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Geometric stick-breaking processes for continuous-time nonparametric modeling

Ramsés H. Mena, Matteo Ruggiero and Stephen Walker
Universidad Nacional Autónoma de México, University of Pavia and University of Kent

Abstract

This paper is concerned with the construction of a continuous parameter sequence
of random probability measures and its application for modeling random phenomena
evolving in continuous time. At each time point we have a random probability measure
which is generated by a Bayesian nonparametric hierarchical model, and the dependence
structure is induced through a Wright-Fisher diffusion with mutation. The sequence is
shown to be a stationary and reversible diffusion taking values on the space of probability
measures. A simple estimation procedure for discretely observed data is presented and
illustrated with simulated and real data sets.

Keywords: Bayesian non-parametric inference, continuous time dependent random measure,
Markov process, measure-valued process, stationary process, stick-breaking process

1. Introduction. The Bayesian nonparametric approach to statistical inference has become
a useful methodology, not only in exchangeable contexts, but also as a modular component
to describe phenomena with other kind of dependence structure. The key object in Bayesian
nonparametric methods is the construction of a random distribution function, the most well
known of which is the Dirichlet process, introduced in [6]. Let (X ,B(X )) be a measurable
space, where X is a complete separable metric space and B(X ) its Borel sigma-field, and
define

(1) µ =
∑
i≥1

wi δxi

where δx denotes a point mass at x, (xi)i≥1 is a vector of i.i.d. samples from ν0, assumed to
be a non-atomic probability measure on (X ,B(X )), and (wi)i≥1 is a vector of weights. The
Dirichlet process is obtained by (1) with one-parameter GEM(c) weights, that is when

(2) wi = vi

i−1∏
j=i

(1− vj)

and vj ∼iid Beta(1, c) random variables, for some c > 0. The above representation of the
Dirichlet process is due to [15].

Recent attention has focussed on the application of suitably defined measure-valued pro-
cesses for nonparametric inference purposes. The idea is to provide a sequence of random
probability measures linked by a suitable dependence structure, e.g. by means of a time
parameter and an appropriate transition mechanism, and use it for drawing inferences on
random phenomena, usually with the aid of simulation techniques. Apart from the theoreti-
cal developments offered by the probabilistic study of measure-valued processes, for example
as in [3] and [5], whose literature is certainly broad and well established, on the statistical
side this is a relatively young area. To date, the most productive ideas have involved the
Dirichlet process. See, for example, [2], [4], [8], [10], [12] [14]. In particular, to the best
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of our knowledge there is no current available statistical literature devoted to the study of
continuously dependent random measures which exploits the flexibility of a Bayesian nonpara-
metric approach and at the same time investigates desirable properties such as stationarity,
reversibility, Markovianity, regularity of sample paths for the constructed model.

Here we propose the construction of a sequence of random probability measures which
depends on a continuous parameter, has nice path properties and turns out to be a useful
tool for nonparametric inference on continuous-time random phenomena despite its relative
simplicity. The construction is suggested by a recently studied random probability measure
(see [7]), which has proven to have some appealing features when used in Bayesian nonpara-
metric mixture modeling and regression analysis contexts. Let P(X ) be the set of probability
measures on (X ,B(X )). Define µ ∈P(X ) as

µ =
∑

i≥1 qiδxi

qi = λ(1− λ)i−1 i ≥ 1

λ ∼ Beta(a, b)

xi ∼ ν0 i ≥ 1

(3)

where the non atomic probability measure ν0 can be thought of as the prior guess for µ. At
first sight the random probability measure provided by (3) can be misinterpreted as a special
case of the Dirichlet process, since the weights of the former can be obtained by (2) by letting
(v1, v2, . . .) be the realization of the same Beta random variable, so that ωi, i = 1, 2, . . . ,
are mixed geometric with Beta(a, b) as the mixing distribution. However this proves not to
be the case. First because in the Dirichlet case the parameter a of the Beta distribution
is constrained to be one. And more significantly because the Dirichlet process satisfies the
distributional equation

(4) µ
d
= w1δx1 + (1− w1)µ

obtained by eliciting the first term in the infinite sum (1) and exploiting the fact that with
probability one

n∑
i=1

wi = 1−
n∏
i=1

(1− wi)→ 1

as n→∞. See [15]. The same procedure applied to (3) yields

(5) µ
d
= λδx1 + (1− λ)µ.

