
Spatial Analysis of Market Linkages in North

Carolina Using Threshold Autoregression

Models with Variable Transaction Costs

Anton Bekkerman, Montana State University
Barry K. Goodwin, North Carolina State University
Nicholas E. Piggott, North Carolina State University

Selected Paper prepared for presentation at the Agricultural and Applied
Economics Association’s 2009 AAEA & ACCI Joint Annual Meeting,

Milwaukee, WI, July 26-28, 2009.

Copyright 2009 by Anton Bekkerman. All rights reserved. Readers may make
verbatim copies of this document for non-commercial purposes by any means,

provided this copyright notice appears on all such copies.



Spatial Analysis of Market Linkages in North

Carolina Using Threshold Autoregression

Models with Variable Transaction Costs

Anton Bekkerman, Barry K. Goodwin,
and Nicholas E. Piggott*

* Direct correspondence to Anton Bekkerman. Email: abekker@ncsu.edu



Abstract

In North Carolina, where soybeans and corn are the two primary crops,
the recent increase in the demand for U.S. corn has triggered a shift of
farm acreage from soybeans to corn, leading to a rapid rise in prices
of both commodities. However, the rate of the price changes, as well
as the price level, is significantly different in markets that are located
in different parts of the state. This study extends the literature that
examines linkages between spatially separated markets by using a threshold
autoregressive model with a less restrictive assumption for estimating
the transaction cost neutral band – the band within which trade is not
profitable. This generalization allows the neutral band of transactions
costs to change according to various external factors, including fuel costs
and seasonality. The estimation results indicate that for longer time
series data, variable thresholds models statistically outperform the constant
thresholds specification, and may provide a better representation of corn
and soybean price data. Additionally, impulse response functions that
use the asymmetric variable threshold model parameters indicate that the
magnitude of the shock as well as the time-to-price-parity-equilibrium in the
linked markets may be underestimated if a constant thresholds specification
is implemented.

KEYWORDS: threshold autoregression, spatially separated markets, impulse
response, neutral band
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Spatial Analysis of Market Linkages in North

Carolina Using Threshold Autoregression

Models with Variable Transaction Costs

In recent years there has been a significant increase in the price volatility of

corn and soybean markets, due primarily to an increase in demand for ethanol

based biofuels. With the increased demand for ethanol, the demand for corn

has become much more inelastic, causing wider price movements in response to

changes in quantity supplied. In general, these broad price movements have been

observed across all markets; however, there exist significant differences in the price

adjustment paths of individual markets. By examining the linkage structures

between individual markets, it can be possible to estimate the price transmission

behavior within the environment of highly volatile changes in price.

There are a number of studies that have examined market linkages through

price transmission patterns (for example, see Goodwin and Piggott 2001; Bessler,

Park, and Mjelde 2007). These works implement threshold autoregressive (TAR)

models to estimate a neutral band within which prices follow a random walk

process. The neutral band represents transaction costs that occur due to the

spatial separation of any two markets. These transaction costs might often include

expenditures on fuel, time and effort to coordinate the shipment and pick-up of

transported commodities, synchronization of buyers and sellers, and knowledge of

local highway laws for transporting grains. Additionally, transaction costs can vary

seasonally – decreasing during harvest (when locally grown commodities become

available), and increasing during months when the commodity must be imported
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to meet local demand. Typically, prices of a commodity in any two linked markets

differ by the amount of the inherent transaction costs that are required to ship the

commodity from one market to the other. However, a shock to the price of one

market may cause the price difference to be more than the transaction costs (the

price difference falls outside of the transaction costs band), which would make it

profitable to purchase the commodity in one market, incur the associated costs of

transporting to the other, and sell the commodity for a higher price. This type of

arbitrage behavior would continue until the prices in the linked markets re-adjust

such that their difference is once again equal to the transaction costs that are

associated with transporting the commodity from one market to the other.

