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1 Introduction

The increasing availability of (ultra-)high-frequency data, arising from financial markets, led in

recent years to a dramatic growth in the literature dealing with the Econometric tools needed

for handling it efficiently. The traditional methods based on fixed-length intervals of time are

simply not adequate for dealing with this type of data, as they require the aggregation of the

observations to the level of the corresponding time-grid. In general, the aggregation of randomly

spaced event-data into one or more time-series of counts, or of some general discrete-response

variable, leads to several known problems. First, if the length of the chosen observational

unit of time is ‘too short’ then there will be many intervals where there are no observations

at all. This introduces, artificially, a very specific type of heteroscedasticity in the resulting

time-series. On the other hand, if one chooses a ‘large’ time-unit then the underlying micro

structure features of the data are lost, which can be a serious problem for some analyses. Third,

in many problems the duration between two well-defined successive events, or the variability

in the frequency of those events, is the subject of the study, and here, clearly no aggregation

should be taken. Although, for practical measuring purposes, there is always some very small

basic time-unit. In the case of tick data this can be as small as 1/100th of a second.

Finally, the aggregation of point process data over some fixed-length interval of time does not

allow the researcher to account for changes on time-varying covariates of interest taking place

during the duration of that interval.

The alternative to fixed-interval techniques is to model the Data Generating Process (DGP)

behind the successive events being recorded as a Random Point Process, eventually a multi-

variate, marked or generalized, non-stationary one.

The Mathematical Theory of Point Processes is a topic finding its origins in the work of the

19th century French mathematician S. D. Poisson dealing with the analysis of Life tables (i.e.

statistics from the distribution of the duration of human life) and mortality rates. The modern

treatment of the subject, however, goes back to the works of Cox and Wold in the early fifties.

During the sixties several central limit theorems concerning the superposition of Random Point

Processes were proved. These theorems basically showed, for the first time, that the Poisson

Point Process (one of the simpler Random Point Process models) plays a role in Point Processes

theory similar to that of the Gaussian distribution in the Theory of Distributions.

Recently, Point Process theory has drawn a lot of attention from applied researchers in Financial

Econometrics. The seminal work of Engle and Russell (1998), introducing the Autoregressive

Conditional Duration (ACD) model, spurred an entire new stream of literature focusing on
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econometric specifications for modeling Point Processes evolving with after-effects.1 Most of

these econometric specifications were developed for the analysis of financial tick data. A related,

but distinct literature on migration models for credit risk appeared during the same period (see

for example Jarrow et al., 1997, and more recently Gagliardini and Gourieroux, 2005). This

paper intends to provide an unified perspective on both these streams of literature.

The focus of most of the models in this survey is placed on (ultra-)high-frequency data sets.

However, there is nothing in the structure of these models that prevents their use for the

analysis of lower-frequency randomly spaced data. In fact, the Point Processes approach is

not exclusively motivated by high-frequency (or high-intensity2) data. A very prolific stream of

literature on Duration Analysis (i.e. the study of the distribution of the inter-arrival times - the

amount of time elapsed between two successive event-points of a point process) stemming from

the path braking work of Cox (1972), in particular from his so-called Proportional Hazards

model, has been widely applied in the fields of Medical Science, Biostatistics, Labor Economics

and Sociology. Here, typically, the type of durations under study are better expressed in weeks,

months or even years (for example the duration of the unemployment and employment spells

for workers).

The different econometric point process models available in the literature can be classified ac-

cording to, at least, two different criteria. Perhaps due to the influential work of Engle and

Russell (1998), many econometric point process models directly specify the forward occurrence

density3 conditional on a particular filtration. Examples include the already mentioned ACD

model (and all derived models), but also the Stochastic Conditional Duration (SCD) model of

Bauwens and Veredas (2004). A more flexible alternative consists in specifying directly the in-

tensity process associated with the point process. This approach, which was in fact the central

paradigm in Duration Analysis since, at least, the already-mentioned work of Cox (1972), was

recovered by Russell (1999) for his Autoregressive Conditional Intensity (ACI) model. Modeling

directly the intensity of the PP is also the approach taken by Bauwens and Hautsch (2006a) for

the Stochastic Conditional Intensity (SCI) model, and by Bowsher (2007) for his generalized

Hawkes processes.

Econometric point process models can, however, also be classified according to a general cri-

terion used extensively across Statistics. Models like the above-mentioned ACD, ACI and

generalized Hawkes processes are good examples of observation driven models. This class of

models assumes that, conditional on a particular observable filtration (encompassing the in-

ternal one), the distribution of the future observations is completely specified. In contrast,

1see definition 4.
2See equations (5) and (8).
3See definition 7.
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parameter driven models explicitly acknowledge that in most real World situations, even condi-

tioning on a rich observable filtration, the probability law governing future observations cannot

be known precisely. That is, often this probability law is itself random. Parameter driven mod-

els, however, postulate that the shape of this probability law is known. The randomness being

due to the presence of unobservable factors. These latent factors are modeled as stochastic

processes inside a fully parametric setting.

Bauwens and Hautsch (2006b) provides an overview of the econometric point processes litera-

ture somewhat similar to the one contained in the current paper. There are, however, a number

of distinctive features between the later and the former. In particular, in this paper the two

main classes of Transition Processes (or generalized point processes) are also covered. These

types of stochastic processes are directly relevant for the analysis of credit rating data, and are

outside the scope of the survey by Bauwens and Hautsch (2006b). This paper also provides a

significantly more extensive overview of the theory of point processes. This provides the reader

with a deeper insight into some of the technical issues associated with each particular specifica-

tion. Two new theorems focusing on random changes of the time-scale and the identification of

latent intensity factors in point process data are also introduced in this paper. This paper also

makes a minor contribution to the econometric literature dealing with models for (ultra-)high-

frequency data by presenting an innovative and more concise vector-matrix notation for some of

the models covered. This is the case for the ACI, SCI and generalized Hawkes models.4 Finally,

in this paper all point process models surveyed are explicitly classified as either observation or

parameter driven. This allows readers familiar with the literature on (generalized) State Space

Models to grasp more easily the technical issues connected with the estimation of the different

specifications covered.

This survey paper is organized as follows. Section 2 reviews the essential concepts and results

from the Theory of Point Processes and Markov and semi-Markov processes in continuous time.

Sections 3 and 4 constitute the core of the paper. Here I briefly review the main Econometric

models in the literature dealing with empirical Point Processes. As mentioned, the different

models in the literature can be grouped in two large classes. In Section 3 the focus is placed

on observation driven models. Parameter driven models are the focus of Section 4. Section 5

concludes.

4As a further minor contribution, a small technical issue connected with the specification of the SCI model

is clarified. See the discussion and footnote following formula (70) in Subsection 4.2.
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2 Theoretical Background

This section reviews important background concepts and results from the general theory of Point

Processes (PP), Classical Duration and Event-History Analysis and from the theory of Continu-

ous Time Markov Chains. These concepts are useful for understanding clearly the assumptions

and mechanisms behind each econometric PP model. PP theory provides a structured and

unified framework that accommodates many seemingly disparate models. Some authors re-

serve the term “duration models”only for those PP models that directly specify the forward

occurrence density. According to this view, models that directly specify the (continuous-time)

intensity process associated with a PP are called intensity models. However, this distinction

is slightly artificial. Not only because the intensity process of a PP directly implies a partic-

ular forward occurrence density, but also because these so-called ‘duration models’ also imply

a particular type of (continuous-time) intensity process - one that directly depends on the

backward-recurrence time of the PP, i.e. the time since the last observed event. For this rea-

son, I prefer to designate as “duration models”any PP model that does not explicitly assume

the existence of a predetermined time-grid over which the observed number of events is counted.

The later case corresponds to the so-called “count data models.”In fact, bot duration and count

data models are aimed at describing empirical PP. However, as mentioned in the previous sec-

tion, count data models, unlike their duration counterparts, imply a loss of information due to

the aggregation of the number of events over the corresponding time-grid. Therefore, in this

section, the emphasis is placed more on the duration and intensity statistics rather than on the

counting statistics associated with a PP.

2.1 Random Point Processes

In this section I provide a brief overview of some important results from the theory of real-

valued Point Processes. The literature on PP theory, however, is reasonably extensive. An

easily accessible and detailed treatment of the main results of the Theory of Point Processes

is available in Snyder (1975), which concentrates on temporal PPs. Snyder and Miller (1991)

provides a detailed treatment of more general PPs in multidimensional spaces. Karr (1991)

provides a formal treatment of the subject from a Measure Theoretical perspective. A com-

prehensive and less demanding introduction to the subject is given in Daley and Vere-Jones

(2002). Andersen et al. (1993) sets out in full mathematical detail the modern, martingale-

based counting processes approach to the theory of PP.
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Definition 1 (Random Point Process)

Let (Ω,F , {Ft} ,P) denote a filtered Probability Space satisfying the usual conditions (An-

dersen et al., 1993), a real Random Point Process

{..., T−1(ω), T0(ω), T1(ω), ..., Tn(ω), ...},

where the random variables Tn : Ω → R satisfy Tn−1(ω) ≤ Tn(ω) ∀n∈Z,ω∈Ω, is a function from

Ω into the set of all nondecreasing sequences in R.

In this definition it should be noted, that for a particular ω ∈ Ω the sequence {Tn(ω)} may

actually be finite. The random event-moments Tn are in fact stopping times with respect to

the filtration {Ft}.

Definition 2 (Counting Process associated with a Point Process):

Given a real Point Process {Tn}
∞
n=−∞ and a subset A of R, the associated Counting Process

N(A) is defined as the number of occurrences of the point process in the set A, formally:

N(A) =
∑

n

1A(Tn),

where 1A(.) denotes the indicator function over the set A.

Of particular relevance for modeling purposes are the special cases where A = [t0, t] and A =

[t0, t) with t0 < t. For a fixed t0 ∈ R, and with a slight abuse of notation, I write N([t0, t]) as

N(t), and N([t0, t)) as N̄(t). Letting t ∈ R vary, the stochastic process N(t) has càdlàg sample

paths which are piecewise constant, while those from N̄(t) are càglàd piecewise constant.

Consider a fixed t0 ∈ R, a random point process is said to be non explosive in the interval [t0, t]

if E[N(t)] <∞. Because for every t > t0 we have E[N(t)−N̄(t)] > 0, the counting process N(t)

is a submartingale, that is E[N(t)|Fu] > N(u),∀u,t : t0 ≤ u < t. The Doob-Meyer decomposition

establishes the existence of a unique càdlàg, nondecreasing, Ft−predictable process Λ(t), which

is the compensator of N(t). This means the process defined as

M(t) = N(t)− Λ(t),

is a Ft−martingale. Therefore, the following holds

E[N(t)−N(u)|Fu] = E[Λ(t)− Λ(u)|Fu], ∀u,t : t0 ≤ u < t. (1)
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If Λ(t) is absolutely continuous, then there is an Ft−predictable intensity process λ(t) such

that

Λ(t) =

∫ t

t0

λ(τ)dτ. (2)

Definition 3 (Orderliness):

A Counting Process, and the underlying Point Process, are called orderly at time t > t0 if

for any given ε > 0 there exists a δ(t, ε) > 0 such that

P[N([t, t+∆)) > 1] ≤ εP[N([t, t+∆)) = 1], ∀∆ : 0 < ∆ < δ(t, ε).

A Point Process is orderly in an interval [a, b] if it is orderly at every point of that interval. It

is uniformly orderly on the interval if δ(t, ε) = δ(ε).

Intuitively this property means that, for an orderly point process, the probability of observing

more than one point in a given time-interval can be made an arbitrarily small fraction of the

probability of observing one single point, provided the interval is small enough (in fact if we

could rule out the possibility of P[N([t, t + ∆)) = 1] = 0,∀∆>0 and t > t0 then this definition

would be equivalent to simply say that lim∆↓0
P[N([t,t+∆))>1]
P[N([t,t+∆))=1]

= 0 and uniform orderliness means

that this probability ratio converges uniformly to zero).

Definition 4 (Evolution without after-effects):

A point process observed over an interval [t0,∞) is said to evolve without after-effects if for

any t > t0 the realization of points over the interval [t,∞) does not depend in any way on the

realization over the interval [t0, t).