The crucial difference between these two cases is that in (4) µ is independent of (w1, x1),
while in (4) µ is independent of x1 but not of λ. Hence we are dealing with a different
random probability measure. An interpretation of (3) as related to the Dirichlet process is
nonetheless available. This is given by taking the expectation of (2), which yields

E(wi) =

(
1

1 + c

)(
c

1 + c

)i−1
and we let λ = 1/(1 + c), c being the total mass of the Dirichlet process. Hence the random
probability measure (3) can be thought of as obtained by removing a level of the hierarchy
from the Dirichlet process model by replacing the random weights with their expected values.
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The purpose of the present paper is twofold. Firstly we introduce a purely atomic
continuous-time measure-valued Markov process {µ(t, ω), t ≥ 0}, defined on an appropriate
probability space (Ω,F ,P), such that at each fixed ω ∈ Ω, µ(t, ω) is a continuous function
from [0,∞) to P(X ), and at each t ≥ 0, µ(t, ω) is a random probability measure of the type
(3). We proceed by inducing a dependent structure on a sequence of random measures anal-
ogous to (3) by letting λ depend on time and be a two-type Wright-Fisher diffusion process
with selectively neutral mutation and random genetic drift (see, for example, [5], Chapter
10). We investigate the properties of the resulting process which turns out to be a stationary
and reversible diffusion taking values in P(X ). We characterise the process in terms of its
generator and we identify the invariant measure. Secondly, we apply the construction in a
framework of non parametric Bayesian inference on some continuous time random phenomena
whose data have been observed discretely. Given a set of available observations (y1, . . . , yn),
recorded at instants (t1, . . . , tn) respectively, we assume yi is drawn from the nonparamteric
mixture model

fti(y) =

∫
X
fti(y|z)µti(dz)

where µt := µ(t, ω) is, as above mentioned, of type (3). We develop a simple estimation
procedure for drawing inferences on the trajectory of continuous time phenomena which are
observed discretely, by means of Markov chain Monte Carlo techniques, and illustrate it with
simulated and real data sets.

2. Geometric stick-breaking processes. In this section we define a dependent nonpara-
metric model by introducing a continuous parameter probability-measure-valued process in
a Bayesian framework which provides (3) at every instant. Let P(X ) be the set of Borel
probability measures on (X ,B(X )).

Definition 1. Let {µ(t, ω), t ≥ 0} be a P(X )-valued stochastic process defined on an ap-
propriate probability space (Ω,F ,P) such that at each t ≥ 0

µ(t, ω) =
∑

i≥1 qi(t, ω)δxi

qi(t, ω) = λ(t, ω)(1− λ(t, ω))i−1 i ≥ 1

xi ∼ ν0 i ≥ 1

(6)

where ν0 is a non-atomic distribution on (X ,B(X )) and {λ(t, ω), t ≥ 0} is a two-type Wright-
Fisher diffusion with mutation, with paths in the set C[0,1]([0,∞)) of continuous functions
from [0,∞) to [0, 1] and infinitesimal generator

(7) A =

[
a

2
(1− λ)− b

2
λ

]
d

dλ
+

1

2
λ(1− λ)

d2

dλ2
.

The domain of A is taken to be D(A) = C2([0, 1]). Such process {µ(t, ω), t ≥ 0} will
be referred to as geometric stick-breaking process with parameters (a, b, ν0) and denoted
GSB(a, b, ν0).

