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ON A CONSTRUCTION OF MARKOV MODELS IN

CONTINUOUS TIME

Ramsés H. Mena and Stephen G. Walker

Universidad Nacional Autónoma de México and University of Kent

Abstract

This paper studies a novel idea for constructing continuous-time stationary Markov

models. The approach undertaken is based on a latent representation of the corre-

sponding transition probabilities that conveys to appealing ways to study and simulate

the dynamics of the constructed processes. Some well-known models are shown to fall

within this construction shedding some light on both theoretical and applied proper-

ties. As an illustration of the capabilities of our proposal a simple estimation problem

is posed.

Keywords: Gibbs sampler; Markov process; Stationary process

1. Introduction. Pitt, Chatfield and Walker (2002) introduced an approach to construct strictly

stationary time series models with arbitrary but given marginal distributions. The idea goes as

follows: Suppose that we wish to build up a Markovian model {Xn} with the requirement that

its marginal distribution belongs to a given parametric family, say it takes the form πX(x). Their

approach consists of defining such a process by constructing the transition probabilities that govern

it in such a way that the desired marginal remains invariant through time. Once the marginal

form has been chosen, the construction of the transition probabilities is performed by imposing

certain dependence through a latent variable with conditional density given by fY |X(y | x). This

conditional density is then used to construct the transition distribution, driving the process {Xn},

with transition density given in the following form

p(xn−1, xn) =

∫
fX|Y (xn | y) fY |X(y | xn−1) η1(dy) (1)

where

fX|Y (x | y) ∝ fY |X(y | x)πX(x),

that is the posterior distribution under a likelihood based on a single observation, fY |X , and prior

πX . It is easy to show that πX(·) constitutes an invariant density for the transition density (1),
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that is

πX(xn) =

∫
p(xn−1, xn)πX(xn−1) η2(dxn−1). (2)

Here, η1 and η2 denote certain reference measures, in practice the Lebesgue or counting measure.

The choice of the conditional density fY |X(y | x) is quite open, and represents the main contri-

bution to the Makovian dependence driving the constructed model. Pitt et al. (2002) used this idea

to construct AR(1)-type models, in particular, they limited their choice of fY |X(y | x) so the linear

property E[Xt | Xt−1 = x] = a x + b is attained. Further analysis outside this linearity property

has been studied in Pitt and Walker (2005) and Mena and Walker (2007).

The main objective of this paper is to further explore this idea in the continuous time setting.

In general, this leads us to consider a conditional distribution with density fY |X such that the

transition density resulting from (1), say p(x0, xt), satisfies the well-known Chapman-Kolmogorov

equations

p(x0, xt+s) =

∫
p(xs, xt+s) p(x0, xs) η2(dxs). (3)

Although it does not seem to be a general form for fY |X under which the above is satisfied, we can

establish some interesting results when fY |X falls in some parametric families. In particular, this

leads to the appealing representation (1) of transition densities corresponding to some well-known

families of Markov models. Our approach consist of assigning to one of the underlying parameters,

a time dimension and to examine the conditions under which the above equations are satisfied.

A Markov process constructed through the transition probability with density given by (1)

clearly inherited some characteristic features of a Markov chain generated through a Gibbs sampler

algorithm. In particular, all processes generated through this mechanism are reversible. The

“ latent ” representation of the transition density, as given in (1), provides with an instrumental

way of dealing with the law of the process which could be useful for many purposes such as the

implementation of efficient estimation procedures. Clearly the nature of the state space of {Xt},

i.e. the nature of the support of πX , and the kind of dependence induced through fY |X might

lead us to particular classifications of Markov processes, e.g. continuous time Markov chains and

diffusion processes among others.

Describing the layout of the paper; in Section 2 we concentrate on the Gamma-Poisson model

which leads, in particular, to the Cox-Ingersoll-Ross family of diffusion processes; in Section 3 we
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consider the normal-normal model which results in the Ornstein-Uhlenbeck class of diffusions; in

Section 4 we look at the Poisson-Binomial model which leads to a type of birth-death process; in

Section 5 we examine the Beta-Binomial model, where we utilise the construction of the Gamma-

Poisson model to give a representation of the transition of the Wright-Fisher model; Section 6

contains a simple application derived from the proposed construction and finally, in Section 7,

some discussion is provided.