In particular, this implies that the (integer) random variables (N(u) − N(u′)), ∀u>u′ , and

N(τ)−N(τ ′), ∀τ>τ ′>u are independent. That is, a point process evolving without after-effects

has independent increments.

Definition 5 (Poisson Processes):

Let {N(t); t > t0} be the counting process associated to a point process defined on the

interval [t0,∞), this point process is called a Poisson Point Process (and {N(t); t > t0} a

Poisson counting process) if the following conditions hold:
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1. P[N(t0) = 0]=1;

2. for t0 6 u 6 t, the increment N((u, t]) = N(t) − N(u) is Poisson distributed with para-

meter Λ(t)− Λ(u), i.e.

P[N((u, t]) = n] =
(Λ(t)− Λ(u))n exp [− (Λ(t)− Λ(u))]

n!
. (3)

Where Λ : [t0,∞)→ R
+
0 is an arbitrary, non-decreasing deterministic function satisfying

Λ(t0) = 0.

3. {N(t); t > t0} has independent increments. That is, the number of points in non-

overlapping intervals are independent random variables.

Recalling that the mean of a Poisson distribution (and actually all its cumulants) equals the

single parameter of this distribution, we can see that the general property (1) implies that the

compensator of the Poisson counting process coincides with its parameter function (defined in

point 2 above, therefore justifying the use of identical notation).

The Poisson Process is without doubt the single most important Random Point Process model.

It can be viewed as the natural benchmark model when analyzing a particular empirical point

process. Most of the point processes covered in this survey can be thought of as resulting

from relaxing some of the qualitative assumptions behind the Poisson Process (summarized in

theorems 1 and 2 presented further ahead in this section).

The properties of the parameter function directly affect the behavior of the Poisson point

process, in particular,

• If Λ(t) − Λ(u) is finite, then points do not occur with certainty (i.e. there is never

probability one of observing at least one point) over the interval (u, t] and there is also

zero probability of observing an infinite number of points in that interval. Additionally,

from the well-known fact that for a Poisson distribution the mean and variance coincide,

we see that

E [N((u, t])] = V [N((u, t])] = Λ(t)− Λ(u), (4)

• The points di of discontinuity of Λ(t) correspond to singular time-points of the point

process. That is, at these points there is a non-zero probability mass (equal to

1− exp
[

−
(

Λ(d+
i )− Λ(d−i )

)]

) of observing at least one event-point. More accurately still,

at these predetermined time-points the number of events follows a Poisson distribution

with parameter equal to the size of the discontinuity jump in Λ(t) (i.e. Λ(t+i )− Λ(t−i )),

• If Λ(t) is continuous for all t > t0 then event-points do not occur at predetermined times

and lim
∆↓0

P [N([t, t+∆)) = 0] = 1.
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Definition 6 (Intensity function of a Poisson process):

The intensity function of a Poisson process is defined at the points of differentiability of the

parameter function Λ(t) as its first derivative,

λ(t) = lim
∆→0

Λ(t+∆)− Λ(t)

∆
. (5)

Because, when Λ is differentiable at t, the expected number of points in the interval [t, t+∆)

equals Λ(t + ∆) − Λ(t) this intensity function can be interpreted as the instantaneous mean

rate at which event-points occur.

If Λ(t) is absolutely continuous then it can be expressed as

Λ(t) =

∫ t

t0

λ(τ)dτ. (6)

So far I have mostly considered the counting statistics associated with the Poisson Point Process.

That is, the statistics associated with the distribution of the number of event-points over

arbitrary intervals of time.

Another important aspect of a Point Process are the so-called time statistics. These include

both the statistics associated with the distributions of the sequences of inter-arrival times and

with the degree of clustering of event-points over time.

Two closely related time-sequences can be distinguished,

• The sequence of occurrence times {T1, T2, ..., TNt
} where the event-points were recorded

over the interval [t0, t],

• The sequence of inter-arrival times (or durations) {τ1, τ2, ..., τNt
} defined as τi = Ti−Ti−1

implying Ti =
∑i

j=0 τj, with the convention τ0 = t0.

Clearly, both these sequences yield the same amount of information about the history of the

point process over the interval [t0, t].

Definition 7 (Forward-Occurrence density)

The conditional density of the next inter-arrival time (eventually the first) given the past

sequence of occurrence times (eventually an empty sequence) is called the forward-occurrence

density.
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For the case of a Poisson Process this density is given by

fτn|Tn−1,...,T1
(τ | tn−1, ..., t1) = λ(tn−1 + τ) exp [− (Λ(tn−1 + τ)− Λ(tn−1))]

= λ(tn−1 + τ) exp

[

−

∫ tn−1+τ

tn−1

λ(u)du

]

the last expression being valid if Λ(t) is absolutely continuous. A special case arises if the

intensity function λ(t) is constant (this case is termed a homogeneous Poisson point process),

fτn|Tn−1,...,T1
(τ | tn−1, ..., t1) = λ exp (−λt) ,

so, in this special case, the forward-occurrence density is a Exponential density with mean 1/λ.

In what follows, two theorems giving qualitative conditions for a general point process to be a

Poisson point process are presented. The first theorem (following Khinchin, 1956) has mainly

a theoretical interest. It presents the weakest set of sufficient conditions for an arbitrary point

process to be a Poisson process.5 However, these conditions are not easily relaxed for obtaining

more general classes of point processes. The second theorem, on the contrary, has more an

operational interest. Relaxing some of the conditions in this second theorem leads to more

general classes of point processes that actually contain most of the specific processes covered

in this paper.

Theorem 1 A counting process {Nt; t > t0} associated to a point process is a Poisson counting

process if the following qualitative conditions are met,

1. the point process is uniformly orderly on [t0, t), for all t > t0,

2. the point process evolves without after-effects,

3. points do not occur at predetermined times,

4. there is no finite sub-interval of [t0, t) where points occur with certainty,

5. P[N(t0) = 0] = 1.

The second set of sufficient conditions for a point process to be a Poisson process (assembled

under theorem 2), unlike the one in theorem 1, does not imply the most general Poisson process

5These conditions are sufficient to obtain the most general (non-singular) Poisson counting process possible,

one having a continuous nonnegative and non-decreasing parameter function Λ(t), termed an inhomogeneous

Poisson process
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possible. However, modifying slightly these conditions, leads to a particularly important class of

(non-Poisson) point processes, the so-called Self-Exciting point processes. We first need the con-

cept of conditional orderliness, which is a stronger version of the orderliness notion already seen.

Definition 8 (Conditional Orderliness):

A Counting Process, and the underlying Point Process, are Conditionally Orderly at time

t > t0 if for any given ε > 0 there exists a δ(t, ε) such that

P[N([t, t+∆)) > 1|Ft− ] 6 εP[N([t, t+∆)) = 1 | Ft− ], ∀∆ : 0 < ∆ < δ(t, ε). (7)

The process is called conditionally orderly if it is conditionally orderly for all t > t0. A condition-

ally orderly point process is also (unconditionally) orderly but the converse is not necessarily

true.

In intuitive terms this means that the orderliness of the process stays unaffected by any possible

event that may occur in its past history.

A second theorem stating an alternative set of sufficient conditions for a point process to be a

Poisson process is now presented (For a proof see Snyder, 1975).

Theorem 2 A counting process {N(t); t > t0}, associated with a given point process, is a

Poisson counting process if it satisfies the following conditions,

1. the point process is conditionally orderly,

2. for all t > t0 the limit

λ(t) = lim
∆↓0

P [N([t, t+∆)) = 1 | Ft− ]

∆
, (8)

exists and is a finite integrable function that depends only on t. Therefore, we can define

Λ(t) =
∫ t

t0
λ(τ)dτ , which is also a finite function ∀t>t0 ,

3. P[N(t0) = 0] = 1,

Note that if we set n = N(t) and define T =
∑n+1

i=0 τi, where τ1, τ2, . . . , τn+1 denote the first

(n + 1) inter-arrival times, then under condition (1) of Theorem 2, we can also interpret λ(t)

defined in (8) as

λ(t) = lim
∆↓0

P [t 6 T < t+∆ | T > t]

∆
. (9)

For any conditionally orderly point process (not necessarily a Poisson PP), equation (8) defines
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the conditional intensity process of the PP.

In almost all applications, it is necessary to conduct estimation and inference over observed

Poisson processes. The critical quantity to be computed for this purpose is the Likelihood

functional at the observed realization of the Poisson PP. This one is basically the joint proba-

bility density of the observed sample path of the PP, considered as a functional of the intensity

function.

2.1.1 The Likelihood of a finite sample path of a Poisson Process

Consider a realization of a Poisson counting processN(t) over a given finite interval: {N(u); t0 6

u 6 t} the Likelihood functional for a given intensity function λ conditional on this sample

path is given by,

L (λ | {N(u); t0 6 u 6 t}) = exp

[∫ t

t0

lnλ(τ)dN(τ)−

∫ t

t0

λ(τ)dτ

]

. (10)

The full set of Likelihood-based inference and testing procedures are readily available for Pois-

son PP.

The reason why the Poisson point process is such an important model for empirical point

processes is threefold. First, as mentioned, the Poisson point process provides a baseline model

whose generalizations lead to the two most important classes of point process models. These

are the, already mentioned, self-exciting point processes and the class of Doubly Stochastic

Poisson processes. Second, many empirical point processes are, in fact, adequately described

by a Poisson process. This is in part due to the fact that the superposition of many indepen-

dent point processes leads to a Poisson PP (see Snyder, 1975, for a treatment of some of these

Poisson ‘central limit’ theorems). Third, a particularly important result, the Random Time

Change Theorem (Meyer, 1971, Brown and Nair, 1988) establishes that any multivariate point

(counting) process whose corresponding (multivariate) compensator is absolutely continuous

and unbounded can be mapped into a set of independent homogeneous Poisson point processes

each with unit intensity.

Theorem 3 (Random Time Change) Let (N1(t), . . . , NS(t)) be a multivariate counting

process associated with S given point processes observed over [t0,∞], with continuous, un-

bounded vector-compensator process (Λ1(t), . . . ,ΛS(t)). Let the corresponding S sequences of

occurrence times be denoted as {T sn}
∞
n=1, with s = 1, . . . , S. Then the individual counting

processes Ñs(u) = N(Λ−1
s (u)), whose occurrence times are given by {Λs(T

s
n)}

∞
n=1, make up a set

of independent Poisson point processes with unit intensity.
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Proof. See Brown and Nair (1988).

As it turns out, see Aalen and Hoem (1978) and also Andersen et al. (1993, Subsection

II.5.2.2.), the type of time transformation t 7→ u employed in the Random Time Change

Theorem, that is u = Λs(t), can be extended to any non-decreasing, adapted, continuous (and

therefore predictable) process Φ(t). In what follows I present one extension of the univariate

Random Time Change Theorem for the class of counting processes having a multiplicative

intensity process.

Theorem 4 (Multiplicative Intensity Univariate Random Time Change). Let N(t)

be an Ft-adapted counting process observed over [t0,∞], having an absolutely continuous, un-

bounded, compensator process Λ(t). Let the corresponding sequence of occurrence times be

denoted as {Tn}
∞
n=1. Assume that the corresponding intensity process can be factored as

λ(t) = φ(t)ψ(t), where φ(t) and ψ(t) are two Ft-adapted, càglàd, non-negative processes, and

define Φ(t) =
∫ t

t0
φ(τ)dτ . Further assume that Φ(∞) = limt→∞Φ(t) =∞.

Then, the point process Ñ(u) = N(Φ−1(u)), whose occurrence times are given by {Φ(Tn)}
∞
n=1,

has the F̃u-predictable intensity process λ̃(u) = ψ(Φ−1(u)) = ψ(t), where F̃u = FΦ−1(u).

Proof. This result is in fact a corollary of Theorem 3.2 in Aalen and Hoem (1978). To see this

simply set k = 1 in that theorem and note that Φ(t0) = 0, Φ(∞) = ∞ and the left-derivative

of Φ(t), that is φ(t), is left-continuous. Therefore, the random time transformation u = Φ(t) is

a regular time change for N(t), as clearly φ(t) = 0 implies λ(t) = 0.