In the following we will make use of the shorter notation {µt}t≥0 = {µ(t, ω), t ≥ 0} and
{λt}t≥0 = {λ(t, ω), t ≥ 0}. The GSB process describes the evolution of a random probability
measures of type (3) whose weights evolve smoothly in time. It is well-known that a Wright-
Fisher diffusion process with generator (7) is reversible and stationary with respect to a

3



Beta(a, b) distribution. We will show that also {µt}t≥0 is reversible and stationary, and
identify the invariant measure. First though we show that it is a measure-valued diffusion.

Assume for simplicity that X is compact (otherwise we could take X to be locally compact
and consider functions on X which vanish at infinity), and let Pg(X ) ⊂P(X ) be the set of
purely atomic probability measures with geometric weights as in (3). Given x := (xi)i≥1, in
order to emphasize the dependence on λ, define the continuous map φx : [0, 1]→Pg(X ) as

(8) φx(λ) =
∑
i≥1

λ(1− λ)i−1δxi .

For m ∈ N and f ∈ C(Xm), the space of continuous functions on Xm, let

(9) ϕm(µ) = ϕm(φx(λ)) := 〈f, µm〉

where 〈f, µ〉 =
∫
fdµ and µm = µ× . . . × µ is an m-fold product measure. Let CP (Pg(X ))

be the subalgebra of C(Pg(X )) given by the linear span of monomials of type (9) when
µ ∈Pg(X ).

Proposition 1. Let {µt}t≥0 be a GSB(a, b, ν0) process. Then {µt}t≥0 has infinitesimal
operator

Bϕm(µ) =

(
a

2
(1− λ)− b

2
λ

) ∑
i1,...,im≥1

f(xi1 , . . . , xim)
∂

∂λ
h(λ;m, i1, . . . , im)

+
1

2
λ(1− λ)

∑
i1,...,im≥1

f(xi1 , . . . , xim)
∂2

∂λ2
h(λ;m, i1, . . . , im)

with domain

D(B) =
{
ϕ ∈ C(Pg(X )) : ϕ = ϕm(µ) = 〈f, µm〉, f ∈ C(Xm), m ∈ N

}
and where

h(λ;m, i1, . . . , im) = λmt (1− λt)
∑m

j=1 ij−m.

The subalgebra of C(Pg(X )) given by the linear span of monomials of type (9) when µ ∈
Pg(X ) is a core for B.

Proof. From (9) we can write

ϕm(µt) =
∑
i1≥1

. . .
∑
im≥1

λmt (1− λt)i1+...+im−mf(xi1 , . . . , xim).(10)

It follows that the operator semigroup {T (t)}t≥0 for the process {µt}t≥0 is such that for every
t ≥ 0

T (t)ϕm(µ0) =
∑

i1,...,im≥1

∫
[0,1]

λmt (1− λt)
∑m

j=1 ij−mp(dλt|λ0)f(xi1 , . . . , xim)(11)

where µ0 = µ(0) is the initial value of the process and p(dλt|λ0) is the transition function for
{λt}t≥0. From the fact that the two-type Wright-Fisher process is a well-defined diffusion on
[0, 1], with infinitesimal operator (7) defined on C2([0, 1]), it can be easily seen that

t−1[T (t)ϕm(µ0)− ϕm(µ0)]
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converges strongly, as t ↓ 0, to

(12)
∑

i1,...,im≥1
f(xi1 , . . . , xim)Ah(λ;m, i1, . . . , im)

where
h(λ;m, i1, . . . , im) = λmt (1− λt)

∑m
j=1 ij−m.