2. Gamma-Poisson model. Let us start with a model contained in Pitt, Chatfield and Walker

(2002) so we assume that X0 ∼ Ga(a, b), where Ga denotes the gamma distribution with mean a/b

and a, b > 0. Hereafter, we will denote D(x; θ) as the density/mass function corresponding to a

random variable X ∼ D(θ). For fY |X , a natural choice, due to conjugacy properties, is the Poisson

distribution. If Y1 | X0 ∼ Po(φX0) where φ > 0, and consequently X1 | Y1 ∼ Ga(a+Y1, b+φ) then

the marginal density of X1 also has a Ga(a, b) density. It is clear that X1 is a Bayesian update of

X0 given Y1. To proceed we take Y2 | X1 ∼ Po(φX1) and X2 | Y2 ∼ Ga(a+ Y2, b+ φ), and so on.

It is also clear that effectively a Gibbs sampler is being constructed based on the joint density

f(x, y) = Po(y;φx) Ga(x; a, b).

In this example the parameter φ controls the correlation of the process {Xn}. If φ is close to

zero (equal to zero) then Y1 is likely to be small (equal to zero) and so X1 is close to (equal to) the

Ga(a, b) density. On the other hand, if φ is large then so is Y1 with high probability and so X1 will

be close to X0 with high probability. As we mentioned in the introduction the resulting discrete

time Markov process, {Xn}, enjoys all the properties of a chain generated by a Gibbs sampler with

the distinctive feature that it is always on stationarity.

Following (1), we can obtain the transition density for the target process {Xn} given by

p(xn−1, xn) =
∞∑
y=0

Ga(xn; y + a, φ+ b) Po(y;xn−1φ)

=
exp{−[φ(xn + xn−1) + bxn]}

(φ+ b)−(a+1)/2 φ(a−1)/2
(4)

×
(

xn
xn−1

) a−1
2

Ia−1

(
2
√
xnxn−1φ(φ+ b)

)
,

where Iν(·) denotes the modified Bessel function of the first kind with index ν. See Abramowitz

and Stegun (1992).
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The following interpretation follows; if we take n samples from the Poisson distribution then the

sum is a sufficient statistic for the mean parameter and this would give us a Po(SnX0) distribution,

where Sn is the sum of the n Poisson values. We can clearly generalize this to Po(φX0) and remove

the need for φ to be an integer. It turns out that a requirement for the process {Xt} to be Markov

and continuous in time can be attained by considering specifications of φt, namely as a function of

t, that result in the Chapman-Kolmogorov equations being satisfied.

In other words, to introduce time continuous dependence in the above model is by allowing the

parameter φ, that controls the correlation, to vary with time, so we write φt, and find the form of

this function such that the resulting process, {Xt}, is still Markov and exists.

Here, the state spaces corresponding to the processes we will present, are complete and sep-

arable, hence the existence of a Markov process with the prescribed laws, can be ensured by the

accomplishment of the Chapman-Kolmogorov equations. Further assumptions would be required

for more general spaces. See, for example, Pollard (1984).

2.1. Choice of φt satisfying Chapman-Kolmogorov equations. If we assume that φt is a

strictly positive deterministic function, the process resulting when generalizing the (4) results in a

time homogeneous transition density given by

p(x0, xt) =
∞∑
y=0

Ga(xt; y + a, φt + b) Po(y;x0φt) (5)

=
e−[φt(xt+x0)+bxt]

(φt + b)−(a+1)/2 φ
(a−1)/2
t

(
xt
x0

) a−1
2

Ia−1

(
2
√
xt x0φt(φt + b)

)
,

where Iν(·) denotes the modified Bessel function of the first kind with index ν.

In order to see for which values of φt expression (5) satisfies the Chapman-Kolmogorov equations,

it is easier to deal with the Laplace transform than with the transition density. Denote the Laplace

transform of the random variable Z as LZ(λ) := E[eλZ ], where in general λ ∈ C, obvious restrictions

for the domain of λ will follow depending of the distribution at issue. Hence, if Z ∼ Ga(a, b), then

LZ(λ) = (1− b−1λ)−a and if Z ∼ Po(η), then LZ(λ) = exp{η(eλ − 1)}.

The Laplace transform for the transition (5) can be easily found by using the latent decompo-
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sition in the variable Y as follows

LXt|X0=x0(λ) = E[LXt|Yt(λ) | X0 = x0]

=
{

1− (φt + b)−1λ
}−a LYt|X0

(
− ln

(
1− (φt + b)−1λ

))
=

{
1− (φt + b)−1λ

}−a
exp

{
x0 φtλ

φt + b− λ

}
. (6)

Proposition 1. A stationary gamma Markov process {Xt} defined through transition densities

given by equation (5) satisfies the Chapman-Kolmogorov equations if

φt :=
b

e c t − 1
, c > 0. (7)

