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Abstract

This paper introduces the possibility of signaling into a �nite-depositor version of the Diamond-

Dybvig model. More precisely, the decision to keep the funds in the bank is assumed to be unobservable,

but depositors are allowed to make it observable by signaling, at a cost. Depositors decide consecutively

whether to withdraw their funds or continue holding balances in the bank, and they choose if they want

to signal the latter decision. If the cost of signaling is moderate, then bank runs do not occur. Moreover,

no signals are made, so the unconstrained-e¢ cient allocation is implemented without any costs.
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1 Introduction

During the recent �nancial turmoil several banks in developed countries have experienced runs. In 2007,

the bank run on Northern Rock in the UK heralded the oncoming crisis, and several other banks su¤ered

runs, such as the Bank of East Asia in Hong Kong and the Washington Mutual in the USA. Non-bank

institutions, like investment funds, have also experienced massive withdrawals very similar to bank runs.

Examples include the collapse of Bear Stearns and the temporary suspension of redemptions in the Spanish

real estate investment fund, Banif Inmobiliario.

Media coverage that made observable the lines in front of the bank o¢ ces might have in�uenced the

evolution of these runs. In general, the information that depositors have about the underlying situation seems

to be crucial to understand how bank runs emerge. Descriptions of the banking panics in the nineteenth

century (Sprague (1910)) or in the 1930�s (Friedman and Schwartz (1971), Wicker (2001)) indicate that panic

episodes lasted for months and withdrawals did not start at once in each panic-stricken region, so depositors

might have information about what happened elsewhere. Starr and Yilmaz (2007) analyze a bank-run episode

which a¤ected Turkey�s Islamic �nancial houses in 2001. They study the behavior of depositors of di¤erent

size (small, medium and large) and �nd that depositors were responsive to their peers and to the observable

behavior of depositors of other groups. Iyer and Puri (2008) examine depositor-level data for a bank that

faced a run in India in 2001 and �nd that social network e¤ects were important regarding the depositors�

decision-making. This evidence suggests that information about other depositors�choices is important to

understand how bank runs arise.

However, the idea of having information about other depositors�decisions is mostly absent in the theo-

retical literature. In the seminal paper by Diamond and Dybvig (1983), depositors play a simultaneous-move

game, without knowing anything about other depositors�decisions. There are two equilibria: one without

bank run and another in which all depositors (independently of their liquidity needs) rush to withdraw their

funds. If the bank applies suspension of convertibility, then bank runs can be eliminated. Suspension of

convertibility allows the bank to suspend the payment to withdrawing depositors if their number surpasses

a certain threshold. By suspending the payment, the bank guarantees that there will be su¢ cient funds

to pay a high consumption in the next period relative to the available immediate consumption. Therefore,

depositors without immediate liquidity need (called patient depositors) have no incentives to withdraw and

a run will never start. Only depositors that have urgent liquidity need (called impatient depositors) with-

draw their funds. Ennis and Keister (2009a) show that suspension of convertibility may fall prey to time

inconsistency and ex post it is not an e¢ cient instrument to prevent bank runs. Thus, it is still an open
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question if coordination failures leading to bank runs in the Diamond-Dybvig model can be avoided or not.1

In this paper, we show that bank runs in the Diamond-Dybvig model may be prevented by enhancing

the observability of depositors�actions. Following Diamond and Dybvig (1983), bank-run models generally

use a simultaneous-move framework, implying that depositors do not observe any decisions. Nevertheless,

banks are able to observe to some extent depositors�decisions. Peck and Shell (2003) claim that the most

natural assumption is that only withdrawals are observed by the bank, since depositors do not go to the

bank to tell that they do not want to withdraw. Green and Lin (2000, 2003) assume that each depositor

contacts the bank and communicates her decision of withdrawal or keeping the money deposited. We combine

these two views and suppose that withdrawals are observable, whereas waitings are not.2 However, waitings

can be made observable, at a cost. Thus, a depositor who decides to wait can send a signal to the bank

that reveals her decision. Important for our purpose, the bank upon observing the decision of a depositor

communicates it to those who have not decided yet. Our approach is in line with Nosal and Wallace (2009)

who consider a general information setup in which depositors do not only know their liquidity preferences, but

any information that the bank chooses to communicate to them (e.g. the depositor�s place in the sequence

of decisions or decisions of the preceding depositors).

