end-use sectors). The same applies for the cointegration analysis including energy 

prices, tested only on the OECD sample.5 

 

 

4. Empirical results 

Considering that we are working with a non-stationary and cointegrated panel dataset, the causality 

test must be performed using appropriate estimation instruments. We have chosen to adopt a Vector 

Error Correction Model (VECM) because it allows both the short-run and the long-run relationships 

to be considered whereas the VAR and ARDL models may only suggest a short-run relationship 

between variables, due to first differencing operators that remove the long-run information. 

Moreover, a VECM structure is suitable for modelling endogenous variables while considering a 

dynamic structure of the simultaneous equations system by using Generalized Methods of Moments 

estimator as suggested in Arellano and Bond (1991). 

The long-run equilibrium relationship for a panel VECM (i.e., the ECT) is given by the residuals of 

an FMOLS estimation of separate equations, as many as the number of cointegrated variables. For 

bivariate models (without prices), we have therefore estimated eq. [5] whereas for the multivariate 

models, we have estimated eq. [6]. The distinct residuals have been used as ECTs with one time lag 

in the correspondent equation of the VECM. 

We have computed a bivariate VECM accounting for structural breaks with specific temporal 

dummy variables for each single country which reflects results from structural break tests. Including 

temporal dummy variables partially solves the absence of heterogeneous cointegration up to 1978. 

In order to correct for auto-correlated residuals (as stressed in Lee and Chang, 2008), we have used 

an instrumental variable estimator to deal with the correlations between the error terms and the 

lagged dependent variables. The number of lagged instruments included has been chosen by starting 

with k = 1, and continuing until serial correlation is excluded and the instruments are over-

                                                
5 For the sake of simplicity, we have not reported the results for Persyn and Westerlund cointegration tests, but they are 
available upon request from the authors. 
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identified. We have reached the optimal lagged instruments structure of k = 5 by using the 

Portmanteau test for serial correlation of the residuals.6 After establishing the number of lagged 

instruments, the J-stat Sargan tests for each model have rejected the null of over-identified 

instrumental variables validating a lag order of 5. The Jarque-Bera test for normal residuals was 

also performed in the final VECM specification for all the alternative models by using Cholesky 

orthogonalization criterion.7 

Having estimated the VECM for all the sectors and distinct sub-samples, we performed a simple 

Wald F-test on the significance of the coefficients, evaluating three different Granger causality 

relationships: a short-run causality, testing the significance of the coefficients related to the lagged 

economic and energy variables (H0: δi = 0 and γi =0 for all i in eq. [10]), a long-run causality related 

to the coefficient for the ECT term (H0: βi = 0 for all i in eq. [10]), and a strong causality to test 

whether the sources of causation are jointly significant (H0: βi = δi = 0, βi = γi = 0 for all i in eq. 

[10]). The strong Granger causality test can be interpreted as a test of weak exogeneity (Engle et al., 

1983) of the dependent variable (as suggested in Asafu-Adjaye, 2000) and only when both the t and 

Wald F-statistics in the VECM reveal the absence of causality nexus, this will imply that the 

dependent variable is weakly exogenous. 

The results of the VECM with two simultaneous equations for the analysis of the causal 

relationships between energy consumption and economic growth are reported in Tables 6 and 7 for 

the three alternative country samples and for the whole economy and the four energy sectors 

separately. Table 6 reports results in terms of Wald F-test on the coefficients whereas in Table 7, 

the same results are summarized in a qualitative fashion with the explicit reference to the short and 

long-run elasticities when the coefficients are statistically significant. 

 

<<<  INSERT HERE TABLE 6  >>> 

<<<  INSERT HERE TABLE 7  >>> 

 

When the bivariate VECM model is performed on the whole economy, the three alternative samples 

present quite homogeneous results, with a bidirectional short-run causality and a unidirectional 

long-run relationship where the economic output is a driver for energy consumption and not vice 

versa, as addressed in Toman and Jenelkova (2003). 

                                                
6 The Portmanteau residual serial correlation LM test is specifically set for VAR models with a lagged dependent 
variable built on Box-Pierce/Ljung-Box Q-statistics. Under the null hypothesis of no serial correlation up to lag h, both 
statistics are approximately distributed as a χ2

 with degrees of freedom equal to k2(h-p) where p is the VAR lag order. 
We have computed both first and second-order serial correlation test and in both cases, H0 is accepted. 
7 The Jarque-Bera statistic has a distribution with two degrees of freedom under the null hypothesis of normally 
distributed errors. All results have been omitted from tables for the sake of simplicity, and they are available from the 
authors upon request. 
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The parameters βi represent the speed of adjustment coefficients which measure the speed at which 

the values of Yt and ENt come back to long-run equilibrium levels, once they violate the long-run 

equilibrium relationship. These parameters are of particular interest as they have important 

implications for the dynamics of the system. The negative sign of the estimated speed of adjustment 

coefficients are in accord with the convergence toward long-run equilibrium. The larger the value of 

βi, the stronger is the response of the variable to the previous period’s deviation from long-run 

equilibrium, if any. On the contrary, in the case of low coefficient values, any deviation from long-

run equilibrium of the value of Yt and ENt requires a much longer time for the equilibrium to get 

restored. When the βi is statistically significant in both the models, a change in one variable is 

expected to affect the other variable through a feedback system, implying a bi-directional causal 

relationship between income and energy consumption. 