In view of (7), from (12) the generator for {µt}t≥0 in terms of {λt}t≥0 can be written

Bϕm(µ) =
(a

2
(1− λ)− b

2
λ
) ∑
i1,...,im≥1

h1(λ;m, i1, . . . , im)f(xi1 , . . . , xim)

+
1

2
λ(1− λ)

∑
i1,...,im≥1

h2(λ;m, i1, . . . , im)f(xi1 , . . . , xim)

where h1(λ;m, i1, . . . , im) and h2(λ;m, i1, . . . , im) are the first and second derivatives of
h(λ;m, i1, . . . , im) with respect to λ. From [3], Lemma 2.1.2, it follows that CP (Pg(X ))
is dense in C(Pg(X )), so that CP (Pg(X )) is a core for B, and we can take the domain of B
to be C(Pg(X )).

The following proposition states that {µt}t≥0 is a purely atomic measure-valued Feller
diffusion.

Proposition 2. Let X be a compact complete separable metric space, and let {µt}t≥0 be
a GSB(a, b, ν0) process on Pg(X ). Then {µt}t≥0 is a Feller process with sample paths in
CPg(X )([0,∞)).

Proof. Recall (8) and note that the vector of weights associated to the locations (x1, x2, . . . )
is always disposed in decreasing order. Hence, letting gx(µ) := µ({x1}) = λ, we can define
φ−1x := gx. Denoting {S(t)}t≥0 the Feller semigroup on C([0, 1]) corresponding to {λt}t≥0,
we can define a strongly continuous, positive, conservative, contraction semigroup {T (t)}t≥0
on C(Pg(X )) by

T (t)ϕ = [S(t)(ϕ ◦ φx)] ◦ φ−1x .

Then Theorem 4.2.7 of [5] implies that for every ν ∈ Pg(X ), there exists a Markov process
{µt}t≥0 corresponding to {T (t)} with initial distribution ν and sample paths inDPg(X )([0,∞)),
the space of càdlàg functions from [0,∞) to Pg(X ).

Denote now with P (t, µ,dν) the transition function corresponding to the semigroup
{T (t)}t≥0, that is

T (t)ϕ(µ) =

∫
P(X )

ϕ(ν)P (t, µ,dν).

In order to show that the sample paths of {µt}t≥0 are continuous in Pg(X ), it suffices to
show that for every µ ∈Pg(X ) and every ε > 0 we have

(13) t−1P (t, µ,B(µ, ε)c)→ 0 as t→ 0

where B(µ, ε)c is the complement of an ε-neighborhood of µ in a topology which makes
Pg(X ) locally compact and separable. See [5], Lemma 4.2.9. For our purposes it is enough
to show that the sample paths are continuous in Pg,x(X ), defined to be the restriction of
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Pg(X ) to the set of purely atomic probability measures with geometric weights and a given
set of locations (xi)i≥1, for every initial distribution µ ∈ Pg,x(X ). Thus it suffices to show
that (13) holds for every µ ∈ Pg,x(X ) and every ε > 0, where B(µ, ε)c = BW (µ, ε)c is
the complement of, say, an ε-neighborhood of µ in the weak topology. Observe now that
Pg,x(X ) is locally compact since, from the continuity of (8), for every µ ∈Pg,x(X ) one can
find a compact neighborhood of µ in Pg,x(X ) by letting λ vary smoothly. Also Pg,x(X ) is
separable, since the set {ν ∈ Pg,x(X ) : λ ∈ Q ∩ [0, 1]} is countable and dense in Pg,x(X ).
The key now is the fact that in (11) the transition function providing {T (t)}t≥0 is expressed
in terms of p(λt|λ0). That is, if µ =

∑
i≥1 λ0(1 − λ0)i−1δxi and ν =

∑
i≥1 λt(1 − λt)i−1δyi ,

then P (t, µ,dν) = p(dλt|λ0)
∏∞
i=1 δxi(dyi). Hence for every ε > 0 there exists a δ > 0 such

that

P (t, µ,BW (µ, ε)c) = p(B(λ0, δ)
c|λ0)

∞∏
i=1

δxi(dyi)

Since {λt}t≥0 is a diffusion, we have

t−1p(B(λ0, δ)
c|λ0)→ 0, t→ 0.