In our model, depositors decide in a consecutive way according to an exogenously given sequence of

decisions.3 Each depositor can either withdraw, wait and signal or wait without signaling. Sending the

signal is costly, but a signal of waiting may induce subsequent patient depositors to wait as well. We

show that as the game unfolds, for any patient depositor signaling strictly dominates withdrawal. As a

consequence, patient depositors know that no other patient depositor would withdraw given the information

sets that may arise, so they choose to wait without signaling. Therefore, the unconstrained-e¢ cient allocation

is implemented without costs. The intuition behind the result is that signaling is needed to make withdrawal

a strictly dominated action, but once it is strictly dominated signaling becomes strictly dominated as well.

Our assumption about signaling the decision of waiting �ts into the existing literature of bank runs, as

explained before. Signaling - as seen in this paper - is not a standard practice in �nancial intermediation.

However, with recent technological advances it may not just be a theoretical instrument but a practical one

in the future. Signaling can also be seen as a metaphor of intense communication between the bank and its

depositors.

1 In Section 1.1 we review in depth the literature and claim that this is not clear not only in the Diamond-Dybvig model,

but also in the literature.
2We use "keeping the money deposited" and "waiting" in an interchangeable manner.
3This assumption is usual in the literature. See Green and Lin (2000, 2003), Andolfatto et al. (2007) or Ennis and Keister

(2009b).
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1.1 Related literature

In this section, we survey the literature on bank runs focusing on the information that the depositors and

the bank have.

As indicated before, in Diamond and Dybvig (1983) depositors decide simultaneously and then those

who want to withdraw have the possibility to contact the bank in a random sequence of decisions. Bank

runs may occur in equilibrium, unless a suspension-of-convertibility clause is included in the demand-deposit

contract. This clause is dynamically inconsistent (Ennis and Keister (2009a)), leaving open the question if

bank runs are avoidable in the Diamond-Dybvig setup.

Compared to Diamond and Dybvig (1983), the main modi�cation by Peck and Shell (2003) is that the

share of liquidity types (patient vs. impatient) is not �xed, but the realization of types is independent across

depositors. Hence, there is aggregate uncertainty regarding the number of patient and impatient depositors.

Depositors do not have any information about other depositors�decisions, they only know their own liquidity

type. In this environment, bank runs constitute an equilibrium outcome. Both Diamond and Dybvig (1983)

and Peck and Shell (2003) assume that only depositors who wish to withdraw contact the bank. In this

paper, patient depositors who decide to wait have the opportunity to contact the bank.

Green and Lin (2000, 2003) build a model with aggregate uncertainty about liquidity types and introduce

two novel elements. First, each depositor is assumed to contact the bank during the early period according

to an exogenous sequence of decisions, not only those who attempt to withdraw. Second, depositors have

information about their position in the sequence of decisions. These changes allow to show that bank runs

do not occur in equilibrium. Notice that in spite of knowing the position in the sequence of decisions, the

game is simultaneous in the game-theoretical sense.

Andolfatto et al. (2007) write down a model in the spirit of Green and Lin (2003) with an essential

modi�cation. The bank informs each depositor of the complete history of actions taken by the preceding

depositors. Using the independence assumption about type realization, they show that any allocation that

is implementable is also strictly implementable, so bank runs do not arise. However, in Andolfatto et al.

(2007) observing previous choices is not important, because any patient depositor prefers to keep her money

deposited if all subsequent patient depositors do so. Hence, whether previous withdrawals were due to real

liquidity need or to panicking patient depositors does not a¤ect the optimal decision. Even if all previous

patient depositors have withdrawn waiting is optimal for a patient depositor provided that the remaining

patient depositors wait. In our paper, optimal choice depends on the history and a patient depositor who

infers that withdrawals by patient depositors occured may �nd it optimal to withdraw.

This di¤erence is due to the di¤erent nature of the unconstrained-e¢ cient allocations in models with and
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without aggregate uncertainty. When the share of di¤erent liquidity needs in the population is uncertain,

then the bank takes into account each additional information that is revealed by the depositors�action. Thus,

the bank "reoptimizes" the allocation after each decision and depositors of the same liquidity type end up

with di¤erent consumptions, depending on their position and the earlier choices. As a consequence, optimal

decision depends only on subsequent depositors�choices. In the other case (as Diamond and Dybvig (1983)

or this paper), the unconstrained-e¢ cient allocation is independent of the choices, depositors of the same

liquidity type receive the same consumption (unless the bank runs out of funds). Therefore, upon observing

many withdrawals a patient depositor may infer that the number of those who wait will not be su¢ cient to

yield a period-2 consumption that is higher than the consumption related to immediate withdrawal. In this

case, it is optimal to withdraw.