Definition 9 (Marked Point Processes):

A Marked Point Process is a point process that has an auxiliary random variable (called the

mark) associated with every event-point. This random variable can take values on some mark

set M. That is, we can think of a marked point process as a pair (Tn,Mn) where {Tn}
∞
n=−∞

is a real point process and Mn is a random variable defined over M (either a denumerable or

continuous set but independent of the index n).

As seen, a point process must be both conditionally orderly and evolving without after-effects,

in order to be a Poisson process. Certain types of point processes not satisfying the orderliness

requirement can be included in the class of Marked point processes. A conditionally non-orderly

point process can be modeled as a marked point process where the mark represents the number

of simultaneous events recorded at Tn, that is, where the mark space is M = N.

Removing the requirement that the point process evolves without after-effects leads to one of
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the most important classes of dynamic PP models. Self-exciting point processes evolve with

after-effects. This means, in the most general setting, that, at time t, any subset of the history

of the process {N(u); t0 6 u 6 t} can potentially influence any subset of the corresponding

future {N(u);u > t}. The dependence of the future on the past is formalized through the

conditional intensity function of the process defined in equation (8).

Definition 10 (Self-Exciting Point Processes):

The conditionally orderly counting process N(t) (and the underlying point process) is termed

a Self-Exciting Counting (point) process if λ(t), as defined in equation (8), is not merely a

function of time, but instead, a stochastic process adapted to the internal filtration generated by

N(t).

Again, we are interested in performing Likelihood-based estimation and inference procedures

for self-exciting PP models. The important fact here is that the Likelihood functional computed

for a specific realization of a general self-exciting PP is completely similar to the Likelihood

functional for a (inhomogeneous) Poisson PP.

2.1.2 The Likelihood functional for Self-Exciting Point Processes

Consider a realization of a Self-Exciting counting process N(t) over a given finite interval:

{N(u); t0 6 u 6 t} the Likelihood functional for a given realization of the stochastic intensity

process λ conditional on this sample path is given by,

L (λ(θ) | {N(u); t0 6 u 6 t}) = exp

[∫ t

t0

lnλ(τ ; θ)dN(τ)−

∫ t

t0

λ(τ ; θ)dτ

]

. (11)

Here it is assumed that the admissible intensity processes for a specific problem are parame-

terized in terms of the (eventually infinite-dimensional) vector θ.

The similarity between the Poisson and the Self-Exciting cases is a consequence of the fact

that the intensity process for this last class of Point Processes is a stochastic process adapted

to the internal filtration of the PP. Parameter estimation can be performed through the com-

mon Maximum Likelihood (ML) methodology. In a similar, way Likelihood-based inference

procedures are readily available, for example the test of two simple hypothesis:

H0 : {λ(τ) = λ(τ)(0) ≡ λ(τ ; θ0); t0 6 τ 6 t} vs. (12)

H1 : {λ(τ) = λ(τ)(1) ≡ λ(τ ; θ1); t0 6 τ 6 t} (13)

can be performed using the standard Likelihood Ratio approach.
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Definition 11 (m-Memory Self-Exciting Point Processes)

In the general definition of self-exciting point processes the entire history of the process

may influence the conditional intensity process (that is the total number of occurrences N(t)

and their occurrence times T1, T2, ..., TN(t)). By contrast for a m-Memory Self-Exciting point

process only the last m occurrence times TN(t), TN(t)−1, ..., TN(t)−m+1 (and, eventually, the total

number of occurrences N(t)) influence the conditional intensity process.

A particular case of a finite-memory self-exciting process is the class of Renewal processes.

A self-exciting point process with independent, identically distributed durations is termed an

ordinary Renewal process. If all durations but the first (which is measured from the initial

moment t0) are identically distributed then the process is called a modified Renewal process.

In both cases we have an example of a 1-Memory Self-Exciting PP. The only memory of the

process is the last occurrence time (in particular there is no memory of the total number of

past occurrences). In intuitive terms one can think that there is an underlying clock which is

set to zero at every event-point. This means that the conditional intensity function for these

processes depends only on the (left-continuous version of the) backward recurrence time

Ū1(t) = t− TN̄(t), (14)

The basic idea behind Self-Exciting counting (and point) processes, that is, allowing the con-

ditional intensity function to depend on the internal filtration of the counting process, can be

taken a step further. By allowing the conditional intensity function to be a stochastic process

adapted to the filtration generated by some (eventually multivariate) ‘information’ process X

we arrive at the class of Doubly Stochastic Poisson processes also known as Cox processes.

Definition 12 (Doubly Stochastic Poisson Processes):

Let {N(t); t > t0} be a counting process associated with a given point process, let {X(t); t >

t0} be some left-continuous (multivariate) stochastic process, we say that N(t) is a Doubly

Stochastic Poisson counting process with intensity process {λ(X(t)); t > t0} if for almost every

given path {X(t, ω); t > t0, ω ∈ Ω} of the process X, N(t) is a Poisson counting process with

conditional intensity function λ(X(t, ω)).

In basic terms this means that the intensity process for this class of Point Processes is a deter-

ministic function of the stochastic process {X(t); t > t0}.
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2.1.3 The Likelihood functional for Doubly Stochastic Poisson Processes

If the ‘information’ process {X(t); t > t0} is observable, then we can use the result presented in

equation (15) in Subsection 2.1.1 to obtain the Likelihood associated with a sample path from

one of these PP. The main problem associated with ML estimation and inference for Doubly

Stochastic Poisson Processes comes from the fact that the ‘full information’ process X may

not necessarily be observable. That is, the filtration generated by the ‘information’ process X

may be decomposable as Ft = F
o
t ∪ F

∗
t , where the observable filtration F

o
t corresponds to the

observable components of X, while F∗t is a collection of subsets of Ω connected with the history

of the remaining (unobservable) factors.

L (λ | FT ) = E

[

exp

{∫ T

t0

lnλ(X(τ))dN(τ)−

∫ T

t0

λ(X(τ))dτ

}∣

∣

∣

∣

Fo
T

]

(15)

The multivariate integral implied by (15) represents a challenge for the practical implementa-

tion of estimation and inference procedures for this class of PP (when some of the components

of X are latent). Monteiro (2008) presents a simulation study comparing three different so-

lutions for solving this problem. These three different methods for (numerically) evaluating

the expectation appearing in (15), are applied to a new class of generalized point processes

introduced in Koopman et al. (2008).

Next I introduce a theorem expressing a limit to the identification of latent intensity factors in

multiplicative intensity point process models.

Theorem 5 (The Identifiability of Latent Intensity Factors). Let N(t) be an

Ft-adapted counting process observed over [t0,∞], having an absolutely continuous, unbounded,

Ft-compensator process Λ(t). Let the corresponding sequence of occurrence times be denoted

as {Tn}. Assume that the corresponding intensity process can be factored as λ(t) = φ(t)ψ(t),

where φ(t) is a non-negative, Fo
t -adapted, càglàd process, while ψ(t) is a non-negative

Ft-adapted, càglàd process (σ(N(t)) ⊆ Fo
t ⊆ Ft), define Φ(t) =

∫ t

t0
φ(τ)dτ . Further assume

that Φ(∞) = limt→∞Φ(t) =∞.

Then, from any given realization of the point process N(t) over a finite time-window [t0, T ],

it is not possible to conduct statistical inference regarding the individual values ψ(t) with t ∈

(Tn−1, Tn ∧ T ) and n = 1, . . . , N̄(T ) + 1).

Proof. We start by applying Theorem 4, from where we are able to conclude that the time-

changed counting process Ñ(u) = N(Φ−1(u)) has the F̃u-predictable intensity process λ̃(u) =

ψ(Φ−1(u)) = ψ(t). This means that the F̃u-likelihood functional can be written as

L
(

λ̃
∣

∣

∣ F̃T̃

)

=





Ñ(T̃ )
∏

n=1

ψ(Φ−1(un))



 exp



−

˜̄N(T̃ )+1
∑

n=1

∫ un∧T̃

un−1

ψ(Φ−1(u))du



 , (16)
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where un = Φ(Tn), T̃ = Φ(T ). Obviously, L
(

λ̃
∣

∣

∣ F̃T̃

)

= L (λ | FT ). Consider the process ψ
∗

constructed in the following way.

ψ∗ (t) =







ψ(Tn) for t ∈
(

Φ−1(un−1+un

2
), Tn

]

2
[

∫ un∧T̃

un−1

ψ(Φ−1(u))du
]

/(un − un−1)− ψ(Tn) for t ∈ (Tn−1,Φ
−1(un−1+un

2
)]

(17)

The process ψ∗ has sample paths which are càglàd piecewise constant. Statistically, this process

is completely indistinguishable from the true latent process ψ. In fact for any realization of

the N(t) process over the interval [t0, T ] both processes ψ and ψ∗ have the same likelihood

functional (16). However, process ψ∗ only requires the estimation of two unknown constants

for each spell (Tn−1, Tn ∧ T ).

This theorem establishes the limits to the identifiability of latent intensity factors from point

process data. Although nothing can be inferred with regard to isolated values ψ(t) when

t ∈ (Tn−1, Tn ∧ T ) and n = 1, . . . , N̄(T ) + 1), from (16) it is clear that point process data are

informative with regard to the integral
∫ un∧T̃

un−1

ψ(Φ−1(u))du. In most of what we have seen so far,

when we speak of a (orderly) univariate Random Point Process, in intuitive terms, we speak of

a series of similar “events occurring in a one-dimensional continuum, usually time, the events

being distinguishable only by where they occur, i.e., having no qualitative or quantitative

information attached to them ”(Lewis, 1972, page 14). However, in many situations these

event-points correspond to transitions of some individual or observational unit between two

well-defined states within some denumerable state space. This motivates the definition of a

Transition process.

Definition 13 (Generalized Point Processes)

A Transition Process, also known as a Generalized Point Process, is a continuous-time

stochastic process {S(t) : t ∈ R} where each S(t), for a fixed t, is a discrete random variable

taking values over some denumerable (fixed) state space.

A particularly important class of continuous-time discrete-support stochastic processes corre-

sponds to those processes that actually have both finite-support and finite memory.

17



2.2 Continuous-Time Markov Chains

This section reviews some fundamental concepts and results from the theory of continuous-time

finite-state Markov Processes, also known as continuous-time Markov Chains. These elements

provide a useful background to the class of reduced form credit risk models (see for example

Jarrow et al. 1997). A comprehensive introduction to Markov theory is provided in Grimmet

and Stirzaker (1992). Isaacson and Madsen (1976) is a detailed treatment of Markov chains

with an emphasis on engineering and reliability applications.

Consider a continuous-time discrete-valued stochastic process defined on the interval [t0,∞),

{S(t); t > t0} and assume that the state space S (in which S(t) takes its values) is finite i.e.

S = {1, . . . , s}. In order to avoid some serious technical difficulties that arise from the ‘point

wise’ definition of S(t), I will assume for the remainder of this section that this stochastic

process obeys the càdlàg assumption. This means that with probability one the trajectories of

S(t) are Right-Continuous with Left-Limit functions of time. This type of trajectories admits

a countable representation,

{(Sn, Tn) , n ∈ N} ,

where the Tn, n ∈ N sequence consists of the transition (or occurrence) times, and Sn = S(Tn).

Definition 14 (Markov Chain):

The continuous-time finite state-space stochastic process {S(t); t > t0} is termed a (1st

order) Continuous-Time Markov Chain (CTMC) if it satisfies the Markov property:

P [Sn = j | Sn−1 = sn−1, . . . , S0 = s0] = P [Sn = j | Sn−1 = sn−1] , (18)

for all natural numbers j, s0, ..., sn−1 6 s and any arbitrary sequence t0 < t1 < . . . < tn−1 < tn

of transition times.6

This means that the evolution of the chain in a finite time interval [t′, t] does not depend on the

history before time t′, i.e. it is a memoryless process (or more exactly there is only ‘memory’

of the present state).

This makes it possible to define a matrix function of t′ and t alone, whose (i, j)th entry gives

the probability that the chain will be in state j at time t given that it was in state i at time t′.