Proof. In terms of Laplace transforms the Chapman-Kolmogorov equations are satisfied if the

following equality holds

E
[
LXt+s|Xs(λ) | X0

]
= LXt+s|X0

(λ). (8)

Therefore, in this case

E
[
LXt+s|Xs(λ) | X0

]
=

{
1− (φt + b)−1λ

}−a LXs|X0

(
φtλ

φt + b− λ

)
=

{
1− λ(φt + φs + b)

(φt + b)(φs + b)

}−a
exp

{
x0λφtφs

(φt + b)(φs + b)− λ(φt + φs + b)

}
which equals to LXt+s|X0

(λ) if and only if φ satisfies

φt+s =
φtφs

φt + φs + b
. (9)

Multiplying equation (9) by b and adding one in each side of the equality we obtain

φt+s + b

φt+s
=

(φt + b)(φs + b)

φtφs
. (10)

Now, if we define ϕt := (b+ φt)/φt then we get

ϕt+s = ϕt ϕs, (11)

known as the exponential Cauchy equation, and for which positive solution is given by ϕt = ect.

Applying the corresponding substitutions, we obtain the desired result.

Although equations (5) and (6) fully characterize the law that regulates the dynamics of the

constructed Markov process {Xt}, it is of interest to see whether the resulting process can be
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identified within a particular class of Markov processes, such as Markov chains, diffusion processes,

Lévy processes, etc. In order to endeavor this classification task, the first thing we look at is

the nature of the state space of the process at issue, which also match the support of the chosen

stationary distribution. In the particular case of this section, the choice of a gamma distribution

conveys to a Markov process with the positive real line as a state space which in turn suggests that

the model might fall in the class of diffusion processes.

2.2. The Gamma-Poisson diffusion process. Given a time-homogeneous Markov process with

transition density, pt(x0, xt), we could test whether it is a diffusion process. This can be done by

verifying

lim
t↓0

1

t

∫
|xt−x0|>ε

pt(x0, xt) dxt = 0, (12)

for ε > 0. Condition (12) essentially prevents a process to have instantaneous jumps. An application

of Chebyshev inequality ensures that (12) is satisfied if

lim
t↓0

1

t
E{|Xt −X0|h | X0 = x0} = 0, for h > 2. (13)

With this condition being satisfied the well know connection with stochastic differential equa-

tions, with drift coefficient µ(x) and diffusion coefficient σ(x), can be established through

µ(x) := lim
t↓0

1

t
E{Xt −X0 | X0 = x} (14)

σ(x) := lim
t↓0

1

t
E{|Xt −X0|2 | X0 = x} (15)

In order to check these limits for the gamma-Poisson process, let us first define Ex0(·) := E(· | X0 =

x0). Now note that if Z ∼ Ga(a, b) then E[Zj ] = (a)j/b
j , where (a)j := a(a+1) · · · (a+j−1) denotes

the ascending factorial, also known as the Pochhammer symbol. Therefore, for the Gamma-Poisson

process we have

Ex0

[
Xj
t

]
=

Ex0 [(y + a)j ]

(b+ φt)j
, (16)

where the expectation in the right hand side is taken with respect to a Po(x0φt) distribution.
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Hence, in order to check condition (13), it is enough to consider h = 4, in which case we get

Ex0

(
|Xt −X0|4

)
(17)

= Ex0(X4
t )− 4x0 Ex0(X3

t ) + 6x20 Ex0(X2
t )− 4x30 Ex0(Xt) + x40

=

{
12x20φ

2
t + φt[12x30b

2 − x20b(24 + 24a) + x0(24 + 36a+ 12a2)]

(b+ φt)4

+ x40 b
4 − 4x30b

3a+ x20b
2(6a+ 6a2)− x0b(8a+ 12a2 − 4a3) + (a)4

}
.

Furthermore, it is easily seen that for φt = b (e ct − 1)−1

lim
t↓0

1

t
(b+ φt)

−4 = lim
t↓0

1

t
φ2t (b+ φt)

−4 = lim
t↓0

1

t
φt(b+ φt)

−4 = 0. (18)

Therefore, condition (13) follows. Analogously, applying (14) and (15), it can be seen that

µ(x) = c (a/b− x) and σ(x) =

√
2 c

b
x (19)

Hence, the Gamma-Poisson process can be seen as the law of the solution to a stochastic differential

equation given by

dXt = c (a/b−Xt) dt+

√
2 c

b
Xt dWt (20)

where {Wt} denotes a Brownian motion. This process constitutes a simple reparameterization of

the Cox-Ingersoll-Ross (CIR) model widely used as a model for interest rates. See Cox, Ingersoll

and Ross (1985). The form of the drift function clearly identifies the reverting mean effect towards

its equilibrium value a/b, which is precisely the mean of the invariant density. By making b = 1 and

γ :=
√

2c we get the typical reparameterization of the CIR model. Note that the diffusion resulting

from (20) can hit zero when a < 1, however this in not incompatible with the stationarity of the

process. Furthermore, it is also worth noting that the proposed construction establishes directly

the reversibility of the diffusion process.