Gu (2010) incorporates the idea of observability into her model, and focuses on a signal extraction problem

in which depositors try to �nd out whether the bank has fundamental problems or not. She disregards bank

runs that are due to coordination failures, and studies the cases when previous withdrawals (possibly made

by sophisticated depositors) are a signal of bad fundamentals. Our interest lies in investigating if some

information structures eliminate the coordination problems that result in bank run, so our focus is di¤erent

from Gu�s.

The remainder of the paper is organized as follows. Section 2 describes the model, illustrates the main

idea through an example and derives the result. Section 3 concludes.

2 The model

Our model builds on the seminal paper by Diamond and Dybvig (1983). There are three time periods

denoted by t = 0; 1; 2 and a �nite set of depositors denoted by I = f1; :::; Ng; where N > 2: Depositor

i�s consumption in period t is denoted by ct;i 2 R+; and her liquidity type by �i: It is a binomial random

variable with support given by the set of liquidity types � = f0; 1g: If �i = 0; depositor i is called impatient,

who only cares about consumption at t = 1: If �i = 1; depositor i is called patient. Depositor i�s utility

function is given by

u(c1;i; c2;i; �i) = u(c1;i + �ic2;i): (1)

It is assumed to be strictly increasing, strictly concave, twice continuously di¤erentiable and to satisfy the

Inada conditions. The relative risk-aversion coe¢ cient �ciu00(ci)=u0(ci) > 1; for every ci 2 R+; and all i 2 N:

The number of patient depositors is assumed to be constant and given by p 2 [1; N ]: The remaining
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depositors are impatient. Hence, there is no aggregate uncertainty about types in this model, and the

number of patient and impatient depositors is assumed to be common knowledge.

At t = 0; each depositor i 2 I has one unit of a homogeneous good which she deposits in the bank, to be

de�ned below. The bank has access to a constant-return-to-scale productive technology which pays a gross

return of one unit for each endowment liquidated at t = 1; and a �xed return of R > 1 for each endowment

liquidated at t = 2:

2.1 The e¢ cient allocation and the bank

If a benevolent social planner observed each depositor�s liquidity type, then she could maximize the sum

of depositors�utilities with respect to c1;i and c2;i subject to a resource constraint and p: Since depositors

di¤er only in their types, in the optimum those of the same type receive the same consumption. Therefore,

henceforth we supress the subindex i and use c1 and c2. This �rst-best allocation solves

maxc1;c2 (N � p)u(c1) + pu(c2)

s. t.

(N � p)c1 + [pc2=R] = N:
(2)

The solution to this problem is

u0(c�1) = Ru
0(c�2); (3)

which - as in Diamond and Dybvig (1983) - implies that R > c�2 > c�1 > 1: Therefore, patient depositors

receive a higher consumption than impatient ones. This solution is the unconstrained-e¢ cient allocation. It

o¤ers liquidity insurance, because the amount of consumption given to an impatient depositor is higher than

that in autarky.4

At t = 0; the depositors form a bank by pooling their initial endowments. The bank insures against

the privately observed liquidity risk, which is only realized at the beginning of t = 1; by o¤ering a simple

demand-deposit contract that implements the unconstrained-e¢ cient allocation, as is shown by Diamond

and Dybvig (1983). The simple demand-deposit contract o¤ers to pay c�1 to any depositor i who withdraws

at t = 1 as long as the bank has funds. Any patient depositor i who waits until t = 2 receives a pro rata

share of the funds available then. Let � 2 [0; p] be the number of depositors who wait at t = 1: Given �;

depositor i�s consumption at t = 2;

4 In autarky, an impatient depositor earns the unit gross return at t = 1; while a patient depositor earns R at t = 2:
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c2(�) =

8<: maxf0; R(N�(N��)c
�
1)

� g if � > 0

0 if � = 0
(4)

If � = p; that is, only impatient depositors withdraw at t = 1; then c2(�) = c�2 and patient depositors enjoy

a higher consumption than impatient ones.