When we consider alternative VECMs specified for each single end-use sector, the picture changes 

dramatically and results seem to support our research hypothesis that specific sector models could 

provide contrasting results. For example, the industrial sector seems to be the most coherent when 

we compute causality tests on the different sub-samples but it is quite divergent in the short-run 

causality for the whole economy; as we can see, short-run causality is unidirectional when energy 

consumption is caused by industrial production. It is interesting to see that the direction of the 

causal relationship remains stable for the NO-OECD sample even in the long-run, meaning that 

energy consumption is strongly affected by the industrial sector demand. On the other hand, in the 

OECD sample, the long-run causality goes in the opposite direction and could be explained by the 

energy-saving measures adopted after the first oil crisis which mainly concerned the industrial 

sector. This specific result is in line with those studies addressing the role of energy services as a 

necessary input for the production function, and energy-saving and energy efficiency measures 

could be harmful for the economic development process (Stern and Cleveland, 2004). In this case, 

even if a bidirectional causality relationship is not found in the same temporal dimension, 

nonetheless some accuracy in modelling endogenous variables seems to be necessary in order to 

catch transitional effects in the dynamics of the industrial sectors (Lee and Chang, 2008). 

The service and residential sectors apparently seem to have quite heterogeneous results both from 

the whole economic sector model and in the between group dimension. As we can see from Table 7, 

there is a bidirectional short-run causality in the service sector if we consider the full sample, no 

short-run causality in the OECD countries, and a unidirectional causality – going from value-added 

to energy consumption – in the NO-OECD sample. On the contrary, the residential sector only 

shows a unidirectional short-run causality for the OECD sample whereas for both long-run and 

strong causality, there is a bi-directional nexus. 
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The transport sector shows more homogeneous results whether we compare it with the whole 

economic sector or in the between dimension. In this case, it is interesting to note the large gap in 

the elasticity values for OECD and NO-OECD. This could be explained by the increasing role of 

trade flows in GDP structure for emerging countries such as Brazil, China and India that belong to 

the NO-OECD sample. 

It is also interesting to note that when the causal relation from income to energy consumption is 

investigated (arrows pointing right, see note to Table 7), the values of short and long-run elasticities 

show substantial changes if alternative country samples are investigated. In the short-run causality, 

NO-OECD sample reveals higher elasticities for all the five specifications for OECD countries. 

This empirical evidence is a sign of structural divergences between developed and developing 

countries that hardly affects the speed of reaction of the energy demand due to modification in the 

economic system. According to a standard economic convergence theory (Barro and Sala-i-Martin, 

1995), developed countries have lower economic growth rates than developing countries on average 

and, at the same time, they are characterized by higher technical progress, or in other words, they 

have more energy-efficient equipment. Higher energy prices together with stringent energy-saving 

regulations have forced manufacturing firms in OECD countries to make considerable efforts in 

technical innovation oriented toward a significant reduction in energy intensity, and this is 

explained by lower elasticities for the short-run causal relationship between economic and energy 

consumption variables. 

 

<<<  INSERT HERE TABLE 8  >>> 

 

To the best of our knowledge, the only paper that estimates energy demand functions in a panel 

cointegrated context using a multivariate model (including energy prices) is Al-Rabbaie and Hunt 

(2006) where a unique energy demand function is estimated by using FMOLS without investigating 

the existence of mutual causality relationships and without specifying alternative functions for 

different energy sectors. As suggested in Guttormsen (2004), a multivariate framework is 

particularly appropriate in the empirical examination of the association between energy and income 

where multiple indirect effects could be transmission channels for short and long-run changes. As 

clearly explained in Ghali and El-Sakka (2004), the effects related to omitted variables could lead to 

misleading conclusions in terms of optimal energy policy. 

In our study, five distinct specifications are provided and each energy sector is modelled by using 

appropriate energy price variables. 

Results for a multivariate VECM specification as eq. [11] for Granger causality in a dynamic 
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cointegrated panel are reported in Table 8 with all the Wald F-stat and the values of elasticities 

when F-test rejects the null hypothesis of a redundant variable. It is worth noticing that results 

change substantially when energy prices are included, especially in the short-run causality nexus. 