Since also the product is bounded by one, (13) follows.

We now turn to stationarity. Denote Ba,b = Beta(a, b) and B̃a,b = Ba,b ◦ φ−1x , with φx
defined as in (8). Then we have the following.

Proposition 3. Let {µt}t≥0 be a GSB(a, b, ν0) process. Then {µt}t≥0 is reversible with
respect to B̃a,b.

Proof. Given (xi)i≥1, it is enough to show that for every t ≥ 0 and every f, g ∈ C(Pg(X ))
we have

∫
Pg(X ) fT (t)g dB̃a,b =

∫
Pg(X ) gT (t)fdB̃a,b. Let {S(t)}t≥0 and {T (t)}t≥0 be as in

Proposition 2, and note that f ◦ φx and g ◦ φx are in C([0, 1]). Then we have∫
Pg(X )

fT (t)g dB̃a,b =

∫
Pg(X )

f [S(t)(g ◦ φx)] ◦ φ−1x d(Ba,b ◦ φ−1x )

=

∫
[0,1]

(f ◦ φx)[S(t)(g ◦ φx)]dBa,b

from which the result is implied by the reversibility of {λt}t≥0 with respect to Ba,b.

Corollary 1. Let {µt}t≥0 be a GSB(a, b, ν0) process. Then {µt}t≥0 has invariant law B̃a,b.

Proof. This is an immediate consequence of the previous proposition.

Hence {µt}t≥0 is a continuous-time purely atomic measure-valued diffusion with con-
tinuous sample paths, which is also stationary and reversible. The next section show how
this model can be used in a Bayesian nonparametric setting for inference purposes on some
continuous-time random phenomenon which has been observed discretely.
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3. Estimation. Assume we are interested in a continuous time process which is observed
discretely, and a set of observations (yi)

n
i=1 recorded at times (ti)

n
i=1 is available. We wish to

model the dynamics driving such a trajectory by assuming that at time t the corresponding
observation follows a random distribution with density given by

(14) ft(y) =

∫
X
ft(y|z)µt(dz) =

∞∑
l=1

λt (1− λt)l−1 K(y | θl)

where µt is of type (3), K(· | θ) is a well defined density function for all θ, {λt}t≥0 is a two-type
Wright-Fisher diffusion on [0, 1] and (θl)

∞
l=1 are i.i.d. from a non atomic probability measure

ν0. The non parametric mixture model (14) can alternatively be written in hierarchical form

yi | ti, xi ∼ K(· | xi)(15)

{xi} ∼ µt
µt ∼ GSB(a, b, ν0).

where for simplicity we have set xi := xti .
In order to estimate the model we undertake a Gibbs sampler algorithm scheme. For this

purpose, it is convenient to start by considering the Wright-Fisher diffusion process {λt}t≥0.
Assume we have observations (ti, si)

n
i=1, where si is a random variable that indicates to us

which K(· | θl) the observation yi comes from. The model is then written as follows:

si|λi ∼ Geom(λi)

with λi := λti and

(16) p(λi|λi−1) =
∞∑
m=0

pi(m)D(λi|m,λi−1)

where

pi(m) =
(a+ b)m e

−mc τi

m!
(1− e−c τi)a+b

and τi := ti − ti−1. Also,

D(λi|m,λi−1) =

m∑
k=0

Beta(λi|a+ k, b+m− k) Bin(k|m,λi−1).

Here, equation (16) corresponds to a representation of the transition density of a general
class of Beta-Binomial diffusion process, which includes the Wright-Fisher diffusion with (7)
as a particular case, and is characterized by the infinitesimal generator

(17) A =

[
c

a+ b− 1
(a− (a+ b)λ)

]
d

dλ
+

c

a+ b− 1
λ(1− λ)

d2

dλ2
.