However, if � is too low, then to withdraw at t = 1 is better also for patient depositors since to wait

until t = 2 yields them strictly less than c�1: That is, if the number of patient depositors who keep the money

in the bank is below ��; a threshold value for �; then their period-2 consumption is strictly below c�1: The

threshold value �� is derived formally in Lemma 1 whose proof is given in Appendix A.

Lemma 1 There exists 1 � �� � p such that for all i 2 N;

c2(�� � 1) < c�1; for any � � �� � 1; and

(5)

c�1 � c2(��); for any � � ��:

Note that � is known only at the end of period 1, after each depositor has decided. Yet depositors have

to guess its value as it is their turn to choose, based on their available information.

2.2 Decisions and signaling

Depositors decide in an exogenously given sequence of decisions. Let �N = f0; 1gN be the set of all possible

sequences of depositors and let �N = (�1; :::; �N ) 2 �N denote the realized sequence. There are
�
N
p

�
possible

sequences of length N with p patient depositors. Suppose that each of them is selected by a random process

with some probability. The realized sequence is unobserved both by the depositors and by the bank. Neither

do depositors know their position in the sequence. As usual in the literature (Wallace 1988), depositors are

isolated and no trade can occur among them in period 1.

We assume waitings to be unobservable (as in Peck and Shell (2003)) but we allow (but do not require)

patient depositors to signal their waiting. The available actions are withdraw (w), wait without signaling

(k), wait and signal (r).5 The di¤erence between the last two lies in the observability. When a depositor

signals, her decision to wait becomes visible to the bank, and in turn to the depositors, since the bank shares

the available information with them. Since signaling to the bank in period 1 is not related to consumption,

5Ocassionally, to the last action we will simply refer as signaling.
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we allow for the possibility that it is costly. There is a nonnegative and uniform signaling cost in utility

terms and it is denoted by �.6

Assumption 1: u(c�2)� u(c�1) > �:

If the opposite held, then the cost would be so high that it does not compensate for the potential gain

in utility. To make signaling a real option we use assumption 1 throughout the paper. Intuitively, a patient

depositor would like to signal, because sending this signal could induce subsequent patient depositors not to

withdraw, and have a high period-2 consumption.

Note that to signal and withdraw does not make sense, because withdrawal implies immediate consump-

tion and signaling does not a¤ect the amount of this consumption. Moreover, it is costly. For this reason,

we disregard the possibility of withdrawing and signaling.

Depositors are called by nature one-by-one to decide according to �N . Depositors only observe the

information that the bank provides about previous choices that can be observed. We suppose that the time

elapsed in period 1 is not informative. As a consequence neither the bank, nor the depositors can �nd out

the number of depositors who have waited without signaling based on the elapsed time and the number of

withdrawals.

To illustrate the game consider the following example.

2.3 An example

There are four depositors, three patients and an impatient one. Suppose that all patient depositors have

to keep the money in the bank to make waiting worthwhile (�� = 3). Since waiting without signaling is

unobservable, there is uncertainty about the position in the sequence. Suppose that

u(c2(�)) > u(c
�
1) for � = 3; (6)

u(c�1) > u(c2(�)) for � � 2:

so patient depositors only prefer not to withdraw if all the other patient depositors do so as well.

Consider the observable history (r) that is compatible with being at position 2 and 3. A patient depositor

observing it may believe the following: (i) she is at position 3 and - besides the depositor who signaled - she

was preceded by a patient depositor who waited without signaling, (ii) the observed history coincides with

the true history, so she is the second to decide. Clearly, if the history contained also an unobserved waiting,

6How are signaling costs in real life? Our guess is that they are rather small as a consequence of technological advances, like

Internet banking. Notice that in Green and Lin (2003) each depositor has to contact the bank (even if she waits) and contacting

is not costly.
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then for a patient depositor the best response is to wait without signaling. In the other case signaling

strictly dominates withdrawal, because the last patient depositor would observe two signals which would

make her wait and the signaling depositor would have u(c�2) � � > u(c�1). Therefore, a patient depositor

observing a signal would not withdraw. As a consequence, when observing (r; w) any depositor knows that

the withdrawal must have been due to the impatient depositor. Hence, for a patient depositor observing

this history signaling strictly dominates withdrawal. Since no patient depositor withdraws when observing

(r; w), the best response is to wait without signaling. Anticipating this decision, a patient depositor�s best

response observing (r) is also to wait without signaling.