In the industry sector, causality relationships still remain valid in all three specifications (short, long 

and strong) while a second causality linkage should be added, related to the negative impact of 

raising energy prices for the economic performance of the industrial sector. The negative elasticity -

0.03 is a bit lower than other estimations (see Al-Rabbaie and Hunt, 2006) but it is interesting to 

note that there is only an indirect effect on the economic variable related to energy prices and there 

is no direct effect on the energy demand. This is explained partially by the fact that energy demand 

is mainly driven by industrial output whereas energy prices do not affect the choice of firms in 

terms of  energy consumption. This result has an important policy implication: when considering 

public actions oriented towards energy saving by market price intervention, the effect on energy 

demand is neutral whereas they could constitute harmful policies for the industrial sector. It is also 

possible to partially estimate an indirect effect on energy consumption if we consider that increasing 

energy prices produce a reduction in the industrial output and, consequently, a decrease in energy 

consumption. 

We would like to stress this result in order to offer some advice on the effectiveness of bivariate 

causality models in the formulation of policy conclusions on the harmfulness of energy-saving 

policies. In this case, we have obtained contrasting results, thus meaning that the energy-economy 

binomial should be carefully investigated with appropriate models. 

Results for the service sector are interesting if we consider the negative impact of increasing value-

added on energy prices. Considering that we have adopted energy price for industry, we can 

consider the fact that an output increase in the service sector represents a typical substitution 

condition in energy consumption, and as development theory tells us, when the structural 

composition changes, even the energy mix is likely to be severely affected. The indirect negative 

effect on energy price means that when service are growing more rapidly than industry, the energy 

consumption tend to downward with a relative reduction in industry energy prices. This impact can 

be directly linked to the rebound effect as in Binswanger (2001). 

The results for the transport sector remain stable with the multivariate model with mutual causal 

relationships between almost all the pairs of variables. In our opinion, this is a clear signal of 

omitted variables in the setting of an energy demand function: if the model considers the role of 

international transactions, both in terms of people and goods, we believe that the picture will change 

substantially, obtaining more appropriate information on the real drivers of energy consumption 

and, consequently, a more accurate evaluation of the impact of energy and innovation policies. 
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Looking at the results for the residential sector, in the multivariate model the direction of causality 

goes from household final consumption expenditures to final energy consumption, showing how the 

expenditure level plays a key role in determining household energy demand. This could imply the 

exclusion of energy policies’ regressivity when it is measured on total expenditure (as proxy of 

income) since energy demand grows with household total expenditure. A very low causality also 

exists between energy price and household final consumption expenditures, suggesting that energy 

policies that modify energy prices – such as energy taxes – are likely to weakly affect household 

final consumption expenditures. The results for the long-run and strong causality confirm the 

existence of mutual causal relationships between the variables examined, as seen in the previous 

specification: in this case too, there is likely to be a problem of omitted variables. 

As a final conclusion, our results suggest that in our non-stationary cointegrated panel dataset, 

energy consumption, income and price are all endogenous, and therefore single equation 

estimations of one or the other separately could be misleading. 

 

 

5. Conclusions 

This paper provides new empirical insights into the analysis of the causal relationship between 

energy consumption and economic growth when considering a large sample of developed and 

developing countries and a sector specification. Standard results for non-stationarity and panel 

cointegration analysis have been found for both economic and energy variables in the period 1960-

2005, both for the whole sample and for the two sub-samples considered here. The presence of non-

stationary and cointegrated time series in a panel context makes more complex econometric 

estimates necessary using recent models such as the FMOLS developed by Pedroni (2000). The 

possible existence of mutual causal relationships between economic and energy variables must be 

considered in a Granger causality framework by using a Vector Error Correction Model that 

includes the long-run cointegrating relationship obtained by the FMOLS. The empirical analysis 

carried out on the full sample and on separate sub-samples on the whole economy and at 

disaggregated level has shown a number of interesting results which should be considered when 

such models are used to calculate income elasticity or when assisting policy makers in energy 

policy design. 

Differences in the causality direction have been detected in sub-samples of countries, particularly in 

the specific sector analysis. In the industrial sector, there is a converging trend in the short-run but 

the causality directions diverge when there is strong causality for the two sub-samples. 

For the transport sector, all three kinds of causality show divergent results for OECD and NO-
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OECD countries revealing that the application of similar energy policies in divergent countries 

could have contrasting results. On the contrary, when considering the residential sector, it is clear 

that there are no univocal causality relationships in both developed and developing countries 

meaning that policy evaluations and model settings should be performed with caution accounting 

for endogeneity and mutual causality. 

These results cast some doubt on the capacity of bivariate models to shape causal relationships in 

the energy-economy binomial especially when different sectors are investigated. While Zachariadis 

(2007) has shown that there are divergent results when using alternative estimators or datasets for 

single countries, we have shown that the same scepticism on bivariate models applies even in a 

panel context. Working with specific sectors allows the existence of divergent trends to be 

considered even in a quite homogeneous country sample such as the OECD one. Looking at the 

industry and transport sectors, it is worth noting that the causality direction changes when different 

time horizons are accounted for. In the short-run, it is the economic growth process that determines 

the energy consumption trend so that energy consumption is mainly driven by production demand, 

and policies oriented towards promoting energy saving do not seem to affect economic 

development negatively. On the contrary, long-run causality is the opposite, showing that 

reductions in energy consumption could reduce economic performance by increasing production 

costs. 