6A pth order Markov Chain satisfies a generalized version of the Markov property,

P[Sn = j | Sn−1 = sn−1, . . . , S0 = s0] = P [Sn = j | Sn−1 = sn−1, . . . , Sn−p = sn−p] and so memory of the

past is limited to the last p-steps
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Definition 15 (Transition Probabilities Matrix):

This matrix determines the evolution of the Markov chain. Entry (i, j) of this matrix is

defined by

pij (t, t
′) = P [S(t′) = j | S(t) = i] > 0, (19)

Note that each row of this matrix sums up to one, as it contains a discrete probability function.

Theorem 6 The Family of matrices {P (t, t′) ; t′ > t > t0} for Continuous-time Markov Chains

satisfies the following conditions,

1. P (t, t) = Is,

2. P (t, t′) is a stochastic matrix (i.e. all the entries are non-negative and all rows add up to

one, P (t, t′)1s = 1s),

3. P (t, t′) = P (t, u)P (u, t′) ; t 6 u 6 t′ (Chapman-Kolmogorov Equations).

For a proof of this result see Grimmet and Stirzaker (1992).

Definition 16 (Generator Matrix):

This matrix is the equivalent, for continuous time Markov chains, to the 1-step transition

matrix for discrete time Markov chains, and to the intensity function for a Poisson PP. It is

defined as

G (t) =
∂

∂t′
P (t, t′) |t′=t (20)

Under the càdlàg assumption we have that:

lim
t′↓t

P (t, t′) = Is

i.e. the entries of the transition probability matrix P (t′, t) are continuous functions of the

second argument, and thus, it follows that the sum of each row of G (t) is identical to zero,

G (t)1s = 0s (a column vector). (21)

Additionally, the diagonal elements of G (t) are non-positive. In fact with λii (t) denoting one

such component of G (t) we have,

λii (t) = lim
t′↓t

pii (t, t
′)− 1

t′ − t
,
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and as 0 6 pii (t, t
′) 6 1, we clearly obtain λii (t) 6 0 by the continuity of pii (t, t

′).

On the other hand, for the non-diagonal elements of G we have,

λij (t) = lim
t′↓t

pij (t, t
′)

t′ − t
,

and so λij (t) > 0 by the continuity of pij (t, t
′) .

So equation (21) together with these results means that

λii (t) = −
s

∑

j=1,j 6=i

λij (t) . (22)

Theorem 7 The Transition and Generator matrices are related by the following system of

partial differential equations (the Kolmogorov ‘Evolution’ Equations),

∂P (t, t′)

∂t′
= P (t, t′)G (t′) , (Forward equation) (23)

∂P (t, t′)

∂t
= −G (t)P (t, t′) . (Backward equation) (24)

Theorem 8 The Transition Probabilities matrix is recoverable from the Generator matrix by

finding the unique solution to the Kolmogorov Equations that also satisfies the auxiliary condi-

tion P (t, t) = Is. This solution is explicitly given by

P (t, t′) =

t′

t

(Is +G(τ)dτ) , (25)

where
b

a (I +M(τ)dτ), for a given (matrix) function M , denotes the product integral of M .

The product integral
b

a (I +M(τ)dτ) represents a generalization of the usual (finite) product,

just like the usual integral generalizes the summation operator. The next result is sometimes

useful for the numerical evaluation of the product integral. For an exposition on product inte-

gration, and a more detailed treatment of the results presented here, see Gill (2001), Andersen

et al. (1993, Section II.6) and Goodman and Johansen (1973).

Theorem 9 The product integral
b

a (I +M(τ)dτ) can be expressed as the following infinite

Péano series
b

a

(I +M(τ)dτ) = I +
∞
∑

p=1

∫

. . .

∫

a6τ1<...<τp6b

Mdτ1 . . .Mdτp. (26)

An important particular case of a continuous-time Markov chain arises when the transition

intensities, that is, the individual entries of the Generator matrix, are constant.
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Definition 17 (Homogeneous chains):

A Markov Chain {S(t); t > t0} with transition probabilities matrix P (t, t′) is called homo-

geneous iff

P (t, t′) = P (t0, t0 + (t′ − t)) ,∀t′ > t > t0. (27)

This means that the transition probabilities matrix does not depend on historical time, but

only on the amount of time elapsed between the initial and final moments. In such case, we

can define for every displacement τ > 0, Pτ = P (t0, t0 + τ).

2.2.1 Generator and Transition matrices for Homogeneous Chains

For homogeneous continuous-time Markov-Chains the Transition Probabilities matrix, (19), as

seen, is function only of the displacement τ between the initial and final time points, accordingly,

if limτ↓0 Pτ = Is, the Generator matrix (20) is now a constant matrix

G =
d

dτ
Pτ |τ=0 . (28)

In this case the Kolmogorov Equations assume a particularly simple form.

Theorem 10 For a Homogeneous Continuous-time Markov Chain where the Transition matrix

is a continuous function of τ the Generator and Transition matrices are related by the following

ordinary differential equations (Kolmogorov equations),

d

dτ
Pτ = PτG = GPτ . (29)

Theorem 11 The Transition Probabilities matrix is recoverable from the Generator matrix by

finding the unique solution to the Kolmogorov DEs that satisfies the auxiliary condition P0 = Is.

This solution, known as the matrix Exponential function, is explicitly given by:

Pτ = exp [τG] or equivalently

Pτ =
+∞
∑

n=0

τn

n!
Gn.
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2.3 Continuous-time Semi-Markov Processes

Continuous-time Finite State-Space Markov processes have a very limited amount of memory.

Only the current state is recorded at any given moment. This may be too restrictive to model

many real-life problems.

A slightly larger class of continuous-time finite state-space processes, which include the Markov

chains as a special case, is the class of continuous-time semi-Markov processes. Semi-Markov

processes keep track not only of the present state, but also of the elapsed duration (or sojourn

time) in that state. For this class of processes equation (18) is replaced by

P [Sn+1 = j,Xn+1 ≤ τ | (S0, T0) , . . . , (Sn, Tn) = (i, t)] = Qij (t, τ) , (30)

Where Qij is a nondecreasing measurable function of the second argument (called a subdistri-

bution function) and satisfies

s
∑

j=1

Qij (t,∞) = lim
τ→∞

s
∑

j=1

Qij (t, τ) = 1, (31)

for every t ∈ R
+
0 . In intuitive terms, these processes are characterized by the joint distribution

Qij (t, τ) of the destination state j and holding time Xn = Tn − Tn−1 on the current state i,

given that both this and the precise moment t when the system entered it are known. The

matrix-valued function Q (t, τ) is called the semi-Markov Kernel.

This means that for a Continuous-time semi-Markov Chain the entries of the generator matrix

are stochastic processes (instead of deterministic functions of time) which depend deterministi-

cally on the backward-recurrence time. For this reason semi-Markov processes are also known

as Markov Renewal processes. Define for every t ∈ R
+
0

Hi (t, τ) =
s

∑

j=1

Qij (t, τ) . (32)

Due to condition (31), Hi (t, τ) is a d.f. on R̄
+
0 with respect to the second argument τ . This

can be interpreted as the d.f. of the sojourn times in state i that start at time t. If Qij (t, τ),

as a function of the second argument τ , is absolutely continuous with respect to Lebesgue’s

measure, then the partial derivative of Qij (t, τ) with respect to τ is well defined,

qij (t, τ) =
∂Qij (t, τ)

∂τ
.
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2.3.1 Semi-Markov Transition Probabilities

In the current context, and due to the influence of the elapsed duration over the semi-Markov

kernel, the direct counterpart to the Markov transition probabilities (19) are the following

‘Renewal’ transition probabilities

pij (t, τ) = P
[

S (t+ τ) = j | N (t)− N̄ (t) = 1, SN(t) = i
]

, τ > 0, (33)

these are the probabilities of finding the unit in state j, τ units of time after it entered state i,

given that this transition happened at (chronological) time t.

These probabilities satisfy (Pyke, 1961) the following system of non-homogeneous Volterra

integral equations of the second kind on two independent variables (t and τ)

pij(t, τ) = δij(1−Hi(t, τ)) +
s

∑

k=1

∫ τ

0

pkj(t+ u, τ − u)qik(t, u)du, i, j = 1, . . . , s, (34)

where δij denotes Kronecker’s symbol. These equations are the direct counterpart to the Kol-

mogorov ‘evolution’ equations in the Markov setting. Monteiro et al. (2006) gives, for the

first time, a formal proof that equations (34) yield a unique, Fréchet differentiable, solution

in terms of the subdensity functions qij. Monteiro et al. (2006) further introduces, for the

first time, a feasible estimator for the matrix of semi-Markov transition probabilities based on

window-censored event-history data.

3 Observation Driven Point Process Models

This section describes the main specifications proposed in the financial Econometrics literature

for dealing with point processes that evolve with after-effects. The focus in this section is on

observation driven models. For all the different specifications in this section, it is assumed that

all relevant information is available to the Statistician, i.e. that the relevant filtration is fully

observable.

There are two main approaches for modeling a point process evolving with after-effects.

1. Specifying directly the forward-occurrence density of a conditionally orderly process, that

is, the probability density function of the next inter-arrival time (or duration), conditional

upon some particular filtration. This approach is somewhat limited. First, because the
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conditioning information set is only updated at each occurrence time, it is not possible

to assess the impact of covariates varying between event-times. As a consequence, and

strictly speaking, ‘duration models’ can only be applied to univariate point processes. This

is due to the fact that the occurrence of events of a different type during a duration cannot

be included in the internal filtration of the model. This problem can be circumvented

by using a marked ‘duration model’ for the pooled counting process N(t) =
∑S

s=1Ns(t)

associated with a S−dimensional PP. In this context, the mark Mn would correspond to

the specific event type (i.e. M = 1, . . . , S ). However, not many authors seem to have

taken this path (see also Bowsher, 2007).

2. Specifying directly the Conditional Intensity of the point process. This is a far more

flexible approach. The filtration is updated continuously, allowing both the inclusion of

general time-varying covariates and the occurrence of events of several different types,

making it possible to model multivariate PPs.

In principle, it would also be possible to parameterize directly the survivor function, but ap-

parently, not so many authors have followed this approach, which would suffer from the same

limitations as the one resulting from the use of the forward occurrence density.

3.1 The ACD class of models

This class of processes, introduced by Engle and Russell (1998), is a good example of the

first approach mentioned above. The basic underlying idea consist in specifying directly the

next duration as the product of a parametric (scaling) function of past durations by an i.i.d.

noise process with positive support. It is in fact a particular case of the Multiplicative Error

Model introduced in Engle (2002). Therefore, this model has the same general structure as

the GARCH model. It is, in fact, an example of a self-exciting point process model where the

conditional intensity function explicitly depends on the backward-recurrence time (14).

3.1.1 Econometric specification

Let {N(t);T1, T2, . . . , TN(t)} denote the past history of a (univariate) conditionally orderly point

process over the interval [t0, t], the durations are given by τn = Tn − Tn−1. Let ψn be the
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conditional expectation of τn given the past sequence τ1, . . . , τn−1 of inter-arrival times. That

is,

ψn ≡ E [τn | τn−1, . . . , τ1] = ψn (τn−1, . . . , τ1; θψ) , (35)

the ACD class of models consists of parameterizations of (35) jointly with the assumption

τn = ψnεn. (36)

The innovations process is assumed to be

{εn} ∼ i.i.d. with density p (ε; θε) . (37)

Additionally, ε has unit mean, and θψ and θε are fixed unknown vectors of parameters.

Clearly, this definition allows a broad class of point process models. By using different functional

forms in (35) and allowing different distributions for the multiplicative error term (37) we can

arrive at different particular ACD models.

The conditional intensity function implied by this mechanism can be deduced as follows. Let

λ0 (ε) = −
p (ε; θε)

∫∞

ε
p(τ ; θε)dτ

, (38)

denote the hazard function corresponding to the density (37). Note that, as the durations

are obtained as modulated versions of i.i.d. random draws from this density, the corresponding

hazard function can be thought of as a baseline hazard (in the spirit of the proportional hazards

model of Cox, 1972, in particular, the expected value of the standardized durations εn is 1).