The focus of this study is to examine the effects that price movements might

have on the threshold values of the neutral band. Previous studies assume that

the neutral band remains constant; however, due to the recent rapid rise of

transportation costs as well as general seasonal effects, it is necessary to consider

whether the assumption of a constant neutral band must be relaxed. By allowing

the thresholds to vary according to relevant exogenous factors it may be possible

to better understand the effects that external economic conditions might have on

price discovery in linked markets. We develop an empirical framework that can

appropriately model a variable neutral transaction costs band, and use the results

to investigate differences with the model that restricts the neutral band to be

constant.

Using the threshold cointegration methods of Balke and Fomby (1997), this

study evaluates the linkages of North Carolina corn and soybean markets. Tests

for the presence of threshold effects are performed following Tsay (1989). Upon
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confirmation of threshold effects, a grid-search technique is used to determine

the thresholds. The estimation uses a large collection of daily corn and soybean

price data for markets in North Carolina. We find that variable threshold models

statistically outperform the constant threshold specification. Additionally, the

variable thresholds model provides a richer environment for examining impulse

response functions. In general, our results are consistent with past studies,

indicating that price behavior exhibits long-run market integration. However,

we find that the constant threshold model typically underestimates the time-to-

convergence as well as the magnitude of the effect that a shock can have on prices

in linked markets.

The analysis is organized as follows: first, we present the methodology that

is used for evaluating threshold autoregressive models, incorporate transaction

costs that can be affected by exogenous factors; next, a description of the data

and preliminary analyses are presented. Daily corn and soybean data are used

to estimate threshold effects among spatially linked North Carolina markets,

investigate the findings, and use impulse response functions to simulate price

responsiveness. Concluding remarks are offered in the final section.

Econometric Specification of the Threshold Au-

toregressive Model

Following the specification developed by Balke and Fomby (1997), we build upon

the threshold autoregression model, which defines a correspondence between error

correction models that represent cointegrating relationships and autoregressive
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models of an error correction term. In this manner, it is possible to account for

the transaction costs that might inhibit transmission of prices across spatially

separated markets.

In general, threshold models can be viewed as a regime switching framework,

in which a different regime is triggered when the variable of focus crosses the

particular threshold. In the case of this study, the regime switch occurs if the parity

relationship between commodity prices at linked locations becomes greater than

or less than some value. A common parity relationship that is used to represent

spatial integration among markets can be described as a simple autoregressive

structure of price differences:1

P̃t = δP̃t−1 + νt, (1)

where P̃t = (P 1
t −P 2

t ), P i
t is the price at location i at time t, and νt is a white-noise

error term. To characterize the regime switching framework, we follow Balke and

Fomby to define δ as:

δ =

 δ(1) if |P̃t−1| ≤ c

δ(2) if |P̃t−1| > c
, (2)

where c is the threshold value that causes a regime switch. Specifically, it is

assumed that when |P̃t−1| ≤ c holds, δ(1) = 1. This implies that the parity

relationship follows a random walk when there are small deviations of price

differences. However, a large deviation, such as a shock to the price in either

market, will trigger the condition |P̃t−1| > c, causing δ = δ(2). Under the

1This specification can also be expressed as ∆Pt = (δ − 1)Pt−1.
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assumption that a stable equilibrium between prices at the two spatially separated

locations exists, δ(2) < 1, implying that the price differential process is stationary

and shocks to P 1
t or P 2

t will die out over time.

Threshold autoregressive models represent price adjustments as a process that

can be inhibited by transaction costs. As in Goodwin and Piggott (2001), we

assume that there exists a band of transaction costs in which small deviations in

a price pair difference, P̃t−1, do not trigger a regime under which prices adjust

back to an equilibrium. However, if the price difference exceeds the bounds of

the transaction cost band, prices in the two linked markets will continue to adjust

until P̃ is no longer outside of the bounds of the neutral band. An example of this

is as follows:

P̃t = θ[δ(1) · P̃t−1] + (1− θ)[δ(2) · P̃t−1] + εt, (3)

where δ1 and δ2 are defined in equation (2). In this threshold autoregressive model

there is a symmetric transaction costs band, such that θ = 0 if |P̃t−1| > τ , and

τ represents the transaction costs threshold. As discussed above, when the price

difference for two markets does not exceed τ , then we set δ(1) = 1 (under the

assumption that P̃ behaves as a random walk). Otherwise, |δ(2)| < 1, and an

adjustment back to an equilibrium occurs.