When energy prices are included, the picture becomes much clearer, thus stimulating further 

research in multivariate sectoral energy models. Far from being conclusive, this study allows us to 

open new research directions in the assessment of public policies and technological innovation in 

the energy sector. Future research should consider the capital/labour ratio, the role of energy prices 

and taxes and energy regulation on the economic system more appropriately by adopting an induced 

technical change framework and focusing on a homogeneous country sample such as OECD or the 

European Union. Further applications of these empirical framework could be the estimation of short 

and long-run elasticities of energy services related to more disaggregated sectors, in order to 

calibrate the matrix used by energy models thus producing scenarios on the basis of relationships 

estimated from observed behaviours. 
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Table 1 – Definition of variables and acronyms 

Variable Definition Source 

 
Energy consumption variables 

 

ENTOTit Natural logarithm of Total Energy final consumption (kg of oil 
equivalent per capita) 

ENINDit Natural logarithm of Total Energy final consumption for Industry Sector 
(kg of oil equivalent per capita) 

ENSERit Natural logarithm of Total Energy final consumption for Commerce and 
Public Services (kg of oil equivalent per capita) 

ENTRAit Natural logarithm of Total Energy final consumption for Transport 
Sector (kg of oil equivalent per capita) 

ENRESit Natural logarithm of Total Energy final consumption for Residential 
Sector (kg of oil equivalent per capita) 

International 
Energy Agency 
(IEA), Energy 
Balances 

 
Energy price variables 

 

ENPRit Total Energy Price (constant 2000 US$ per ton of oil equivalent) 
INDPRit Total Industry Price (constant 2000 US$ per ton of oil equivalent) 
RESPRit Total Household Price (constant 2000 US$ per ton of oil equivalent) 
GASPRSit Total Gasoline Price (constant 2000 US$ per ton of oil equivalent) 

International 
Energy Agency 
(IEA), Energy 
Prices and Taxes 

 
Economic sectors variables 

 

GDPit Natural logarithm of per capita GDP (constant 2000 US$ per capita) 
INDit Natural logarithm of per capita Industry Value Added (constant 2000 

US$ per capita) 
SERit Natural logarithm of per capita Service Value Added (constant 2000 

US$ per capita) 
HFCEXit Natural logarithm of per capita Household final consumption 

expenditure (constant 2000 US$ per capita) 

World Bank WDI 
and OECD 
Statistics 
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Table 2 – Panel unit root tests for energy and economic variables (1960-2005/1970-2005) 