2.3. A non-stationary Gamma-Poisson process. One interesting question is whether a con-

struction of the type (5) is also available for non-stationary models. Here we present a possibility

using the same construction as in the stationary Gamma-Poisson model.

Assume that instead of constructing a process with marginal distribution being Ga(a, b), we

want a process with “ marginal ” measure with Lebesgue density given by q(x) = xa−1 with a > 0,

which is clearly not integrable on R+. As before, let us introduce the dependence by assuming
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Yt | X0 ∼ Po(x0 φt). After a simple application of Bayes’ theorem, it turns out that the posterior

distribution is integrable on R+ and given by Xt | Yt ∼ Ga(yt + a, φt), in Bayesian terms, a proper

posterior under an improper prior.

Following (9), the condition on φ that leads to Chapman-Kolmogorov equations to be satisfied

is given by

φt+s =
φtφs
φt + φs

, (21)

which have positive solution when φt = 1/ct, for c > 0. Hence, the process {Xt} is defined through

the conditional distributions

Yt | X0 ∼ Po(X0/ct), Xt | Yt ∼ Ga(Yt + a, 1/ct). (22)

In the same way as in the gamma-Poisson model, we can verify that the constructed law corresponds

to diffusion process. As before, using the moments (16), condition (13) can be verified for h = 4.

Computing the corresponding limits in (14) and (15), it is easily seen that

µ(x) = a c and σ(x) =
√

2 c x. (23)

Therefore the associated diffusion corresponds to the solution of a SDE given by

dXt = a cdt+
√

2 cXt dWt. (24)

Again, a simple reparameterization leads to a well-known diffusion process. Take a := δ/2 and

c := 2, then the resulting diffusion is known as the δ-dimensional squared Bessel process, typically

denoted by BESQδ(x). The square root of this process measures the Euclidean distance of a δ-

dimensional Brownian motion from the origin and plays an important role in mathematical finance;

see Yor (2001). The transition density for this model has the same expression as in (5) with b = 0

and φt = 1/(ct).

3. Normal-Normal model. Here we start with

X0 ∼ N(µ, τ)

and impose the dependence in the model through

Yt | X0 ∼ N (X0, φt τ) , (25)
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with µ ∈ R, τ, α > 0 and φt > 0 for all t > 0. Once more, Bayes theorem implies that

Xt | Yt ∼ N

(
Yt + φt µ

1 + φt
,
τ φt

1 + φt

)
. (26)

With the conditional distributions (25) and (26) and using (1), the transition density driving the

stationary process {Xt} with Normal marginals is given by

p(x0, xt) = N

(
xt;

x0 + φt µ

1 + φt
, τ [1− (1 + φt)

−2]

)
. (27)

Hence, if Z ∼ N(µ, s), we obtain LZ(λ) = exp{λµ − λ2 s/2}. Therefore, the Laplace transform

corresponding to the transition density (27) is given by

LXt|X0
(λ) = exp

{
λx0(1 + φt)

−1 + λµφt (1 + φt)
−1−

× λ2τ

2
[1− (1 + φt)

−2]

}
. (28)

The Chapman-Kolmogorov equations are satisfied if E[LXt+s|Xs(λ) | X0] = LXt+s|X0
(λ). Hence we

get

E [LXt+s|Xs(λ) | X0 = x0] = exp

{
λφt µ

1 + φt
− λ2τ

2
[1− (1 + φt)

−2]

}
× LXs|X0

(
λ

1 + φt

)
= exp

{
λµ
[
1− (1 + φt)

−1(1 + φs)
−1]+ λx0(1 + φt)

−1(1 + φs)
−1}

× exp

{
−λ

2 τ

2

[
1− (1 + φt)

−2(1 + φs)
−2]} (29)

which equals LXt+s|X0
(λ) if

φt+s = φt φs + φt + φs. (30)

The functional equation (30) arises frequently in probability theory and its positive solution is given

by φt = eα t− 1, α > 0. See Aczél and Dhombres (1989). Hence, the transition density (27) can be

rewritten as

pt(x0, xt) = N
(
xt;x0 e

−αt + µ (1− e−αt), τ [1− e−2αt]
)
. (31)