As noted by Goodwin and Piggott (2001), research that uses threshold

autoregressive models to analyze price transmissions in spatially separated markets

usually assumes a constant neutral band of transaction costs (for example, see

Obstfeld and Taylor 1997; Goodwin and Grennes 1998; and Goodwin and Piggott

2001). Fackler and Goodwin (2001) discuss the implications for the validity of
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empirical tests of spatial price analysis if this assumption is made. Additionally,

Li and Barrett (1999) point out that the neutral band may not be constant or

stationary in the long run. We attempt to relax the condition of a constant neutral

band by allowing the threshold variable, τ , to vary according to exogenous factors.

This is as follows:

τ = αo + α1Ft + α2S
1
t + α3S

2
t , (4)

where Ft reflects fuel prices (fuel price index), and S1
t and S2

t are seasonality

components that follow a first order Fourier approximation to an unknown seasonal

function. Specifically, S1
t = sin(2πdt/260) and S2

t = cos(2πdt/260), where dt

represents a weekday of the year (dt = 1, 2, . . . , 260).

Testing for threshold effects is performed by implementing a general nonpara-

metric test for the nonlinearity implied by thresholds in an autoregressive series,

a technique developed by Tsay (1989). To construct the test, consider a simple

autoregressive equation, as follows:

yt = α + φyt−1 + et. (5)

Each combination of yt and yt−1 is denoted as a ‘case’ of the data. These cases

are ordered according to the variable that is relevant to the threshold behavior

— in this case, yt−1. Then, recursive residuals are generated by estimating the

autoregressive model for an initial sample2 and then for sequentially updated

samples, which are obtained by adding a single observation. A test of nonlinearity

2We denote the first 1% of the data as the initial sample.
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is given by the F-statistic from the regression of the recursive residuals on the

explanatory variables (yt−1). The test is run with both increasing and decreasing

ordering in the arranged autoregression.3

To summarize, the estimation methodology is as follows. The time series

properties of the data are evaluated using augmented Dickey-Fuller unit-root

tests. In addition, ordinary least squares estimates of cointegrating relationships

(following Engle and Granger (1987)) are performed. Next, we test for the

presence of threshold effects using a nonparametric test for the nonlinearity

implied by thresholds in an autoregressive series. If the presence of thresholds

is determined, we use a grid search approach to estimate the specific thresholds.

Following the technique that was proposed by Balke and Fomby (1997), the

grid search is used to find the threshold that minimizes a sum of squared

errors criterion. We estimate two alternative specifications: the first assumes

a constant transaction costs neutral band, while the second allows thresholds

to vary according to equation (4). We perform the latter by estimating both

symmetric and asymmetric thresholds. A symmetric threshold assumes that for

any two locations, transaction costs for moving a commodity are the same in either

direction. However, this assumption can be relaxed by estimating asymmetric

thresholds, which allows for the transaction costs associated with transporting the

commodity to the central location to be different from the transaction costs that

arise with transporting the commodity from the central site. The parameters of

the symmetric and asymmetric threshold functions are estimated using a four- and

3The alternative ordering of the data allows for additional power to discern thresholds for
which data are concentrated in a particular regime at either end of the series. Only the more
significant of the two ordered tests is reported.
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eight-dimensional grid searches, respectively.4 Then, error correction models are

estimated, conditional on the estimated threshold parameters. These are defined

as follows:

∆P̃t = λ∆P̃t−1 + νt, (6)

where P̃t = P c
t −P

j
t is the difference of prices between a central market and market

j.