Variable

Panel 

Specifica-

tions

Unit root 

tests
Levels

First 

differences
Levels

First 

differences
Levels

First 

differences

LLC 5.63 -13.08*** 2.24 -17.98*** 9.16 -21.73***

IPS 11.13 -14.94*** 9.05 -18.52*** 8.16 -24.47***

LLC 8.21 -21.69*** 0.35 -17.84*** 4.32 -24.55***

BRT 9.18 -1.06 -1.11 -14.85*** 5.33 -16.67***

IPS 8.42 -19.08*** 0.25 -17.05*** 3.99 -24.38***

LLC 7.19 -17.04*** 2.63 -18.14*** 8.28 -24.53***

IPS 7.12 -17.21*** 1.76 -18.84*** 7.17 -25.68***

LLC 6.71 -18.53*** -0.57 -15.78*** 3.93 -23.46***

BRT 8.93 -9.27*** -0.08 -12.85*** 5.43 -14.82***

IPS 6.64 -17.26*** -0.93 -16.63*** 4.03 -23.66***

LLC 6.83 -12.60*** 4.27 -8.24*** 14.23 -14.83***

IPS 13.91 -13.59*** 12.06 -9.38*** 10.08 -15.63***

LLC 4.27 -12.53*** 1.12 -7.26*** -0.64 -15.37***

BRT 10.11 -6.84*** 4.39 -5.39*** 9.07 -9.85***

IPS 6.31 -11.19*** -0.66 -7.78*** 0.85 -15.93***

LLC 5.71 -9.51*** 0.21 -6.25*** 2.34 -14.82***

IPS 8.69 -6.35*** -0.28 -7.03*** 8.51 -8.41***

LLC 4.89 -9.18*** -0.25 -7.48*** 0.67 -14.59***

BRT 4.27 -8.83*** 2.01 -7.68*** 8.19 -15.29***

IPS 9.51 -11.05*** 8.17 -9.15*** 6.57 -16.57***

LLC 0.01 -24.31*** -1.93** -14.10*** 2.07 -19.59***

IPS 2.81 -14.33*** 2.04 -12.09*** 1.94 -9.18***

LLC 3.05 -20.04*** 0.81 -13.05*** 3.21 -15.25***

BRT -3.05*** -26.84*** 1.67 -16.70*** 2.43 -20.76***

IPS 2.43 -24.33*** 0.39 -16.95*** 4.74 -17.70***

LLC -0.79 -27.12*** -1.75** -17.94*** 1.13 -21.09***

IPS 1.76 -24.21*** -0.51 -14.14*** 2.59 -19.66***

LLC -1.80* -29.71*** -1.95** -18.05*** -0.45 -23.80***

BRT 0.98 -16.57*** 0.81 -8.49*** 0.58 -15.08***

IPS 0.93 -25.99*** 0.18 -13.34*** 1.03 -22.52***

LLC 7.76 -22.68*** 6.26 -14.96*** 4.95 -16.81***

IPS 9.78 -19.59*** 6.11 -12.79*** 7.64 -14.88***

LLC 1.91 -23.94*** 0.71 -16.14*** 2.29 -17.50***

BRT 5.13 -5.59*** 4.19 -1.97*** 3.06 -6.66***

IPS 2.86 -18.77*** 0.87 -12.97*** 2.91 -13.84***

LLC 0.32 -14.68*** 4.34 -6.26*** 2.27 -13.87***

IPS 5.61 -14.62*** 3.42 -7.71*** 4.21 -12.51***

LLC 3.84 -15.70*** 3.56 -8.14*** 1.99 -13.69***

BRT 4.62 -6.94*** 3.17 -3.51*** 3.39 -6.23***

IPS 3.81 -13.71*** 3.51 -7.46*** 2.11 -11.55***

LLC -0.94 -27.45*** 11.8 -21.33*** -0.58 -18.01***

IPS 2.35 -23.80*** 2.18 -18.54*** 3.71 -15.81***

LLC 0.59 -24.93*** 41.8 -19.04*** 1.88 -16.59***

BRT 0.21 -15.07*** 1.05 -11.19*** 0.06 -10.56***

IPS -0.07 -20.75*** 1.36 -16.35*** 1.74 -13.66***

OECD NO-OECD

GDP Individual 

effects
Individual 

effects and 

trends

FULL SAMPLE

IND Individual 

effects
Individual 

effects and 

trends

SER Individual 

effects
Individual 

effects and 

trends

HFCEX Individual 

effects
Individual 

effects and 

trends

ENTOT Individual 

effects
Individual 

effects and 

trends

ENIND Individual 

effects
Individual 

effects and 

trends

ENSER Individual 

effects
Individual 

effects and 

trends

ENRES Individual 

effects
Individual 

effects and 

trends

ENTRA Individual 

effects
Individual 

effects and 

trends

 

Selection of lags based on Modified Akaike Information Criterion; Newey-West bandwidth selection using Bartlett 
kernel; Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume 
asymptotic normality; H0: Unit root (assumes individual unit root process). 
* Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level. 
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Table 3 – Panel unit root tests for energy prices (OECD sample, 1978-2005) 

Levels
First 

differences
Levels

First 

differences

LLC 21.01 -2.75*** 2.77 -12.19***

IPS 3.49 -8.97*** -0.2 -13.91***

BRT -1.82** -3.27***

LLC 0.08 -8.10*** 4.67 -17.20***

IPS 0.79 -7.02*** 6.02 -15.32***

BRT 3.13 -10.73***

LLC 10.11 -8.34*** 2.11 -14.71***

IPS 1.24 -10.39*** 1.28 -14.88***

BRT 0.02 -7.08***

LLC -0.79 -8.84*** 3.89 -14.10***

IPS -0.98 -8.24*** 2.56 -11.58***

BRT 0.18 -6.35***

GASPR

RESPR

Individual effects
Individual effects      

and trends

ENEPR

INDPR

Variable Test

 

Selection of lags based on Modified Akaike Information Criterion; Newey-West bandwidth selection using Bartlett 
kernel; Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume 
asymptotic normality; Null: Unit root (assumes individual unit root process). 
* Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level. 
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Table 4 – Heterogeneous Panel Cointegration tests for bivariate models (1978-2005) 