In the same way as in Section 2.2, we can verify condition (13) to see whether a diffusion process

can be associated with the transition density given by (31). It turns out that in this case we have

Ex0

(
|Xt −X0|4

)
= (x0 − µ)4 (e−αt − 1)4 + 3τ2(e−2αt − 1)2

+ (2e−3αt − 2e−αt − e−4αt + 1)(6τx2 − 12xµτ + 6µ2τ),
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from which is seen that

lim
t↓0

1

t
Ex0

(
|Xt −X0|4

)
= 0 (32)

In the same manner, limits (14) and (15) can be obtained to get the drift and diffusion coefficients,

yielding to a diffusion process solution of a SDE given by

dXt = −α(x− µ) dt+
√

2τα dWt. (33)

If we put τ = σ2/2α we obtain the SDE

dXt = −α(x− µ) dt+ σ dWt, (34)

known as the mean reverting Ornstein-Uhlenbeck model.

4. Poisson-Binomial model. Following the approach in the previous sections, let us assume that

we want to construct a Markov chain in continuous case with a Poisson stationary distribution.

With this in mind let us choose πX(x, λ) = Po(x;λeθ), serving as the stationary distribution of

the process to be constructed. Having set the stationary behavior, the corresponding conditional

density is chosen by

fY |X(y | x; ξ) = bin(y;x, ξ) =

(
x

y

)
(1− ξ)x−y (ξ)y I{0,...,x}(y),

where 0 < ξ < 1. After an application of Bayes theorem, we get

fX|Y (x | y; ξ) =
[(1− ξ)λ]x−y

(x− y)!
exp

{
(x− y)θ − λeθ(1− ξ)

}
I{y,...,∞}(x).

Hence, as before, the idea is to construct a continuous time stationary process X = {Xt; t ∈ R+}

by introducing a latent process Y = {Yt; t ∈ R+} via the updating mechanism

{Yt | X0 = x0} ∼ fY |X(· | x0; ξt)

{Xt | Yt = yt} ∼ fX|Y (· | yt; ξt),

where ξt is a function in (0, 1) which has to satisfy Chapman-Kolmogorov equations (3).
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In this case the transition probability (1) has mass probability function given by

p (x0, xt) =
∞∑
y=0

fX|Y (xt | y; ξt) fY |X(y | x0; ξt)

=
[λeθ(1− ξt)]xt exp{−λeθ(1− ξt)}(1− ξt)x0

xt!

×
x0∧xt∑
y=0

[
ξt

λeθ(1−ξt)2

]y
x0!xt!

y!(xt − y)!(x0 − y)!

=
[λeθ(1− ξt)]xt exp{−λeθ(1− ξt)}(1− ξt)x0

xt!

× 2F0

(
−x0,−xt,

ξt
λeθ(1− ξt)2

)
= Po(xt;λe

θ(1− ξt)) (1− ξt)x0 2F0

(
−x0,−xt,

ξt
λeθ(1− ξt)2

)
(35)

where a∧b stands for min{a, b} and 2F0() is a generalized hypergeometric function, see Abramowitz

and Stegun (1992), formulas 15.4.1 and 15.4.2. For this expression, we have used the relation

1/(x− y)! = (−1)y(−x)y/x!.

As in Section 2.1, we can proceed to find the form of ξt such that Chapman-Kolmogorov equations

are satisfied. It is easily seen that

LY |X=x(ψ) =
{

1− ξt + ξt e
ψ
}x

and

LX|Y=y(ψ) = eyψ exp{λeθ(1− ξt)(eψ − 1)}.

Therefore the Laplace transform corresponding to the transition mass function (35) can be com-

puted as

LXt|X0=x(ψ) = E[LXt|Yt(ψ) | X0 = x]

= exp{λeθ(1− ξt)(eψ − 1)}LYt|X0=x(ψ)

= exp{λeθ(1− ξt)(eψ − 1)}
[
1− ξt + ξt e

ψ
]x0

. (36)

As before, using the Laplace transform (36), to satisfy the Chapman-Kolmogorov equations is

equivalent to satisfy

E
[
LXt+s|Xs(ψ) | X0 = x

]
= LXt+s|X0=x(ψ). (37)
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Hence, we have

E
[
LXt+s|Xs(ψ) | X0 = x

]
= exp{λeθ(1− ξt)(eψ − 1)}LXs|X0=x(ψ̂)

= exp{λeθ(1− ξtξs)(eψ − 1)}
[
1− ξtξs + ξtξse

ψ
]x0

, (38)

where ψ̂ = log
(
1− ξt + ξt e

ψ
)

The above quantity equals LXt+s|X0
(ψ) if and only if ξt+s = ξtξs

which, once more, leads to ξt = eC t. Restricting such a solution to the constrain 0 < ξt < 1 implies

ξt = e−αt with α > 0.