Such a generator corresponds to a strictly stationary reversible diffusion process with Beta(a, b)
invariant distribution. See [13] for details. We describe the algorithm in this, slightly more
general, setting since the inclusion of the parameter c provides a clearer and more general

7



interpretation for the dependence structure in the diffusion model. A simple reparameter-
ization, i.e. c := (a + b − 1)/2, leads us back to the Wright-Fisher model with generator
(7).

To simplify and accommodate a Gibbs sampler, in particular to avoid the infinite summa-
tions needed for (16), we need to introduce latent variables (ui, di, ki)

n
i=1 whereby the joint

density p(λi, ui, ki, di|λi−1) is given by

1(ui < g(di))
pi(di)

g(di)
Beta(λi|a+ ki, b+ di − ki) Bin(ki|di, λi−1),

where g is a decreasing function with known inverse. Integrating out the latent variables
clearly yields p(λi|λi−1). Hence, the likelihood function with the complete data is

l(a, b, c) = Beta(λ0|a, b)
n∏
i=1

p(λi, ui, ki, di|λi−1)λi(1− λi)si−1.

We now concentrate on establishing the full conditional distributions and start with
(a, b, c) assuming independent standard exponential distributions as priors. We therefore
consider π(a|b, c, . . .) ∝ l(a, b, c) e−a for which

log π(a|b, c, . . .) =
n∑
i=1

{
2 log Γ(a+ b+ di)− log Γ(a+ ki) + a log(1− e−c τi)

+ a log λi

}
+ a log λ0 − log Γ(a)− (n− 1) log Γ(a+ b)− a+ C.

Here C is the normalising constant not depending on a. It is not difficult to see that
log π(a|b, c, . . .) is concave and hence we can implement the adaptive rejection sampler of [9].
The full conditional for b follows similarly and is also log-concave. The full conditional for c
can be written as

log π(c|a, b, . . .) =

n∑
i=1

{
(a+ b) log(1− e−c τi)− di c τi

}
− c+ C,

again C does not depend on c. This can also be shown to be concave and so the adaptive
rejection sampler also applies. The full conditional distribution for ki is given by

π(ki| . . .) ∝
(
di
ki

)
1(ki ∈ {0, 1, . . . , di})

Γ(a+ ki)Γ(b+ di − ki)

{
λiλi−1

(1− λi)(1− λi−1)

}ki
which is clearly easy to sample since ki can only take a finite number of values.

The full conditional for ui is simply uniform distribution on (0, g(di)), where we choose g
for simplicity; for example, g(d) = e−d or g(d) = d−2, so that g−1 is known and the benefit
of this is apparent when we consider the full conditional for di; which is next.

The full conditional for di is given by

π(di| . . .) ∝
pi(di)

g(di)

(
di
ki

)
× Γ(a+ b+ di)

Γ(b+ di − ki)
{(1− λi−1)(1− λi)}di 1(ki ≤ di ≤ g−1(ui))

8



which by virtue of ui is restricted to a finite set.
The full conditional for λi, for i 6= 0, n, is given by

π(λi| . . .) = Beta(1 + a+ ki + ki+1, si − 1 + b+ di + di+1 − ki − ki+1),

whereas
π(λ0| . . .) = Beta(a+ k1, b+ d1 − k1)

and
π(λn| . . .) = Beta(1 + a+ kn, sn − 1 + b+ dn − kn).

Let us notice that the augmentation mechanism employed here can also be useful to estimate
other one-dimensional diffusion processes where the corresponding transition densities have
infinite series representations similar to (16).

This deals with a part of our overall model, namely the Wright-Fisher part. For the
remaining part of the model, which for a given observation is given by

yi|ti, λi, θ ∼
∞∑
l=1

λi(1− λi)l−1K(yi|θl),

we introduce two latent variables (si, vi) and a deterministic decreasing sequence of numbers
(ψl) for which {l : ψl > v} is a known set, such that

yi, vi, si|λi, θ ∼ ψ−1si 1(vi < ψsi)λi(1− λi)si−1 K(yi|θsi).