SECTOR FULL SAMPLE OECD NO-OECD

ECONOMY  Series: ENTOT GDP

Panel v-Statistic 4.53*** 8.33*** 1.64*

Panel rho-Statistic 0.1 -1.90* -2.80***

Panel PP-Statistic -1.04 -2.76*** -5.43***

Panel ADF-Statistic 6.29 -0.03 -5.22***

Group rho-Statistic 1.63 -0.5 3.03

Group PP-Statistic -2.10** -3.65*** -2.09***

Group ADF-Statistic 7.09*** -0.55 3.17

INDUSTRY Series: ENIND IND 

Panel v-Statistic 4.75*** 2.20** 5.88***

Panel rho-Statistic 5.43 2.93 -0.95

Panel PP-Statistic -6.93*** -3.04*** -5.46***

Panel ADF-Statistic -3.69*** -3.45*** -6.19***

Group rho-Statistic 8.67 4.04 4.34

Group PP-Statistic -6.98*** -4.82*** -3.99***

Group ADF-Statistic -1.2 -0.46 -2.30**

SERVICES Series: ENSER SER

Panel v-Statistic 2.82*** 2.02** 3.17***

Panel rho-Statistic 5.13 0.33 5.58

Panel PP-Statistic -2.43** -2.84*** -5.48***

Panel ADF-Statistic -2.84*** -2.95*** -5.34***

Group rho-Statistic 7.89 4.04 7.64

Group PP-Statistic -2.595** -2.21** -3.47***

Group ADF-Statistic -1.93 -1.65 -1.66***

RESIDENTIAL Series: ENRES HFCEX 

Panel v-Statistic 1.89* 4.48*** 1.77*

Panel rho-Statistic 9.6 -1.11 4.47

Panel PP-Statistic -4.09*** -4.82*** -2.04**

Panel ADF-Statistic -4.09*** -4.74*** -1.97*

Group rho-Statistic 11.45 -0.02 6.72

Group PP-Statistic -5.29*** -6.08*** -1.83*

Group ADF-Statistic -3.52*** -5.78*** 9.02

TRANSPORT Series: ENTRA GDP 

Panel v-Statistic 3.90*** 2.31** 2.82***

Panel rho-Statistic -3.02*** -1.25 -3.56***

Panel PP-Statistic -4.30*** -2.21** -4.18***

Panel ADF-Statistic -3.36*** -1.67** -3.22***

Group rho-Statistic 3.34 1.52 2.3

Group PP-Statistic -1.80* -2.45* -1.97**

Group ADF-Statistic 1.46 1.49 -1.73**  

Heterogeneity assumptions: no intercept and no deterministic trend 
Lag selection: based on Modified Akaike Information Criterion 
Newey-West bandwidth selection with Bartlett kernel 
Alternative hypothesis: common AR coefs. (within-dimension): 
Panel v-Statistic 
Panel rho-Statistic 
Panel PP-Statistic 
Panel ADF-Statistic 
Alternative hypothesis: individual AR coefs. (between-dimension) the others test statistics 
* Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level. 
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Table 5 - Heterogeneous Panel Cointegration tests for multivariate models (OECD, 1978-2005) 

SECTOR

ECONOMY  Series: ENTOT GDP ENPR

Panel v-Statistic 3.12*** Group rho-Statistic -1.22

Panel rho-Statistic -1.99** Group PP-Statistic -5.57***

Panel PP-Statistic -4.35*** Group ADF-Statistic -4.75***

Panel ADF-Statistic -3.24***

INDUSTRY Series: ENIND IND INDPR

Panel v-Statistic 3.56*** Group rho-Statistic 6.5

Panel rho-Statistic 4.74 Group PP-Statistic -2.23**

Panel PP-Statistic -2.21** Group ADF-Statistic -2.01**

Panel ADF-Statistic -3.21***

SERVICES Series: ENSER SER INDPR

Panel v-Statistic 1.76** Group rho-Statistic 6.79

Panel rho-Statistic 5 Group PP-Statistic -8.95***

Panel PP-Statistic -3.10*** Group ADF-Statistic -4.43***

Panel ADF-Statistic -2.90***

RESIDENTIAL Series: ENRES HFCEX RESPR

Panel v-Statistic 3.16*** Group rho-Statistic 4.45

Panel rho-Statistic -2.68** Group PP-Statistic -8.77***

Panel PP-Statistic -4.84*** Group ADF-Statistic -5.17***

Panel ADF-Statistic -5.41***

TRANSPORT Series: ENTRA GDP GASPR

Panel v-Statistic 2.73*** Group rho-Statistic 5.21

Panel rho-Statistic 2.38 Group PP-Statistic -1.84*

Panel PP-Statistic -2.42** Group ADF-Statistic 0.5

Panel ADF-Statistic -2.09**  

Heterogeneity assumptions: no intercept and no deterministic trend 
Lag selection: based on Modified Akaike Information Criterion 
Newey-West bandwidth selection with Bartlett kernel 
Alternative hypothesis: common AR coefs. (within-dimension): 
Panel v-Statistic 
Panel rho-Statistic 
Panel PP-Statistic 
Panel ADF-Statistic 
Alternative hypothesis: individual AR coefs. (between-dimension) the others test statistics 
* Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level. 
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Table 6 – Panel VECM causality test results for bivariate models 

Long-run Long-run Long-run

ECONOMY

∆GDP ∆ENTOT ECT

Joint 

(ECTand 

∆ENTOT)

Joint (ECT 

and ∆GDP)
∆GDP ∆ENTOT ECT

Joint 

(ECTand 

∆ENTOT)

Joint (ECT 

and ∆GDP)
∆GDP ∆ENTOT ECT

Joint 

(ECTand 

∆ENTOT)

Joint (ECT 

and ∆GDP)