4.1. The Poisson-Binomial continuous time Markov process. Just as in the Gamma-Poisson

example, the Poisson-Binomial model presented in the previous section can be identified within a

well-known class of Markov chain model.

In fact, for this model the infinitesimal generator Q = {qij} of the semigroup Pt = {pt(i, j)} is

given by

qij =

 − limt↓0
1−pt(i,i)

t , j = i

limt↓0
pt(i,j)
t , i 6= j

=



−α(i+ λeθ), j = i

αλeθ, j = i+ 1

iα, j = i− 1

0, otherwise,

where pt(i, j) is given as in (35) with ξt = e−αt. It can be seen that in this case the above process is

strong Markov, since all the states are stable, that is 0 ≤ −qij <∞. This infinitesimal generator is

immediately recognized as that corresponding to a conservative birth and death process with birth

rate αλeθ and death rate iα. If we set θ = 0 we obtain a stationary model with Po(λ) marginal

distributions.

5. Beta-Binomial model. A model particularly appealing in genetical applications arises from

the following construction. First, let us notice that if Xi
ind∼ Ga(ai, 1), i = 1, 2 then P = X1/(X1 +

X2) ∼ Be(a1, a2) and is independent of X = X1 + X2 ∼ Ga(a1 + a2, 1). Second, it is well known

that if Yi
ind∼ Po(φXi), i = 1, 2, then {Y1 | Y } ∼ Bin(Y,X1/(X1 +X2)), where Y := Y1 + Y2.

Hence, following the construction of Section 2, we now construct two Gamma–Poisson processes

by means of the following conditional representations:

12



{Xjt | Yjt} ∼ Ga(aj + Yjt, 1 + φt) and {Yjt | Xj0} ∼ Po(φtXj0)

for j = 1, 2 and define the process {Pt} through the following transformation

Pt :=
X1t

X1t +X2t
. (39)

Therefore, {Pt | Y1t, Yt} ∼ Be(a1 + Y1t, a− a1 + Yt − Y1t), where Yt = Y1t + Y2t. In the notation of

Section 2 we have set b = 1, and therefore φt = (e ct − 1)−1. Conditioning on the event {Yt = m}

we can construct the transition density driving this process as follows:

p (pt | p0, Yt = m)=
m∑
k=0

Be(pt; a1 + k, a− a1 +m− k) Bin(k;m, p0)

= Γ(a+m)[(1− pt)(1− p0)]
m pa1−1t (1− pt)

a2−1

×
m∑
k=0

%k
(
m
k

)
Γ(a1 + k)Γ(a2 +m− k)

=
Γ(a+m)[(1− pt)(1− p0)]

m pa1−1t (1− pt)
a2−1

Γ(a1)Γ(a2 +m)

× 2F1(−m,−a2 −m+ 1; a1; %) dpt, (40)

where

2F1(a, b; c; z) =
∞∑
n=0

(a)n (b)n
(c)n

zn

n!

denotes the Gauss hypergeometric function, % := pt p0 [(1− pt)(1− p0)]
−1 and a := a1 + a2. On the

other hand, we have

Pr(Yt = m) = EX0 {Po(yt;φtX0)} = EX0

{
e−φtX0

(φtX0)
m

m!

}
=

φmt
m!

(a)m
(1 + φt)a+m

, (41)

since X0 ∼ Ga(a, 1). Therefore the transition density for the process {pt} is given by

p (pt | p0) = EYt

{
Yt∑
k=0

Be(pt; a1 + k, a− a1 + Yt − k) Bin(k;Yt, p0)

}

=

∞∑
m=0

{
Yt∑
k=0

Be(pt; a1 + k, a− a1 + Yt − k) Bin(k;Yt, p0)

}
Pr(Yt = m),

13



which using (40) and substituting φt = (e c t − 1)−1 in (41) leads to the transition density

p (pt | p0) =
pa1−1t (1− pt)

a2−1(1− e−ct)a

Γ(a)Γ(a1)

×
∞∑
m=0

Γ(a+m)2

Γ(a2 +m)m!
[e−ct(1− pt)(1− p0)]

m
2F1(−m,−a2 −m+ 1; a1; %). (42)

Hence, we have constructed a stationary process {pt} with Be(a1, a2) marginal distributions.