Now, consider a deformation of the time-axis, such that in the new, transformed, time-axis we

read the standardized durations

εn =
τn
ψn
.

The image of the original PP over this new, transformed, time-axis constitutes a Renewal

process, due to the i.i.d nature of the standardized durations. Accordingly, the corresponding

conditional intensity process is

λ∗ (t∗) = λ0

(

t∗ − t∗N̄(t∗)

)

, (39)

where t∗ denotes time measured over the transformed time-axis. This implies the following

intensity over the original time-axis

λ (t) = λ0

(

t− tN̄(t)

ψN̄(t)+1

)

1

ψN̄(t)+1

. (40)
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The previous argument also shows that we can think of the ACD model as an Accelerated

Failure Time (AFT) model. The past of the process changes the speed at which time will flow

over the next duration (through the scaling effect that ψn imposes to the ‘natural’ durations

εn). In contrast, in classic AFT models this change in ‘speed’ is driven by exogenous covariates.

In computational terms, this specification raises two problems. First, the admissible class of

parameterizations of (35) is restricted to either strictly positive functions of (τn−1, . . . , τ1; θψ)

(for any θψ), or to values of θψ that keep ψn (τn−1, . . . , τ1; θψ) strictly positive for all possible

durations τn−1, . . . , τ1. In the later case, numerically maximizing the implied likelihood may be

problematic. Second, p (ε; θε) is restricted to densities with strictly positive support.

The simplest ACD model possible corresponds to a homogeneous Poisson Point Process with

intensity

λ (t) =
1

ψ
,

by setting (35) identical to a constant, and using a standard Exponential density for (37).

In most empirical applications of this model, (35) is simply taken to be a linear function of a

finite number of past (observed) durations and past conditional expected durations. The so

called ACD(p,q) model consists of (36) jointly with the following linear parameterization of

(35),

ψn = ω + α(B)τn−1 + β(B)ψn−1, (41)

where B denotes the usual lag operator, and

α(B) = α1 + α2B + . . .+ αp−1B
p−1,

β(B) = β1 + β2B + . . .+ βq−1B
q−1.

Note that this general ACD(p,q) model has ‘full memory’, in contrast to a finite memory PP,

due to the autoregressive polynomial β (B). This can be seen by noticing the similarity of (41)

with the equation defining an Autoregressive Moving Average (ARMA) process. However, this

similarity also shows that the impact of one specific duration, under suitable location of the

complex roots of the β(B) polynomial, will fade out exponentially. Therefore, specification (41)

is a ‘short-memory’ duration model. This similarity also implies that we can obtain a finite

p-memory Self-Exciting PP by taking the β(B) polynomial identical to zero.

A convenient property of the (linear) ACD(p,q) model is that it allows a straightforward ana-

lytical computation of several unconditional moments of the generated duration sequences, by

taking expectations on both sides of (41).

In the original article by Engle and Russell (1998), most of the emphasis was placed on two

26



particular choices for the innovations process (37). First of these, the EACD(p,q) model is

obtained by using an Exponential distribution for (37) jointly with the linear specification (41)

for the conditional duration (35). A particularly simple form is the EACD(1,1)

ψn = ω + ατn−1 + βψn−1. (42)

In this model the unconditional mean duration is

µ =
ω

1− α− β
,

and the conditional and unconditional variances of the durations are given by

V [τn | τn−1, . . . , τ1] = ψ2
i ,

µ2

(

1− β2 − 2αβ

1− β2 − 2αβ − 2α2

)

= σ2.

Accordingly, this model will exhibit excess dispersion in the corresponding unconditional distri-

bution of the generated durations whenever α > 0, this is a feature often observed in duration

data sets.

The alternative particular parameterization, the WACD(p,q) model, uses a Weibull distribu-

tion for the innovations process (37) together with the linear process (41). The hazard function

associated with a Weibull distribution, with parameters γ and κ, is given by

λ(τ) = γκγτ γ−1. (43)

Other possible distributions for the innovations are the Generalized Gamma, Log-normal and

Log-Logistic distributions (see for example Kalbfleisch and Prentice, 2002, section 2).

A further extension of the basic ACD specification consists in including the values of marks

associated with the previous m event-points in the mean equation (41). That is,

ψn = ω + α(B)tn−1 + β(B)ψn−1 + γ′ (B) zn−1, (44)

with γ(B) = γ1 + γ2B + . . . + γm−1B
m−1 and z denotes a vector of marks. Again the need to

insure a positive ψn requires the use of (non-trivial) constraints over the parameters in (44).

It is equally possible to include deterministic calendar effects, like ‘time-of-day’ effects for

transaction data. This can be achieved by assuming that the conditional expected duration is

affected by a deterministic function of the corresponding starting moment. For example, using

the multiplicative form

E [τn | τn−1, . . . , τ1] = ϕ(Tn−1; θϕ)ψn (τ̃n−1, . . . , τ̃1; θψ) ,

where τ̃n = τn/ϕ(Tn−1; θϕ) corresponds to the “diurnally adjusted” durations.

A plethora of different extensions and variations on the basic ACD(p,q) model have been
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proposed in the literature. Next, I provide a brief description of the main ideas behind some

of these specifications.

1. The class of Log-ACD models, introduced by Bauwens and Giot (2000) circumvents one

of the problems connected with the linear ACD(1,1) model, namely the need for imposing

constraints over the model parameters to insure the positivity of ψn, by resorting to the

logarithmic transformation. That is, equation (42) is replaced by

lnψn = ω + α ln τn−1 + β lnψn−1. (45)

2. Generalizing the class of Log-ACD models, Fernandes and Grammig (2006) proposed the

Augmented ACD (AACD) by using a Box-Cox transformation. Therefore (45) is replaced

by
ψδn − 1

δ
= ω + αψδn−1 [|εn−1 − b| − c|εn−1 − b|]ν + β

ψδn−1 − 1

δ
, (46)

where δ > 0, ν > 0, b and c are unknown parameters. The factor [|εn−1 − b| − c|εn−1 − b|]ν

appearing in (46) is the so-called “news impact function.”

3. In order to circumvent the ‘short-memory’ characteristics associated with the linear condi-

tional duration process (41), Koulikov (2002), introduces a class of long-memory positive

weakly stationary random variables. Equation (42) is replaced by

ψn = ω + α(1− βB)−1(1−B)−d(τn−1 − ψn−1), (47)

where 0 < d < 1 and the negative fractional power of the back-differencing operator can

be obtained from the expansion (1 − B)−d = 1 +
∑∞

j=1 cjB
j. The coefficients cj of this

expansion can be obtained recursively from cj = cj−1
j−1+d
j

, starting from c1 = d.

4. A Threshold ACD (TACD) model was proposed by Zhang et al. (2001). The main

idea behind this specification, is to use an observable variable (for example the previous

duration) to select one of P different regimes. Each regime has its own conditional

mean equation (42) and error distribution (37). Regime j is chosen if (for example)

τn−1 ∈ [rn−1, rn), where 0 < r0 < r1 < . . . < rJ = ∞ are the threshold parameters. For

fixed values of the threshold parameters the remaining parameters of the TACD model

can be estimated by ML. Performing a grid-search over the threshold values is a feasible

solution for obtaining the corresponding ML estimates.

5. Meitz and Teräsvirta (2006) introduce a class of Smooth Transition ACD (STACD) mod-

els. In contrast with the (discrete) regime switching TACD model, where the DGP ‘jumps’
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between several different regimes, durations in the STACD model result of a continuous

‘mixture’ of several different conditional distributions. A particular case of this specifica-

tion is as follows. The conditional duration is given by

ψn = ω + βψn−1 + ατn−1 + (ω′ + α′)G(ln τn−1), (48)

with ω′ α′ denoting additional parameters and G(.) is the so-called ‘transition function.’

In general G(.) can be any non-negative, bounded real function of one real variable.

Usually G(.) takes values between 0 and 1. A particular choice for the transition function

is the logistic form

G(ln τn−1; ζ, r1, . . . , rJ) =

[

1 + exp

(

−ζ
J
∏

j=1

ln τn−1 − rj

)]−1

(49)

where ζ > 0, r1 ≤ . . . ≤ rJ are unknown parameters. The integer J is normally chosen a

priori and determines the shape of G. The STACD model encompasses several particular

cases of the TACD model. A further extension would consist in extending the scope of

the transition function in order to include the lagged conditional duration term βψn−1,

yielding a Time-Varying ACD (TVACD) model.

6. Droost and Werker (2004) propose a semi-parametric class of ACD models by relaxing

both the distributional and i.i.d. assumptions behind the innovations process (37). That

is, while the conditional mean is specified as a parametric function (as for the other ACD

models), the conditional distribution of the noise process εn is estimated directly from the

data using a combination of kernel density and Nadaraya-Watson regression estimators.

3.1.2 Estimation and Inference

Observation driven ACD models belong to the class of Self-Exciting point processes. Therefore,

the Likelihood associated with a particular ACD specification can be obtained by combining the

general result (11) with the particular form of (40) implied by the chosen innovations density

(37) and the precise parameterization (35) of ψn.

However, the construction of the precise data Likelihood implied by some of the more com-

plex ACD specifications can be difficult. More important still, if the assumed distribution

for the noise process is mis-specified, and unless this one belongs to the Exponential family

(see Gouriéroux et al., 1984), the derived estimators will not be consistent. Engle and Russell

(1998) show that the estimators of the ACD parameters derived from the Exponential noise
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distribution satisfy the Quasi-ML(QML) properties. Therefore these estimators are consistent

even under mis-specification of the noise distribution. Droost and Werker (2004) showed that

the QML estimators based on the Gamma distribution are equally consistent but provide no

efficiency gains over the ones derived from the Exponential distribution. This essentially means

that, for obtaining the pseudo-Likelihood function implied by a particular ACD-type model, we

can combine the result (11) with the particular conditional mean function (35) used, assuming

the innovations to be i.i.d. Exponential. The estimators resulting from the maximization of

this pseudo-Likelihood will be consistent.

Recently, Peiris et al. (2008) propose the estimation of both the Exponential and Weibull ACD

models using the Estimating Functions approach of Godambe (1985).

Dynamic ‘mixture’ ACD models (for example, the STACD) on the contrary, cannot be esti-

mated by ML due to the path dependence of conditional durations (a similar problem arises

for Markov-Switching GARCH models, see Gray, 1996).

3.2 The ACI class of models

As mentioned in the introduction to this paper, while the original ACD specification of Engle

and Russell (1998) models directly the forward-occurrence density (of a univariate point process)

as a function of past observed durations, the Autoregressive Conditional Intensity model of

Russell (1999) models directly the conditional intensity process (8). The added flexibility that

results from the intensity approach makes it feasible dealing with multivariate point processes.

Additionally, the ACI mechanism allows the inclusion of time-varying covariates in a regression

framework. The basic idea of this model consists in using a Vector Autoregressive Moving

Average (VARMA) process for describing the dependence of the (vector) conditional intensity

on the past of the multivariate point process.

3.2.1 Econometric specification

Consider a set of S distinct (right-continuous) counting processes Ns(t), with s = 1, . . . , S,

defined on a given filtered probability space (Ω,F , {Ft} ,P), which are observed over the in-

terval [0, T ]. Assume that the pooled counting process N(t) =
∑S

s=1Ns(t) is orderly and the

compensator Λs(t) associated with Ns(t) is absolutely continuous. The corresponding intensity

process is denoted by λs(t).
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The ACI mechanism parameterizes each individual intensity component as

λs(t) = qs(t) exp(β
′
sw(t) + φsN̄(t)+1)hs(Ū(t)), (50)

where qs(t) is a deterministic function of (chronological) time, intended, for example, for model-

ing high-frequency (“intra-daily”) seasonality effects. Typically, qs(t) is specified as a low-order

spline function. The p dimensional vector w(t) contains a collection of time-varying covari-

ates relevant to all event types, while βs stores the regression coefficients corresponding to the

sth point process. The multivariate baseline hazard function hs introduces dependence on the

vector Ū(t) = (Ū1(t), . . . , ŪS(t)). The quantities Ū s(t) = t − ts
N̄s(t)

are the amount of time

elapsed, i.e. the duration, since the last occurrence of an event of each type (known in the

Point Processes literature as the backward-recurrence time). Therefore, it is possible to assess

the impact over the sth point process of the duration with respect to the last event, both of

that same or of a different type. Note that, for each s = 1, . . . , S fixed, the point tsNs(t)
sat-

isfies ∆Ns(t) = 1, and ∆Ns(τ) = 0 for every τ in the interval
(

tsNs(t)
, t
)

whenever this is a

non-degenerate one. This multivariate baseline hazard function hs can, take different possible

parametric forms. For example, the product of S Weibull or Burr hazards.