∆GDP -- 3.15* 1.75 4.00 -- -- 5.39** 2.49 22.89*** -- -- 3.72* 0.17 4.43 --

∆ENTOT 4.06** -- 9.67*** -- 18.53*** 3.27* -- 48.16*** -- 62.31*** 18.64*** -- 4.10** -- 24.21***

INDUSTRY

∆IND ∆ENIND ECT

Joint (ECT 

and 

∆ENIND)

Joint (ECT 

and ∆IND)
∆IND ∆ENIND ECT

Joint (ECT 

and 

∆ENIND)

Joint (ECT 

and ∆IND)
∆IND ∆ENIND ECT

Joint (ECT 

and 

∆ENIND)

Joint (ECT 

and ∆IND)

∆IND -- 2.34 1.54 6.81** -- -- 2.25 4.40** 11.52*** -- -- 0.20 0.02 2.44 --

∆ENIND 25.14*** -- 2.38 -- 26.64*** 4.30** -- 0.14 -- 4.64* 18.35*** -- 2.99* -- 20.44***

SERVICES

∆SER ∆ENSER ECT

Joint (ECT 

and 

∆ENSER)

Joint (ECT 

and ∆SER)
∆SER ∆ENSER ECT

Joint (ECT 

and 

∆ENSER)

Joint (ECT 

and ∆SER)
∆SER ∆ENSER ECT

Joint (ECT 

and 

∆ENSER)

Joint (ECT 

and ∆SER)

∆SER -- 2.82* 0.49 3.42 -- -- 0.70 14.06*** 15.77*** -- -- 2.55 2.56 5.13* --

∆ENSER 9.49*** -- 20.71*** -- 27.02*** 0.39 -- 41.75*** -- 45.15*** 8.24*** -- 14.07*** -- 18.95***

RESIDENTIAL

∆HFCEXP ∆ENRES ECT

Joint (ECT 

and 

∆ENRES)

Joint (ECT 

and 

∆HFCEXP)

∆HFCEXP ∆ENRES ECT

Joint (ECT 

and 

∆ENRES)

Joint (ECT 

and 

∆HFCEXP)

∆HFCEXP ∆ENRES ECT

Joint (ECT 

and 

∆ENRES)

Joint (ECT 

and 

∆HFCEXP)

∆HFCEXP -- 0.57 12.78*** 7.13** -- -- 3.32* 2.73* 5.59* -- -- 0.01 2.93* 6.19** --

∆ENRES 1.48 -- 25.64*** -- 26.82*** 0.84 -- 22.61*** -- 23.05*** 0.41 -- 10.49*** -- 10.54***

TRANSPORT

∆GDP ∆ENTRA ECT

Joint (ECT 

and 

∆ENTRA)

Joint (ECT 

and ∆GDP)
∆GDP ∆ENTRA ECT

Joint (ECT 

and 

∆ENTRA)

Joint (ECT 

and ∆GDP)
∆GDP ∆ENTRA ECT

Joint (ECT 

and 

∆ENTRA)

Joint (ECT 

and ∆GDP)

∆GDP -- 4.61** 0.77 7.06** -- -- 23.33*** 3.41* 47.56*** -- -- 0.78 3.59* 5.44** --

∆ENTRA 44.94*** -- 5.57** -- 66.29*** 2.85* -- 17.749*** -- 26.65*** 35.35*** -- 1.29 -- 42.35***

Strong causality Strong causality Strong causality
Dependent 

variable

FULL SAMPLE OECD SAMPLE NO-OECD SAMPLE

Short-run Short-run Short-run

 

The heteroschedasticity of the error terms is corrected by using White robust standard errors both in periods (White period system robust covariances) and in cross-sections 
(coefficient covariance method: White cross-section system robust). The method for iteration control for GLS and GMM weighting specifications is to iterate weights and 
coefficients sequentially to convergence. To correct for possible autocorrelation we use the Newey-West estimator of the weighting matrix in the GMM criterion. 
* Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level. 
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Table 7 – Causality directions in four end-use energy sectors in bivariate models 