Let us see what happens if a patient depositor observes (w). We have seen that when the history begins

with a signal, then no subsequent patient depositor will withdraw.7 Consequently, for a patient depositor who

observes nothing signaling strictly dominates withdrawal, so this depositor will not withdraw. Therefore, if an

observable history begins with a withdrawal, it must have been the choice of the impatient depositor. When

observing (w; r) signaling strictly dominates withdrawal, since when there are two signals in any observable

history, then the next patient depositor (if there is any) will wait without signaling. Again, since the unique

impatient depositor has already withdrawn and no patient depositor observing (w; r) withdraws, the best

response is to wait without signaling. It implies also that when observing (w) signaling strictly dominates

withdrawal, because the ensuing information sets surely lead to higher consumptions than c�1. Moreover,

waiting without signaling is the best response, because when observing a withdrawal a patient depositor

knows that it was done by the impatient depositor and if there are any subsequent patient depositors, then

those depositors will not withdraw.

As we have seen, if a patient depositor does not observe anything, then she will not withdraw. Nor will

she signal, since for a patient depositor the best response to the observable history (w) is to wait without

signaling. As a consequence, the best response to observing nothing is to wait without signaling, because it

leads to the unconstrained-e¢ cient allocation and does not entail costs. Hence, when observing either (;) or

(w) the best response is to wait without signaling, so as the game unfolds patient depositors wait without

signaling and the �rst best obtains.

The intuition behind the result is that signaling is needed to make withdrawal a dominated action, but

once it was strictly dominated signaling becomes dominated as well.

7A patient depositor would best respond by withdrawing to an observable history (r; w;w), but by our previous arguments

it cannot arise.
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2.4 The general case

The information set consists of the own type and the history which is observable. Due to the unobservability

of waitings, a depositor observing any history does not know her position with certainty. If she observes

! withdrawals and � signals, then she just knows that she is at least in position ! + � + 1 and at most in

position !+p. The range of possible positions is p���1 which makes position uncertainty eventually quite

large.

We denote by Hobs
!j ;� the set of observed histories containing any permutation of ! 2 f0; 1; 2; :::n� 1g

withdrawals and � 2 f0; 1; 2; :::p� 1g signals. An element in this set is denoted by hobs!;�. Notice that it is

possible that two (or even more) patient depositors observe the same observable history.

A pure strategy for an depositor is a map s(�;Hobs) : f0; 1g � Hobs ! fw; k; rg, where Hobs =

�(Hobs
!;�)!2f0;1;2;:::n�1g

�2f0;1;2;:::p�1g

is the set of all possible observable histories. Therefore, each depositor has to specify

what to do when observing any possible history and being of either type. We have suppressed the subindex

i to stress that position is unknown. We focus on patient depositors, because impatient depositors always

withdraw.

We show that the game has a unique outcome using iterated deletion of dominated strategies.

Proposition 1 For patient depositors signaling dominates withdrawal for any observable history starting

with � 2 [0; p� 1] signals and followed by ! 2 [1; n� p] withdrawals.

Proof. See Appendix B.

The proof results from the interaction of two elements: truthful histories and histories that start with

signals. An observable history is truthful if no patient depositor has withdrawn.

If a history begins with p�1 signals, then a patient depositor knows that she is the last patient depositor in

the sequence and her dominant strategy is to wait. Moreover, for patient depositors waiting is the dominant

strategy for any history that contains p�1 signals. Note that a patient depositor observing any history with

p� 1 signals and ! 2 [1; n� p] withdrawals infers that the history is truthful.

Now consider a history that begins with p� 2 signals. A patient depositor observing this history knows

that she is the (p � 1)th patient depositor in the sequence. For this patient depositor signaling dominates

withdrawal, because u(c�2) � � > u(c�1).
8 If a patient depositor observes a history that begins with p � 2

signals and is followed by a withdrawal, then she knows that the withdrawal has been due to an impatient

depositor and that she is the (p � 1)th patient depositor in the sequence. Signaling dominates withdrawal,
8Note that by signaling she induces the last patient depositor to wait, since the last patient depositor will observe p�1 signals

and her best response is to wait. As a consequence, all patient depositors wait, yielding to all of them period-2 consumption c�2.