Although a general VARMA structure is possible, most commonly, φn = (φ1
n, . . . , φ

S
n)
′ is defined

as a Vector Autoregressive (VAR) process of order one,

φn+1 = Aφn +Bιnι
′
nξn, and φ1 = 0, (51)

where ιn = (∆N1(tn), . . . ,∆NS(tn))
′ is a random selection vector, A = (ars) and B = (brs) are

(S × S) matrices of unknown parameters. Note that the matrix A can be made dependent on

ιn, according to A = [A1 . . . AS] (ιn ⊗ IS), such that, when the last event was of type s, the

S × S matrix As is used as the VAR(1) coefficient (⊗ denotes the Kronecker product and IS is

the identity matrix of order S). This adds extra flexibility to the model by allowing a rich set

of dependence patterns among the different components of the multivariate PP.

The vector ξn = (ξ1
n, . . . , ξ

S
n ) contains the innovations corresponding to each intensity process.

Later in this section I shall discuss in detail two possible specifications for the noise process.

The A matrix determines the degree of persistence of each shock to the process φ.

When the last event was of the sth type we have ιn = es,where es denotes the s
th column of

the identity matrix IS, therefore, the s
th column of B is used for re-scaling the (univariate)

innovation ι′nξn = ξsn. This means that the instantaneous impact of an event of type s over the

intensity process of type r equals brsξ
s
n, that is

∂φrn+1

∂ξsn
= brs.
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The eigenvalues of the matrix of persistence parameters A are required to lie inside the unit

circle in order for the process φ to be mean reverting to its unconditional mean of zero (see

proposition 2 and ensuing discussion in Russell, 1999). The (vector-valued) noise process ξn can

be defined in, essentially, two different ways, both resulting from a suitable application of the

random time change theorem. In the original 1999 article by Russell the vector of innovations

ξn is defined as

ξn = (1− Λ1(t
1
N1(tn)−1, t

1
N1(tn)), . . . , 1− ΛS(t

S
NS(tn)−1, t

S
NS(tn)))

′, (52)

where Λs(a, b) =
∫ b

a
λs(t)dt. That is, the innovation associated with each point process, consists

of the increment in the corresponding compensator process over the interval defined by the two

most recent events of that type. Therefore, ξsn is a Martingale difference sequence. When the

last event was of the sth type, only the sth component of ξn is used for updating the vector

φ. In this case, ξsn > 0 (or ξsn < 0) means that the model over predicted (respectively, under

predicted) the time length between two consecutive events of type s. Direct application of the

random time change theorem implies that the sequence of (scalar) innovations ι′nξn is an i.i.d.

Exp(1) noise re-centered in zero.

The alternative solution for defining the innovations ξn was suggested in Bowsher (2007). In-

stead of using the increments in the compensated counting processes of each type, the idea

consists in using the increments in the pooled (compensated) counting process. That is,

ξn = (1− Λn)1S, (53)

where 1S denotes an S column vector of ones and {Λn} denotes the sequence of increments in

the compensator associated with the pooled process,

Λn =
S
∑

s=1

Λs(tn−1, tn), n = 1, . . . , N(T ). (54)

In this case ι′nξn > 0 (< 0) means that the model over predicted (under predicted) the time

length between any two consecutive events (i.e. regardless of their type). As previously men-

tioned, due to the random time change theorem, Λn is an i.i.d. Exp(1) noise while ι′nξn has

zero mean. The computation of the ACI residuals, in both cases, is straightforward.

3.2.2 Maximum Likelihood estimation and Inference

As it was seen in Subsection 2.1, the Likelihood associated to a sample path from a general

univariate Self-Exciting point process is readily available, see equation (11). For the present
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case of a multivariate ACI process the key consists in applying the result (11) to the pooled

counting process. This leads to

L (λ(θ) | FT ) =
S
∏

s=1

exp

[
∫ t

t0

lnλs(τ ; θ)dN(τ)−

∫ t

t0

λs(τ ; θ)dτ

]

, (55)

where θ denotes the full vector of parameters associated with a particular ACI specification.

The computation of ML estimates has to be done using some numerical optimization algorithm,

as, in general, there are no closed-form expressions obtainable from (55).

ML-based inference procedures are directly available. Additionally, due to the fact that under

correct specification of the ACI model, the sequence of residuals ξsn, with s = 1, . . . , S and

n = 1, . . . , Ns(T ) are i.i.d. unit Exponential distributed, we can use a Ljung-Box test over

the autocorrelations of the estimated residuals as a diagnostic check on the adequacy of the

estimated model. An additional ‘goodness-of-fit’ test is the excess-dispersion test introduced

by Engle and Russell (1998).

3.3 Generalized Hawkes models

This intensity-based class of self-exciting multivariate point processes was proposed by Bowsher

(2007), adapting and extending the seminal work of Hawkes (1971) to the analysis of financial

data. Accordingly, Bowsher (2007) describes a simple data transformation for dealing with the

fact that financial transaction data is not continuously recorded in time, due to the presence

of the overnight period when financial markets are closed. The generalized Hawkes (g-Hawkes)

model also allows the inclusion of exogenous variables in a regression framework that enables the

assessment of their impact over the intensity of each univariate component of the multivariate

PP. I start by describing the original, univariate, Hawkes (1971) model, this is then followed by

the generalized counterpart introduced in Bowsher (2007) and then, finally, the full multivariate

g-Hawkes model.
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3.3.1 The Univariate Hawkes model

This is a case of a ‘full-memory’ self-exciting point process. The entire past history of the

process over [t0, t) determines the present value of the conditional intensity process. Hawkes

(1971) introduced the following particular parameterization of the intensity process

λ
(

t | N(t), T1, T2, . . . , TN(t)

)

= ω +

∫ t

0

π (t− u) dN(u) (56)

where t denotes calendar time, T1, T2, . . . , TN(t) are the previous occurrence times and ω > 0 is

an unknown parameter. The integrand, π (.), is a fixed function of time termed the infectivity

measure in the classical literature due to the first applications of this model in epidemiology.

The most common parameterization of π was first suggested by Hawkes (1971)

π (τ) =
K
∑

k=1

αk exp(−βkτ), (57)

where αk ≥ 0 and βk ≥ 0 are model parameters. The order of the process K is either set a

priori or chosen using model selection criteria.

This model was initially used in the field of seismology, see for example Ogata and Katsura

(1986). The main feature of this model, besides its full memory, is the fact that the marginal

impact of one event recorded at calendar time tn is independent of the remaining history of

the PP. The amount of time elapsed since tn is the only factor determining the impact of this

event over the current value of the conditional hazard rate; regardless of the number of events

recorded between tn and t. This property of the Hawkes model, as argued in Engle and Russell

(1998), may render it inadequate for the purpose of analyzing financial transactions data. In

fact some authors argue that financial markets evolve in transaction instead of chronological

time.

In contrast with this view, Bowsher (2007) adapts the Hawkes specification for modeling fi-

nancial transaction data. The g-Hawkes model makes use of a simple data transformation,

designed for dealing with the overnight periods when no activity takes place on the financial

markets. The transformed time axis is defined in the following way, the origin is set at 9:30 a.m.

of the first recorded trading day. The overnight periods are then removed from the time axis,

such that only the l working hours of each trading day (6.5 hours for most financial markets)

are retained. This means that moment x (expressed in hours measured after 9:30 a.m.) in

trading day d (an integer number) will appear as time-point l × (d− 1) + x in the final data

set. Formally, we have the following partition of the time axis

(0,+∞) = (0, x1] ∪ (x1, x2] ∪ . . . ∪ (xd−1, xd] ∪ . . . , (58)

34



where xd = d × l (d = 0, 1, 2, . . .). With this partition in place, Bowsher (2007) proposes a

special Hawkes-type specification for the conditional intensity process.

3.3.2 The Univariate g-HawkesE(K) model

Consider a self-exciting, conditionally orderly point process defined over [0,∞) and equipped

with the above-mentioned partition. Let the conditional intensity process of this PP follow the

parameterization

λ
(

t | N(t), T1, T2, . . . , TN(t)

)

= µ (t) +
K
∑

k=1

∼

λk (t) , (59)

where µ (t) is a strictly positive deterministic function of time (designed to accommodate deter-

ministic intra-daily patterns). Each stochastic component
∼

λk is obtained recursively. Starting

from
∼

λk(0) = 0, the recursion step is given by

∼

λk (t) = πk
∼

λk (xd−1) exp [−ρk (t− xd−1)] +

∫

[xd−1,t)

αk exp [−βk (t− u)] dN(u), (60)

when xd−1 < t 6 xd. Additionally, the following sign restrictions need to be imposed,

πk > 0, αk > 0, ρk > 0 and βk > 0. Equations (59) and (60) mean that, added to the determinis-

tic function µ(t), there are K stochastic components which account for both a ‘spillover effect’

from the trading intensity of the previous trading day (obtained from the first term on the

right-hand side of (60)), and the past trading intensity on that day (given by the second term).

Both effects have an associated exponential ‘rate of memory loss.’ Inside a specific trading day

one individual event leads to a ‘jump’ of amplitude
∑K

k=1 αk in the intensity λ. This increase

will eventually fade out at exponential rate. More precisely, at the rate of exp
[

−t×
(

min
k
βk

)]

.

With regard to the ‘spillover’ term on the right-hand side in equation (60), it should be noted

that the value of each stochastic component at the closing time on day d− 1, included in λ(t)

with xd−1 < t 6 xd, ‘fades out’ at the (distinct) rate exp
[

−t×
(

min
k
ρk

)]

.

The basic self-excitement mechanism of the g-HawkesE(K) model, built using weighted ex-

ponential response-functions, is easily extended to the multivariate case by including terms

that account for possible cross-effects between the different components of the multivariate

PP. Again, for simplicity of exposition and following Bowsher (2007) only the bivariate case is

described. Constructing the general multivariate case is nonetheless straightforward. In par-

ticular, I introduce in this paper an innovative notation for describing the bivariate g-Hawkes

that lends itself to a trivial generalization for handling the general multivariate case.
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3.3.3 The Bivariate g-HawkesE(K) model

Consider two distinct, conditionally orderly, point processes with associated intensity processes

λ1 (t) and λ2 (t) assembled into a (column) vector λ (t) = (λ1 (t) , λ2 (t))
′

. The bivariate g-

HawkesE(k) model assumes this vector intensity follows the parameterization:

λ (t) = µ (t) +M (t)1K , (61)

where µ(t) = (µ1(t), µ2(t))
′ is a two-dimensional deterministic function of time. The matrix

M(t) = (mij(t)), i, j = 1, 2 has entry mij(t) =
∑K

k=1

∼

λ
(k)

ij (t). Each individual stochastic compo-

nent
∼

λ
(k)

ij (t) is defined similarly to the univariate case. That is,
∼

λ
(k)

ij (0) = 0, and then

∼

λ
(k)

ij (t) = π
(k)
ij

∼

λ
(k)

ij (xd−1) exp
[

−ρ
(k)
ij (t− xd−1)

]

+

∫

[xd−1,t)

α
(k)
ij exp

[

−β
(k)
ij (t− u)

]

dNj(u), (62)

when xd−1 < t 6 xd. The following restrictions are required, π
(k)
ij > 0, α

(k)
ij > 0, ρ

(k)
ij > 0 and

β
(k)
ij > 0. Nj(u) stands for the counting process associated with the jth component of the

PP. The bivariate version basically adds the facility for cross-effects between the occurrence of

events and the intensities of the different component PP.