SECTORS SAMPLES N° obs.
Economic 

variable

Energy 

variable

Strong 

causality

Economy FULL 2226 ∆gdp ∆entot (0.06) ↔ (0.13) → (-0.10) →

OECD 979 ∆gdp ∆entot (0.06) ↔ (0.12) → (-0.26) ↔

NO-OECD 1247 ∆gdp ∆entot (0.05) ↔ (0.17) → (-0.04) →

Industry FULL 1807 ∆ind ∆enind → (0.21) — ↔

OECD 713 ∆ind ∆enind → (0.10) (-0.06) ← ↔

NO-OECD 1094 ∆ind ∆enind → (0.20) → (-0.07) →

Services FULL 1713 ∆serv ∆enser (0.01) ↔ (0.24) → (-0.20) →

OECD 713 ∆serv ∆enser — (-0.43) ↔ (-0.25) ↔

NO-OECD 1000 ∆serv ∆enser → (0.24) → (-0.21) ↔

Transport FULL 2198 ∆gdp ∆entra (0.03) ↔ (0.36) → (-0.07) ↔

OECD 979 ∆gdp ∆entra (0.11) ↔ (0.12) (-0.06) ↔ (-0.18) ↔

NO-OECD 2438 ∆gdp ∆entra → (0.37) (-0.03) ← ↔

Residential FULL 1898 ∆hfcex ∆enres — → (-0.23) ↔

OECD 949 ∆hfcex ∆enres (0.12) ← → (-0.14) ↔

NO-OECD 949 ∆hfcex ∆enres — (-0.05) ↔ (-0.36) ↔

Short-run 

causality

Long-run 

causality
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Table 8 – Panel VECM Ganger causality test results for OECD sample with energy prices 

Causality 

relationship

VECM 

elasticity

VECM 

elasticity

∆gdp→∆entot (0.43) 18.61 *** (-0.25) 25.72 *** 45.39 ***

∆enpr→∆entot (-0.14) 42.04 *** 25.25 ***

∆entot→∆gdp (0.13) 6.31 *** (-0.18) 1.51 6.74 ***

∆enpr→∆gdp (-0.04) 5.88 ** 6.42 **

∆gdp→∆enpr 0.35 (-0.04) 14.86 *** 14.86 ***

∆entot→∆enpr 1.43 15.47 ***

∆ind→∆enind (0.12) 6.15 ** 0.18 6.17 **

∆indpr→∆enind 0.37 0.55

∆enind→∆ind 0.21 (-0.20) 3.23 * 9.61 ***

∆indpr→∆ind (-0.03) 3.28 * 4.77 *

∆ind→∆indpr 0.41 (-0.19) 15.98 *** 16.06 ***

∆enind→∆indpr 2.19 18.07 ***

∆ser→∆enser (0.42) 4.81 ** (-0.20) 44.56 *** 47.61 ***

∆indpr→∆enser 0.55 47.42 ***

∆enser→∆ser 0.16 0.51 1.43

∆indpr→∆ser 0.37 1.72

∆ser→∆indpr (-0.55) 7.96 *** (-0.07) 4.46 ** 4.75 *

∆enser→∆indpr 0.01 4.47 *

∆gdp→∆entra (0.19) 4.15 ** (-0.19) 18.76 *** 23.46 ***

∆gaspr→∆entra (-0.09) 24.14 *** 40.96 ***

∆entra→∆gdp (0.91) 5.34 ** (-0.16) 6.15 ** 11.83 ***

∆gaspr→∆gdp (-0.13) 8.72 *** 10.13 ***

∆gdp→∆gaspr 0.89 (-0.30) 36.73 *** 36.95 ***

∆entra→∆gaspr (0.52) 20.99 *** 38.17 ***

∆hfcex→∆enres (0.44) 19.46 *** (-0.08) 45.04 *** 45.05 ***

∆respr→∆enres 0.24 46.37 ***

∆enres→∆hfcex 0.28 (-0.25) 11.98 *** 12.19 ***

∆respr→∆hfcex (-0.03) 3.21 ** 19.07 ***

∆hfcex→∆respr 1.31 (-0.07) 4.76 ** 6.34 **

∆enres→∆respr 2.14 6.68 **

INDUSTRY

SERVICES

Long-run causality

TRANSPORT

RESIDENTIAL

Short-run causality Strong   causality

Wald                     

F-stat

Wald                     

F-stat

Joint Wald          

F-stat

ECONOMY

 

The heteroschedasticity of the error terms is corrected by using White robust standard errors both in periods (White 
period system robust covariances) and in cross-sections (coefficient covariance method: White cross-section system 
robust). The method for iteration control for GLS and GMM weighting specifications is to iterate weights and 
coefficients sequentially to convergence. To correct for possible autocorrelation we use the Newey-West estimator of 
the weighting matrix in the GMM criterion. 
* Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level. 
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Appendix 

Table A1 – List of countries included in the panel dataset 
OECD NO-OECD 

Australia Turkey Algeria Kenya 

Austria United Kingdom Argentina Malaysia 

Belgium United States Bolivia Morocco 

Canada  Brazil Nepal 

Denmark  Cameroon Nigeria 

Finland  Chile Pakistan 

France  China Paraguay 

Germany  Colombia Peru 

Greece  Congo, Dem. Rep. Philippines 

Hungary  Costa Rica Romania 

Iceland  Cote d’Ivoire Saudi Arabia 

Ireland  Ecuador Senegal 

Italy  Egypt Singapore 

Japan  Gabon South Africa 

Korea, Rep.  Ghana Sri Lanka 

Mexico  Guatemala Sudan 

Netherlands  Honduras Syrian Arab Rep. 

New Zealand  India Thailand 

Norway  Indonesia Tunisia 

Portugal  Iran Uruguay 

Spain  Israel Venezuela 

Sweden  Jamaica Zimbabwe 

Switzerland  Jordan  

 

 

 