In order to complete the Gibbs sampler for the model we need to describe how to sample the
si from their full conditional and also the θs’s. Now,

π(si| . . .) ∝ ψ−1si λi(1− λi)
si−1 K(yi|θsi) 1(si ∈ {l : ψl > vi})

and clearly the full conditional for vi is uniform distribution on (0, ψsi). Since {l : ψl > vi}
is a finite set this, once more, is easy to sample.

Finally, we sample the θl’s from

π(θl| . . .) ∝
∏
si=l

K(yi|θl) g0(θl)

where g0 is the density corresponding to ν0. Notice that in principle we would need to
sample an infinite number of θl’s, however due to the auxiliary variable vi the Gibbs sampler
algorithm only needs to consider those corresponding for the choices of si’s. Hence, we only
need to sample (θl)

M
l=1 where M = maxiMi and {1, . . . ,Mi} = {l : ψl > vi}.

Hence we have all the full conditional distributions required to implement the Gibbs
sampler needed for the estimation of model (14) given a discretely observed trajectory.

4. Ilustration. In this section we illustrate how the modeling scheme described above is
able to capture the dynamics of continuous time phenomena. For this purpose, we will
consider data coming from two time series. The first consists of 50 observations simulated
from a standard Brownian motion (BM); the second of 251 daily observations (a financial
year) coming from the adjusted close quotations of the S&P 500 index during the period
03.03.2008 to 27.02.2009 (the data set can be found at http://finance.yahoo.com).
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Modelling these type of data sets is central for some applications in mathematical finance.
Depending of the particular application, e.g. interest rates or asset modelling, these data
are typically modeled through parametric diffusion processes. However, one could argue to
what extent such restrictive assumptions are justified. For example, in the case of interest
rates one could choose among many existing models, such as the Cox-Ingersoll-Ross (CIR)
diffusion, the Brennan-Schwartz diffusion or the Duffie-Kan diffusion (see [1]). Adopting a
nonparametric approach based on measure-valued processes provides enough flexibility to
avoid such restriction.

In order to mimic some of the models typically used in financial applications, we assume
the following specifications needed for model (14):

θ = (m, v), K(y | θ) = N(y | m, v−1),

g0(θ) = N(m;µ, γv−1) Ga(v;α, β)

where γ, α, β > 0. Note that g0 is defined on X = R × R+. In this way the possible
distributions describing the phenomenon are not limited to a single parametric family.

In general, with the MC algorithm described in Section 3, we are able make inferences
about the trajectory of the whole density ft process or the distribution of any functional
process ηt :=

∫
h(y)ft(y)dy. In particular, it is of interest the distribution of the mean

functional η̄t :=
∫
yft(y)dy, namely the evolution of the mean, which imitate that of one-

dimensional diffusions. Figure 1 shows the MC estimator of η̄t together with its 95% high
posterior density (HPD) intervals for the BM simulated dataset. Analogously, Figure 2 shows
the MC estimator and the 99% HPD intervals for the estimations corresponding to the S&P
500 dataset. It is evident that the approach undertaken is able to capture the dependence
induced by these datasets, and in particular drastic changes like the one observed in the S&P
500 index.

5. Discussion. We have constructed a stationary, Markovian and reversible measure-valued
diffusion process which we have then used to model and estimate continuous time phenom-
ena. The most striking feature of the constructed random process, in view of inferential
applications, is the simplicity of the weights structure, which are decreasingly ordered. A
consequence is that at first sight the model does not seem suitable to be used for estimating
of a trajectory, but it turns out that this is the case. The key interpretation here is that a
simple, and somewhat constrained, weights structure for the sequence of random probability
measures, which is allowed to change over time, is sufficient for modeling purposes in this
framework. The infinite location parameters at the model’s disposal compensate to guarantee
the necessary level of flexibility.
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