5.1. The Beta-Binomial diffusion process. As before, we can associate a diffusion process to

the model described in the previous section. If we notice that for p ∼ Be(a, b) we have the moments

E[p j ] = (a)j/(a+ b)j and therefore

E
[
Pjt | P0 = p0, Yt = m

]
=

1

(a+m)j
E [(a1 + Y1t)j | P0 = p0, Yt = m]

=
1

(a+m)j

m∑
k=0

Bin(k,m, p0)(a1 + k)j .

Now, substituting φt = (e c t − 1)−1 in (41) we get

Pr(Yt = m) =
(a)m
m!

(1− e−ct)a e−mc t .

Therefore the unconditioned moments are given by

∞∑
m=0

E
[
Pjt | P0 = p0, Yt = m

]
Pr(Yt = m).

In particular, we can see that

E[(Pt − P0) | P0 = p0] =
(1− e−ct)a (a1 − ap0) 2F1(a, a; a+ 1; e−ct)

a
.

Hence, following (14) and assuming that a > 1 we get

µ(p) =
c

a− 1
(a1 − ap).

Analogously, we could get

σ2(p) =
2c

a− 1
p(1− p).

and verify that condition (13) is satisfied. Therefore, the associated diffusion process can be seen

as the solution to the SDE given by

dPt =
c

a− 1
(a1 − aPt)dt+

√
2c

a− 1
Pt(1− Pt) dWt.

14



If we put c = (a− 1)/2 then we get

dPt =
1

2
(a1 − aPt)dt+

√
Pt(1− Pt) dWt,

which is known as the reversible mutation Wright-Fisher diffusion model or a particular case of the

Jacobi SDE.

6. Estimation example. In this section we simply exemplify a potential application of the latent

representation of the transition, in the context of estimation. If a tractable analytic expression

for the transition density pt(x0, xt) is available, then for a given data set x = (xt1 , . . . , xtT ) for

t1 ≤ t2 ≤ · · · ≤ tT we could compute

Lx(θ) = qθX(xt1)
T−1∏
i=1

p(ti+1−ti)(xti , xti+1), (43)

that could be used for instance in maximum likelihood or Bayesian estimation methods.

However, closed expressions for (1), are not always available or they might be hard to compute,

therefore as an alternative approach one could resort to the augmented likelihood

Laugx,y (θ) = qθX(xt1)

T−1∏
i=1

fθX|Y (xti+1 | yti+1) fθY |X(yti+1 | xti), (44)

and, for instance, proceed through an expectation-maximization algorithm, that in order to max-

imise (43) computes iteratively a sequence θ1, . . . , θj , . . . converging to the maximum value of (43),

with the following two steps

• E-step. For given data set x and current parameter value θj , compute the following expecta-

tion

Q(θ | θ(j ),x) = Eθ(j )

[
logLaugx,y (θ)

]
, (45)

where the expectation Eθ(j ) [·] is taken with respect to F
θ(j )
Y|X.

• M-step. Maximise Q(θ | θ(j ),x) in θ and define

θ(j+1) = arg max
θ
Q(θ | θ(j ),x). (46)

The EM iterations satisfy

Q(θ(j+1) | θ(j ),x) ≥ Q(θ(j ) | θ(j ),x), (47)
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which implies that the sequence θj is always moving towards the maximum.

We can write

Fθ
Y|X(y | x) ∝

T−1∏
t=1

fθX|Y (xti+1 | yti+1) fθY |X(yti+1 | xti).

Furthermore, if the E-step is not easy to evaluate, then, under the assumption that a set y of latent

random numbers is easily simulated from Fθ(j )Y|X, we can proceed from a Monte Carlo point of view

and approximate Q as follows

Q̂(θ | θ(j ),x) =
1

m

m∑
k=1

log(Laug
x,y(k)(θ)), (48)

where y(k) ∼ Fθ(j )Y|X. See Tanner and Wong (1987) and Wei and Tanner (1990). Due to the indepen-

dence structure underlying this construction, we can simulate each component of y(k) individually.

That is, for a given k we can simulate y(k) by sampling individually each yti+1 from a distribution

with density

f(yti+1 | xti+1 , xti) ∝ fθX|Y (xti+1 | yti+1) fθY |X(yti+1 | xti) (49)

for i = 1, . . . , T − 1.