3.3.4 Maximum Likelihood Estimation

The data Likelihood implied by this class of models follows directly from equation (11) and

the specification of the conditional intensity process (61). This leads to a general Likelihood

expression similar to (55). However, the structure of the transformation of the time-axis (58),

allows writing the likelihood as a product of daily contributions. This decomposition in turn,

allows the use of the recursive specification (62) in order to compute the log-likelihood in an

efficient way. Additionally, the special parametric forms in (62) mean that the integral of the

path of each sth intensity component (appearing in (55)) can be computed analytically, see

Bowsher (2007) for details.
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4 Parameter Driven Point Process Models

In this section the focus is placed on point process models with unobserved components. The

common feature across the different specifications in this section, is that the internal filtration

generated by all these models can be decomposed as Ft = F
o
t ∪ F

∗
t , where F

o
t corresponds to

the observable information set, while F∗t denotes the history of the unobserved components.

The dynamic behavior of these models is driven not only by an observable filtration but also by

latent components, thus combining aspects from both self-exciting and doubly stochastic point

processes. The richer dynamic structure of this class of models provides added flexibility for

describing the patterns in empirical point processes. This added flexibility, however, comes at a

cost. ML estimation for this class of models is hindered by the need to integrate out the effect of

the unobserved components. This is a common and well-known problem for parameter driven

nonlinear or non-Gaussian dynamic statistical models. The data-density typically involves a

high-dimensional integral, which has (due to the unavailability of exact closed-form solutions)

to be evaluated either using simulation or other approximate methods.

4.1 Parameter driven ACD models

As seen in Subsection 3.1, the class of ACD models constitutes, by historical reasons, one of

the main point process models used in the financial literature. Many different extensions and

variations on the original specification of Engle and Russell (1998) have been proposed. Some

of these were already mentioned in Subsection 3.1. Here I focus on those particular extensions

of the ACD model that include latent components.

4.1.1 The Markov Switching ACD model

As mentioned in Subsection 3.1 ACD models are characterized by a particular shape for the

conditional duration (35), the multiplicative error structure (36) and a particular set of sto-

chastic assumptions for the noise process εn.

One particular extension of the basic ACD model mentioned in Subsection 3.1 was the TACD

model of Zhang et al. (2001). The main characteristic of the TACD specification consists in

combining different ‘regimes,’ i.e. the durations are generated according to several different

conditional mean functions and innovation distributions. The particular regime used to gener-

ate the next duration is chosen according to the value of the previous observed duration. An

alternative way to shift between several different regimes is a (hidden) Markov switching mecha-

nism. That is, the particular regime (among J possible regimes) generating the next conditional
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duration ψn+1 is chosen according to the value of an unobserved discrete random variable rn+1

(with finite support J = {1, . . . , J}) following a (discrete) Markov chain. This is the main idea

behind the Markov Switching ACD (MSACD) model introduced by Hujer et al. (2002).

The MSACD model is characterized by the multiplicative error structure (36) (implying E[εn] =

1), the conditional mean depends directly on the unobserved regime variable rn

ψn+1 =
J
∑

j=1

P[rn+1 = j|Fn; θ]ψ
(j)
n+1, (63)

where P[rn+1 = j|Fn; θ] is the probability that the next regime will be in state j, given the

information set available at time Tn. The regime-specific conditional mean

ψ
(j)
n+1 = E[τn+1|rn+1 = j,Fn; θ],

is normally specified according to an autoregressive specification of the form (41).

As mentioned the latent stochastic process {rn} follows a homogeneous (discrete) Markov chain,

characterized by the 1-step transition matrix P , with entries pij = P[rn+1 = j|rn = i]. As

with the conditional mean duration, the next conditional error distribution depends only on

the current state rn and the (observable) information set Fn. That is, εn+1 is drawn from

f(εn+1|rn+1 = j,Fn; θ).

There are two possible ways in which to specify the regime-specific conditional expected du-

ration ψ
(j)
n+1. First, ψ

(j)
n+1 can be regressed only on previous expected durations and observed

durations corresponding to that same regime j. Alternatively, ψ
(j)
n+1 can be written as an au-

toregressive function of both previous expected and observed durations regardless of the specific

regime. This second possibility raises the problem of path dependence, that is, ψ
(j)
n+1 becomes

dependent on the unobserved past trajectory r1, . . . , rn. This requires a computationally ex-

pensive procedure, as all Jn possible past trajectories need to be considered. A simplifying

aggregation procedure for this case was suggested by Gray (1996), in the context of Markov

switching GARCH models (see also Hujer et al., 2002).

The data Likelihood for the MSACD class of models is given by the average conditional likeli-

hood of the observable variables, taken over all possible trajectories (r1, . . . , rN(T )) of the latent

Markov chain. Evaluation of this Likelihood function is computationally demanding. Hujer

et al. (2002) suggest a feasible procedure making use of the Expectation-Maximization (EM)

algorithm of Dempster et al. (1977).
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4.1.2 The Stochastic Conditional Duration model

The relationship between the Stochastic Conditional Duration (SCD) and the ACD models

is similar to that between the Stochastic Volatility (SV) and GARCH models. Instead of

specifying the expected conditional duration (35) as a function of previous observed durations,

as in the ACD model, this expected duration is modeled as a latent stochastic process.

While the multiplicative error structure (36) is retained, the conditional expected duration

equation (41) is replaced by

lnψn = ω + β lnψn−1 + ηn, with |β| < 1, (64)

where the latent noise process, ηn ∼ N(0, σ2), is assumed independent of εn, given Fn−1. The

initial value of the latent conditional mean log-duration process, that is lnψ0, is drawn from

the ‘steady state’ distribution of lnψn. The SCD model implies a marginal distribution for the

durations τn that results from mixing the (assumed) log-Normal distribution of ψn with the

chosen distribution for εn. In general, it is not possible to compute these distributions (i.e. the

unconditional one and the one conditional upon Fn) analytically given a choice of a parametric

family of distributions for εn. It is, however, possible to obtain these distributions by numerical

integration (see Bauwens and Veredas, 2004).

In what follows I assume that the distribution of εn has finite moments of all orders. These

moments are denoted by

gp = E [εpi ] , p = 1, 2, . . .

Two possible choices are the standard Weibull distribution W (γ, 1) and the standard Gamma

distribution G (ν, 1) for which

gp = Γ

(

1 +
p

γ

)

(Weibull) ,

gp =
Γ (ν + p)

Γ (ν)
(Gamma) .

The sequence of durations τn constitutes a strictly stationary process under the restriction

|β| < 1, which also implies the stationarity of the latent factor ψ. The unconditional moments

of these processes are given by
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µψ = exp

[

ω

1− β
+
1

2

(

σ2

1− β2

)]

,

µτ = g1µψ,

σ2
ψ = µ2

Ψ

[

exp

(

σ2

1− β2

)

− 1

]

,

σ2
τ = µ2

t

[

g2

g2
1

exp

(

σ2

1− β2

)

− 1

]

.

See Bauwens and Veredas, (2004) for a proof of these results. The SCD model is able to generate

a sequence of durations τn exhibiting excess dispersion if

σ2

1− β2
> ln

(

2
g2
1

g2

)

.

For Weibull distributed innovations, this condition holds if γ ≤ 1 (ν ≤ 1 for the Gamma case)

and σ2 > 0 (even if β = 0).

The theoretical autocorrelation function (ACF) of the sequence of durations τn is given by

ρp =
exp

(

σ2βp

1−β2

)

− 1

g2
g2
1

exp
(

σ2

1−β2

)

− 1
.

This result implies that the ACF decreases geometrically with s. Therefore, the SCD model

is, just like the ACD, a ‘short-memory duration process. As seen on Section 2.1.3 Doubly

Stochastic Poisson Processes are not easy to estimate using Maximum Likelihood. Following

Harvey et al. (1994) and Ruiz (1994), Bauwens and Veredas (2004) propose a Quasi-Maximum

Likelihood (QML) approach obtained from the application of the Kalman filter to the state

space representation of the SCD model

ln τn = µ+ ψn + ξn (observation equation), (65)

lnψn = ω + β lnψn−1 + ηn (state equation), (66)

where ξn = ln εn − µ, and µ =E[ln εn].

The Kalman filter would provide the exact Likelihood for this state space model (SSM) if the

ξn disturbances were Normally distributed. Because this is not the case (unless the distribution

of ε is taken to be log-Normal), maximizing the likelihood obtained from application of the

Kalman filter to the SSM given by equations 65 and 66 is a pseudo ML and not a full ML

procedure.
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More recently, Bauwens and Galli (2007) describe the details of applying the Efficient Impor-

tance Sampling (EIS) algorithm of Richard and Zhang (2007) to the estimation of SCD models.

As it would be expected, they find that (at the cost of an increased computational effort) the

simulation-based EIS algorithm provides more accurate estimates of the model parameters,

when compared with the original QML procedure suggested in Bauwens and Veredas (2004).

4.2 Stochastic Conditional Intensity processes

Introduced in Bauwens and Hautsch (2006a), this class of ‘intensity based’ point process mod-

els can be considered a parameter driven extension of the ACI model of Russell (1999). As it

is the case with the SCD and ACD models, the SCI specification results from enlarging the

filtration generated by the original ACI model with the σ-algebra generated by a single latent

(univariate) stochastic process. That is, although the model can be applied to an arbitrary

S-dimensional point process, it is assumed that a common latent factor influences (multiplica-

tively) the conditional intensity process of each individual component.

More formally, consider a set of S distinct (right-continuous) counting processes Ns(t), with

s = 1, . . . , S, defined on a given filtered probability space (Ω,F , {Ft} ,P), and observed over the

interval [0, T ]. Assuming that the pooled counting process N(t) =
∑S

s=1Ns(t) is orderly and

the compensator Λs(t) associated with Ns(t) is absolutely continuous, there is a corresponding

intensity process, denoted by λs(t). In the broadest sense possible, the SCI class of models

consists of all possible parametric specifications for the vector of intensities (λs(t)), where each

component can be written multiplicatively as

λs(t) = λos(t) exp(σsψ(t)), (67)

with ψ(t) denoting a univariate unobserved stochastic process with piecewise-constant càglàd

sample paths. In fact, the unobserved process cannot be identified between successive events of

the pooled process (recall theorem 5). Only the integral of this latent process over a complete

spell (tn−1, tn] of the pooled process and its boundary values ψ(tn) are identifiable. Accord-

ingly, it is reasonable to consider a process with piecewise-constant càglàd sample paths (only

‘jumping’ at the occurrence times tn, with n = 1, . . . , N(T )) as an approximation to the ‘true’

dynamic unobserved heterogeneity process. Clearly, the trajectories of such a process can be

indexed by the left-continuous counting process N̄(t) associated with the pooled process. Fi-

nally, for this class of models, the latent information set F∗t mentioned previously, corresponds

to the history of the process ψ(t). And therefore, it is updated only at the occurrence times of
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the pooled counting process N(t).

The observable intensity component λos(t) can, in general, be any predictable process of the

observable filtration Fo
t . In contrast with F

∗
t , F

o
t can be updated continuously.

In practice, specific parametric processes have to be chosen for modeling both the latent and the

observable components of λs. In Bauwens and Hautsch (2006a), the observable intensity factor

λos is modeled as an ACI process, while an AR(1) specification driven by Gaussian innovations

was chosen for the common latent process. That is

ψN̄(t)+1 = ρψN̄(t) + εN̄(t)+1, εN̄(t)+1 ∼ NIID(0, 1). (68)

The latent innovations process is assumed to be independent of the series of increments in the

compensator of the pooled process (54). This assumption is required to insure valid intensity

components λs. The stationarity of the latent AR(1) process (obtained when | ρ |< 1) is a

necessary condition for the stationarity of the SCI model.

Note that σs represents the conditional standard deviation of the s
th log-intensity component

lnψs given F. For this reason, the latent innovations εn have unit variance (68).

The component-specific standard deviation σs means that a shock εn to the common unob-

served factor will have a different impact over each individual component of the S-variate PP.

As mentioned above, the observable part of the intensity function for a SCI model λos, can be

parameterized using the ACI mechanism, Bauwens and Hautsch (2006a) suggest the use of a

product of Burr hazard functions for the baseline hazard function hs discussed in Subsection 3.2.