10



since it yields a truthful history with p � 1 signals that induces the last patient depositor to wait. Given

this argument, upon observing a history that begins with p� 2 signals and is followed by two withdrawals a

patient depositor infers that only impatient depositors have withdrawn and that she is the (p� 1)th patient

depositor in the sequence. Signaling dominates withdrawal for the same reasons as before. Applying this

reasoning repeatedly, we conclude that for any history beginning with p � 2 signals for a patient depositor

signaling dominates withdrawal. Furthermore, for any truthful history containing p � 2 signals signaling

dominates withdrawal. This is the case because by signaling a truthful history with p�1 signals is generated

and by previous results we know that then no patient depositor withdraws.

Consider a history that begins with p � 3 signals. A patient depositor observing this history knows

that she is the (p � 2)th patient depositor in the sequence. For this patient depositor signaling dominates

withdrawal, because that would yield a truthful history with p � 2 signals that - by previous arguments -

leads to the utility of u(c�2)� � > u(c�1). Then, when observing a history that begins with p� 3 signals and

is followed by a withdrawal a patient depositor knows that it is a truthful history, so signaling dominates

withdrawal. This line of reasoning results in the conclusion that for any history beginning with p� 3 signals

for a patient depositor signaling dominates withdrawal. Moreover, for any truthful history containing p� 3

signals signaling dominates withdrawal.

By repeating the same procedure with histories that begin with less and less signals, we obtain Proposition

1.

A direct consequence of the proposition is the following theorem.

Theorem 1 The unconstrained-e¢ cient allocation is strongly implementable.

Proof. See Appendix C.

Proposition 1 implies that a patient depositor does not withdraw when observing zero signal followed

by ! 2 [1; n� p] withdrawals. As a consequence, in whatever position the �rst patient depositor arrives,

she will not withdraw. She will not signal either, because even if the next patient depositor only observes

the withdrawals of the impatient depositors, she will not withdraw either. In fact, this is the case for any

subsequent patient depositor, so the optimal decision is to wait without signaling.

The proposition predicts a unique outcome of the game in which patient depositors do not signal. Sig-

naling makes withdrawal a strictly dominated strategy, and once withdrawals can only be due to impatient

depositors there is no need to incur the cost of signaling. The possibility of signaling can be seen as richer

communication between the bank and its depositors. This result is in line with the �ndings of Iyer and Puri

(2008) which state that the longer and deeper the relation ship between a depositor and the bank, the less

likely it is that the depositor participates in a run.
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3 Conclusion

Most of the literature on bank runs uses a simultaneous-move approach to model depositors�decisions in

spite of contrary empirical evidence. To make the informational structure richer, we introduce two elements.

We allow the bank to share information with depositors about previous decisions and we allow depositors

who decide to wait to signal their decision to the bank at a cost (and through the bank to subsequent

depositors). We �nd that in our environment bank runs do not occur. Moreover, in the unique outcome no

signals are made, so the unconstrained-e¢ cient allocation obtains.

Although we do not study explicitly policy issues, our result has a clear policy message. Observing other

decisions matters in depositors�decision-making and communication structures allowing better information

�ow may help to avoid unjusti�ed bank runs.
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5 Appendix

5.1 Appendix A

Lemma 1: There exists a 1 � �� � p such that for all i 2 N;

c2(�� � 1) < c�1 for any � � �� � 1

and (7)

c�1 � c2(��) for any � � ��:

Proof. Note that
j
n
c�1

k
, that is the integer part of n

c�1
; is the maximum number of depositors to whom the

bank is able to pay c�1. Since 1 < c
�
1, we have that

j
n
c�1

k
< n. That is, the bank cannot pay in period 1 to

all depositors 1 < c�1, since it has only n units of deposits. Hence, for any � < n�
j
n
c�1

k
, c2(�) = 0. Thus,

if the number of withdrawals is too high, then the bank runs out of funds and cannot pay anything to those

who have waited.

On the other hand, c�2 = c2(p) and c2(x) > c2(x� 1) for any n�
j
n
c�1

k
< x� 1 < p, so given

c2(�) < c
�
1 < c

�
2 = c2(p) for 8 � < n�

�
n

c�1

�
(8)

there is a unique �� such that for any �� � � we have c�1 � c2(�), whereas for any � < �� we have c2(�) < c�1:

5.2 Appendix B

The following de�nition will prove convenient for the proof.
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De�nition 1 An observable history is truthful if no patient depositor has withdrawn.