Let us consider the Gamma-Poisson diffusion model (20), in this case θ = (a, b, c), for which

an analytical maximum likelihood estimator is not available. Hence we could alternatively use the

estimator (48) where

f(yti+1 | xti+1 , xti) ∝ Ga(xti+1 ; yti+1 + a, φ(τi+1) + b) Po(yti+1 ;φ(τi+1)xti)

If we take ρ = e−c and a = 1 then the augmented likelihood is given by

Laugx,y (θ) = Ga(xt1 ; 1, b)

T−1∏
i=1

Ga
(
xti+1 ; yti+1 + 1, φ(τi+1) + b

)
Po(yti+1 ;φ(τi+1)xti),

with corresponding scores given by

∂laugx,y (θ)

∂b
=

1

b

(
T + 2

T−1∑
i=1

yti+1

)
− xt1 −

T−1∑
i=1

ρτi+1xti + xti+1

1− ρτi+1
(50)
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and

∂laugx,y (θ)

∂ρ
=

T−1∑
i=1

(yti+1 + 1)τi+1ρ
τi+1−1

1− ρτi+1
−
bxti+1τi+1ρ

τi+1−1

(1− ρτi+1)2

+ yti+1

(
τi+1

ρ
+
τi+1ρ

τi+1−1

1− ρτi+1

)
− bxtiτi+1ρ

τi+1−1

(1− ρτi+1)2
. (51)

Equating expression (50) to zero and solving for b we get the following estimator

b̂aug =

T + 2
T−1∑
i=1

yti+1

xt1 +
T−1∑
i=1

xti+1+xti
1−ρτi+1

.

In general, the estimator for ρ based on the augmented likelihood, is not directly available. However,

if we assume that the observations x are uniformly spaced, τi = 1 for all i = 2, . . . , T , then an

estimate for ρ is given by solving the following quadratic equation

ρ2

(
1− T −

T−1∑
i=1

yti+1

)
− ρ

[
b

{
T−1∑
i=1

(xti+1 + xti)

}
− T + 1

]
+
T−1∑
i=1

yti+1 = 0,

At this point we have, at least, two alternatives to MLE in order to estimate the parameters in the

Poisson-gamma stationary model: a MCEM scheme, in which we need to simulate from the latent

vector Y | X or an EM method where the E-step is obtained analytically.

Let us consider two data sets, x and xτ , of size T=1000, simulated from transition (5). This can

be easily done by first simulating a {yti+1 | xτi} ∼ Po(xτiφ(τi+1 − τi)) and then {xti+1 | yti+1} ∼

Ga(yti+1 + a, φ(τi+1 − τi)) + b) with a = 1, b = 3 and ρ = 0.7. For this latter specification of the

a parameter we do not have a strictly positive diffusion process. For the data set x, we assumed

equally spaced data, that is τi = 1 for all i = 2, . . . , T . For the data set xτ , the data were generated

at exponential times with intensity parameter λ = 0.5. The simulated data together with their

corresponding ACF’s are displayed in Figure 1.

Table 1 shows the behavior of the above estimate as the sample size m increases. We observed that

only a few simulations are required in order to get a relatively good estimation. With simulations

larger than 30, the resulting estimates, obtained from the MCEM, did not show a significant

improvement. Being the latter our main objective, we initially implemented the MCEM fixing

m = 30.
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Figure 1: Simulated data and respective ACF’s from the Poisson-gamma model with parameters a = 1, b = 3

and ρ = 0.7. The simulations were performed under two schemes: x denotes an equally-spaced sample and

xτ denotes an exponentially-distributed sample (with intensity parameter λ = 0.5).

Tables 2 and 3 show the MCEM iterations for the uniformly spaced data set x and the exponentially

spaced data set xτ respectively. It is worth noticing that the scale parameter, b, is not fully

recovered, but this might be due to the inefficiency of having only one trajectory for inference

purposes. For the randomly spaced data set the parameter ρ, which represents the correlation

of the model, is not as close to the theoretical value as in the case of the uniformly spaced data

set. This is mainly due to the fact that we have ignored the randomness of the time-gap between

observations. Ways to correct this issue are studied in Yacine and Mykland (2003).

7. Discussion. The construction presented here allows for a nice statistical interpretation of a

class of continuous time Markov processes. It allows for either a direct or latent availability of the

transition density, which can be used in the understanding, study, estimation and construction of

new models. Of particular interest is the representation of transition densities corresponding to

diffusion processes, where estimation procedures are not always based on the likelihood due to the

unavailability and/or intractability of the transitions.
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Simulations (m) Q̂(θ | θ,x) Q̂(θ | θ,xτ )

(Model) -731.49 -787.71

1 -688.53 -921.40

5 -711.89 -590.12

10 -708.63 -723.58

30 -717.68 -782.63

100 -721.03 -781.31

1000 -731.94 -786.10

Table 1: Monte Carlo approximation for the E-step, evaluated at the true parameter-value.
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