There is, however, one critical difference between the (original) ACI specification and the para-

meterization of the observable component of the intensity process in the SCI model, as suggested

by Bauwens and Hautsch (2006a). If the innovations process ξn is computed following either

(52) or (53) then, in both cases, ξn will be a function of previous values of the latent component.

Recall that in the ACI model, the innovation associated with each individual counting process

Ns(t), at an occurrence time Tn of the pooled process N(t), was either the increment in the

sth compensated counting process over the last complete spell of the associated point process,

or the increment in the pooled compensated counting process. However, when an unobserved

component ψ is added to the intensity processes, both Λn and Λs(t
s
Ns(tn)−1, t

s
Ns(tn)) become de-

pendent on one or more past values of this latent factor. Clearly, this means that one cannot

separate the computation of the ACI residuals from the problem of filtering the (latent) process

ψ. In order to separate the computation of the innovations ξn from the filtering problem for ψ,

Bauwens and Hautsch (2006a) suggest an alternative specification for the ACI innovations. The

basic idea is to compute the ACI innovations process ξ based only on the observable intensity

components λos. This simplifies considerably the computation of the (redefined) ACI residuals,
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but at the cost of seriously hindering the determination of their exact distribution (which is

still unknown). Under the approach of Russell (1999), Bauwens and Hautsch (2006a) suggest

the following definition for the ACI residuals,

ξn = (−γ − ln Λo1(t
1
N1(tn)−1, t

1
N1(tn)), . . . ,−γ − ln ΛoS(t

S
NS(tn)−1, t

S
NS(tn)))

′, (69)

where γ ≈ 0, 5772 denotes the Euler-Mascheroni constant and Λos(a, b) =
∫ b

a
λos(t)dt. The

alternative specification for the noise process suggested by Bauwens and Hautsch (2006a),

follows the approach suggested by Bowsher (2007)

ξn = (−γ − ln
S
∑

s=1

Λos(tn−1, tn))1S. (70)

Clearly, in this last case, ξn does not depend on the type of the most recently observed event.

The reason for taking the natural logarithm (apart from eventually leading to an increase

in the numerical stability of the corresponding computations) is understandable mainly in the

univariate case (i.e. S = 1). Only in this case it is possible to write the (univariate) disturbance

term ξn as

ξn = −γ + σ1ψn − ln Λ1(tn−1, tn). (71)

That is, because under correct model specification Λ1(tn−1, tn) is Exp(1) distributed, ξn is the

sum of a re-centered standard Gumbel (minimum) random variable with the latent factor.

However in the general (multivariate) case, the log transformation does not lead to a clear

decomposition similar to (71). This is true both for the Russell and Bowsher specifications

of the ACI innovations. Further note that equation (15) on page 458 of the article is clearly

inconsistent.

4.2.1 Estimation and Inference for the SCI model

The main challenge in estimating this type of models comes from the presence of the latent

factor, which must be ‘integrated out’ of the conditional (upon the true path of the latent

process) likelihood function. The data Likelihood implied by the SCI model can be obtained

by combining the results (15) and (55). That is, if the complete path of the latent process

ΨN̄(T )+1 = {ψi}
N̄(T )+1
i=1 would be known, then (55) would provide the data Likelihood for the

SCI model when (67) is used. Let L
(

θ | Fo
T ,ΨN̄(T )+1

)

denote this conditional Likelihood.

Because ΨN̄(T )+1 is unknown, the likelihood becomes

L(θ | Fo
T ) =

∫

L
(

θ | Fo
T ,ΨN̄(T )+1

)

p(ΨN̄(T )+1)dΨN̄(T )+1, (72)
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where and p(ΨN̄(T )+1) denotes the (unconditional) density function of ΨN̄(T )+1.

Several different approaches are available for evaluating the high-dimensional integral in (72).

In Monteiro (2008), three different methods are applied to a multi-state (i.e. a generalized

point process) extension of the SCI model introduced in Koopman et al. (2008). Bauwens and

Hautsch (2006a) apply the simulation-based EIS algorithm of Richard and Zhang (2007).

Inference in parameter driven models is not only limited to the estimation and evaluation of hy-

pothesis concerning the unknown parameters of the model. A central issue is the so-called signal

extraction problem. This consists in two closely related problems, the filtering and the smooth-

ing problems. Usually, the filtering problem consists in obtaining the conditional expectations

E[ψn+1|F
o
tn
], with n = 1, . . . , N̄(T ), of the latent stochastic process given past observations up

to (and including) the previous moment tn. The smoothing problem, on the other hand, con-

sists in obtaining the conditional expectations E[ψn|F
o
T ], with n = 1, . . . , N̄(T )+1, of the latent

stochastic process given all observations. The different feasible estimation methods that can

be applied for evaluating the Likelihood (72) can also deal with these signal extraction problems.

5 Final remarks

This paper provided an introductory overview of the core financial econometrics literature deal-

ing with models for randomly spaced data. The main concepts and results from the theory of

(generalized) point processes were also briefly reviewed, in order to provide the adequate back-

ground for understanding the underpinnings of the models surveyed. A new result regarding

the identifiability of latent intensity factors in point process models was introduced.

Statistical models for point processes, like other dynamic statistical models, can be classified

as either observation or parameter driven models. Most of the econometric models for point

processes, in the literature, are observation driven. This is perhaps due to the impact that

the ACD model of Engle and Russell (1998) has had over the financial econometrics literature.

Nevertheless, a fast-growing literature on point process models with unobserved components

has recently appeared. This particular stream of literature started with the introduction by

Hujer et al. (2002) of a parameter driven extension of the ACD model. The main obstacle to

the wider use of some of these more flexible econometric models is, clearly, the complexity and

computational load associated with their estimation. This issue, in particular for the class of

generalized SCI point processes, was the focus of some of my previous work.

44



References

Andersen, P.K., Borgan, Ø., Gill, R.D. and N. Keiding (1993): Statistical Models Based

on Counting Processes, Springer-Verlag, New York.

Aalen, O.O. and J.M. Hoem (1978): “Random Time Changes for Multivariate Counting

Processes,” Scandinavian Actuarial Journal, 2, pp. 81-101.

Bauwens, L. and P. Giot (2000): “The logarithmic ACD model: An application to the

Bid/Ask quote of two NYSE stocks,” Annales d’Economie et de Statistique, 60, pp.

117-149.

Bauwens, L., and N. Hautsch, (2006a): “Stochastic Conditional Intensity processes,” Jour-

nal of Financial Econometrics 4, pp. 450-493.

Bauwens, L., and N. Hautsch, (2006b): “Modelling Financial High Frequency Data using

Point Processes,” Working paper Nr. 2006/80 - CORE.

Bauwens, L. and D. Veredas (2004): “The stochastic conditional duration model: A latent

factor model for the analysis of financial durations,” Journal of Econometrics, 119, pp.

381-412.

Bauwens, L. and F. Galli, (2009): “Efficient importance sampling for ML estimation of

SCD models,” Computational Statistics and Data Analysis, 53(6), pp. 1974 - 1992.

Bowsher, C. G. (2007): “Modelling security market events in continuous time: Intensity

based, multivariate point process models,” Journal of Econometrics 141, pp. 876-912.

Brown, T.C. and Nair, M.G. (1988): “A simple proof of the multivariate time change

theorem for point processes,”Journal of Applied Probability 25 pp. 210-214.

Cox, D.R. (1972): “Regression models and life tables,” Journal of the Royal Statistical

Society, B 34, pp. 187-200.

Cox, D.R. (1962): Renewal Theory, Methuen and Co. Ltd. London.

Daley, D.J. and D. Vere-Jones (2002): An Introduction to the Theory of Point Processes:

Elementary Theory and Methods Vol 1, Springer-Verlag, New York.

Dempster, A.P., N.M. Laird and D.B. Rubin (1977): “Maximum Likelihood from Incom-

plete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Ser. B,

39(1), pp. 1-38.

Droost, F.C. and B.J.M. Werker (2004): “Semiparametric duration models,” Journal of

Business and Economic Statistics, 22, pp. 40-50.

45



Fernandes, M. and J. Grammig, (2006): “A family of autoregressive conditional duration

models,” Journal of Econometrics, 127, pp. 35-68.

Feng, D., G.J. Jiang and P.X.-K. Song, (2004): “Stochastic conditional duration models

with ‘leverage’ effect for financial transaction data,” Journal of Financial Econometrics,

2, pp. 390-421.

Focardi, S.M, and F.J. Fabozzi, (2005): “An autoregressive conditional duration model of

credit-risk contagion,” The Journal of Risk Finance 6, No.3, pp. 208-225.

Engle, R.F. (2002): “New frontiers for ARCH models,” Journal of Applied Econometrics,

17, pp 425-446.

Engle, R.F. and J.R. Russell, (1998): “Autoregressive conditional duration: a new model

for irregularly spaced transaction data,” Econometrica, 66, No. 5, pp. 1127-1162.

Gagliardini, P. and C. Gourieroux, (2005): ” Stochastic migration models with application

to corporate risk,” Journal of Financial Econometrics, 3(2), pp. 188-226.

Gagliardini, P. and C. Gourieroux, (2005): “Migration correlation: Definition and efficient

estimation,” Journal of Banking & Finance, 29, pp. 865-894.

Gerhard, F. and N. Hautsch, (2001): “Semiparametric autoregressive conditional propor-

tional hazard models,” Working Paper - Nuffield College, Oxford University.

Gill, R.D. (2001): “Product integration,” Working paper - University of Utrecht.

Godambe, V.P. (Ed. 1985): Estimating Functions. Oxford University Press, New York.

Goodman, G.S. and S. Johansen (1973): “Kolmogorov’s differential equations for non-

stationary, countable state Markov processes with uniformly continuous transition

probabilities,” Proceedings of the Cambridge Philosophical Society 73, pp. 119-138.

Gouriéroux, C., A. Monfort and A. Trognon (1984): “Pseudo maximum likelihood meth-

ods: theory,” Econometrica, 52, pp. 681-700.

Gray, S. (1996): “Modelling the conditional distribution of interest rates as a regime-

switching process,” Journal of Financial Economics, 42(1), pp. 27-62.

Grimmett, G. R. and D. R. Stirzaker, (1992): Probability and Random Processes, 2 nd

Edition. Oxford University Press, New York.

Ghysels, E., C. Gourieroux and J. Jasiak (2004): “Stochastic volatility duration models,”

Journal of Econometrics, 119, pp. 413-433.

Harvey, A.C., E. Ruiz and N. Shephard (1994): “Multivariate stochastic variance model

,” Review of Economic Studies, 61, pp. 247-264.

46



Hawkes, A.G. (1971): “Spectra of some self-exciting and mutually exciting point

processes,” Biometrika, 58, pp. 83-90.

Hujer, R., S. Vuletic and S. Kokot (2002): “The Markov switching ACD model,” Working

Paper Series: Finance & Accounting, Frankfurt University.

Isaacson, D. L. and R. W. Madsen(1976): Markov Chains Theory and Applications, Wiley,

New York.

Jarrow, R. A., D. Lando, and S. M. Turnbull, (1997): “A Markov model for the term

structure of credit spreads,” Review of Financial Studies 10, Nr. 2 pp.

Jasiak, J. (1998): “Persistence in intertrade durations,” Finance, 19, pp. 166-195.

Kalbfleisch, J.D. and R.L. Prentice . (2002): The Statistical Analysis of Failure Time Data,

2nd Ed., Wiley, New York.

Karr, A.F. (1991): Point Processes and their Statistical Inference, Marcel-Dekker, New

York.

Khinchin, A. Y. (1956): “On Poisson sequences of chance events,” Theory of Probability

and its Applications, 1(3) pp. 291 -297.

Koopman, S.J., Lucas, A. and A. Monteiro (2008): “The multi-state latent factor intensity

model for credit rating transitions,” Journal of Econometrics,142(1) pp. 405-430.

Koulikov, D. (2002): “Modelling sequences of long-memory positive weakly stationary

random variables,” William Davidson Institute Working Paper Nr. 493.
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