First, we show that if for a patient depositor upon observing a truthful history with x signals signaling

dominates withdrawal, then it holds also when observing a truthful history with x� 1 signals.

Lemma 2 Suppose that for patient depositors signaling strictly dominates withdrawal when observing a

truthful history with � signals. Then, signaling strictly dominates withdrawal when observing a truthful

history with �� 1 signals.

Proof. The assumption that signaling strictly dominates withdrawal when observing a truthful history with

� signals implies that at the end of period 1 the amount of non-withdrawals is such that u(c2(�))� � > u(c�1).

When a patient depositor observes a truthful history with � � 1 signals, then by signaling she can generate

a truthful history with � signals and as a consequence she can ensure to have utility u(c2(�)) � � > u(c�1).

Therefore, signaling in this case strictly dominates withdrawal.

In the next step, we show how proceeding from the end of the sequence of decisions we can determine if

a history is truthful or not.

Lemma 3 Suppose that signaling strictly dominates withdrawal when observing a truthful history with �

signals. Then, any history beginning with �� 1 signals is a truthful history.

Proof. Consider �rst the history consisting of � � 1 signals. By de�nition, it must be a truthful history.

Furthermore, a patient depositor observing this history prefers signaling to withdrawal by lemma 2. Consider

next the history that begins with � � 1 signals followed by a withdrawal. Since a patient depositor would

not withdraw upon observing � � 1 signals, the withdrawal must be due to an impatient depositor, so this

history is truthful as well. By applying lemma 2 we know that given this history signaling strictly dominates

withdrawal. As a consequence, when observing the history that begins with � � 1 signals followed by two

withdrawals depositors infer that the withdrawals have been choices of impatient depositors, so this history is

truthful as well. By repeating this reasoning, we �nd that any history that begins with � � 1 signals and is

followed by ! 2 [1; n� p] withdrawals is a truthful history.

We put now the two lemmas to work. Consider a patient depositor who observes any history that contains

p � 1 signals. The histories are truthful since all the other patient depositors have signalled and clearly

signaling strictly dominates withdrawal. By lemma 2, for patient depositors signaling strictly dominates

withdrawal when observing a truthful history with p � 2 signals and by lemma 3 any history beginning

with p� 2 signals must be a truthful history. Therefore, for patient depositors signaling strictly dominates

withdrawal for any history beginning with p� 2 signals and followed by ! 2 [1; n� p] withdrawals.
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By applying lemma 2 again, for patient depositors signaling will strictly dominate withdrawal when

observing a truthful history with p � 3 signals and lemma 3 implies that any history beginning with p � 3

signals must be a truthful history. Hence, for patient depositors signaling strictly dominates withdrawal for

any history beginning with p� 3 signals and followed by ! 2 [1; n� p] withdrawals.

By applying the two lemmas repeatedly yields Proposition 1.

Proposition 1 For patient depositors signaling dominates withdrawal for any observable history starting

with � 2 [0; p� 1] signals and followed by ! 2 [1; n� p] withdrawals.

5.3 Appendix C

We begin with the de�nition of strong implementability in our setup.

De�nition 2 The unconstrained-e¢ cient allocation is strongly implementable if for all patient depositors;

s(� = 1;Hobs) = k is the unique strategy pro�le that survives the process of iterated deletion of dominated

strategies.

In the proof of the theorem, we show that as the game unfolds, patient depositors will face observable

histories for which according to Proposition 1 signaling strictly dominates withdrawal. Patient depositors

realize that by waiting without signaling all subsequent patient depositors will see observable histories that

makes them not to withdraw. Hence, the optimal action is to wait without signaling.

Theorem 1: The unconstrained-e¢ cient allocation is strongly implementable.

Proof. By proposition 1, for any history beginning with � 2 [0; p� 1] signals and followed by ! 2 [1; n� p]

withdrawals signaling strictly dominates withdrawal. As a consequence, if a patient depositor observes any

of these histories the optimal decision for her is k, because even though subsequent patient depositors do not

observe her signal, they will observe a history that makes her to wait without signaling. Hence, there is no

need to incur the cost of signaling. As a result, the unconstrained-e¢ cient allocation obtains.
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