It is helpful to test the statistical significance of the differences in parameters

across alternative regimes. For instance, a conventional Chow test might be used

to test the parameter differences across regimes. However, in this analysis, the

parameters of the alternative regimes are not identified under the null hypothesis

of no threshold effects, which causes the conventional test statistics to have non-

standard distributions. In order to adjust for this complication, we employ the

approach of Hansen (1982) for testing the statistical significance of threshold

effects. Specifically, we run a number of simulations in which the dependent

variable is replaced by draws from the standard normal distribution, and a grid

search is used to identify the optimal thresholds. Then, a standard Chow-type

test is used to test the significance of the threshold effects. The simulated sample

of test statistics is used to approximate the asymptotic p-value by calculating

the percentage of test statistics for which the test value that is taken from the

estimation sample exceeds the observed test statistic.

4In all cases, the grid search is restricted to ensure that there are a sufficient number of
observations for estimating the parameters of each regime. At least 1% of the total number of
observations are required for each estimation.
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Empirical Application to North Carolina Markets

Data

In this study we use daily cash prices for corn and soybeans that are reported

by grain elevators and processors in North Carolina. Specifically, we choose

corn markets in Cofield, Candor, Nashville, and Statesville, and soybean markets

Candor, Greenville, Lumberton, and Fayetteville. To calculate price pairs, we

select a central location based on the smallest average road distance among all

pairs. Accordingly, we select Candor (corn) and Fayetteville (soybeans) as the

central locations. Additionally, we use New York Harbor spot prices for number 2

low sulfur diesel as a proxy for transportation costs. The data set spans the range

between 01 January, 2000 and 24 July, 2008. Some of the observations within the

data are missing primarily due to holidays and days during which the elevators

and processors did not report the cash prices. We exclude dates for which there are

missing data in all locations, and use an exponential spline method to interpolate

values for all other unreported data points.

Summary statistics for the data are presented in table 1, and the time series

plots for commodity and diesel prices are shown in figures 1, 2, and 3.

Next, figures 4 and 5 illustrate time series plots of price pairs, P̃t, for corn and

soybeans. Finally, several basic time series tests are performed. For all market

pairs, the results of the augmented Dickey-Fuller unit-root test, presented in

table 2, support the assumption that price differences are stationary. Additionally,

ordinary least squares estimates of the cointegrating relationship, shown in table 3,

indicate that in all cases the intercept term is close to zero and the slope parameter
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is close to one. This may suggest a strong interrelationship among prices in linked

markets.5

Table 1: Summary Statistics: Price Pairsa for Selected N.C. Locations

Market Location Obs. Min. Max. Mean Std. Dev. Distanceb

Corn

Cofield–Candor 2217 -0.1182 0.19416 0.05662 0.03997 216
Nashville–Candor 2217 -0.14492 0.17352 0.02105 0.02489 129
Statesville–Candor 2217 -0.12204 0.24464 0.04035 0.05732 95.4

................................................................................................................

Soybeans

Greenville–Fayetteville 2220 -0.10279 0.1789 0.04577 0.02349 113
Cofield–Fayetteville 2220 -0.1092 0.1242 0.02985 0.0244 173
Lumberton–Fayetteville 2220 -0.10279 0.1789 0.04208 0.02294 32.9

a All prices are logged and differenced.
b Road distance between markets, in miles.

Results for Empirical Application6

The first part of the empirical estimation is the identification of the appropriate

transaction cost bands for each market combination. Since there are numerous

costs relevant to spatial arbitrage and trade, it is virtually impossible to

directly measure the transaction costs that affect the transfer of a particular

commodity between two locations. Given these difficulties, we use the modeling

techniques described above to estimate the transaction cost bands. First, we

5However, these results should be considered with caution, because of the nonstationary
nature of the price data.

6All estimations were performed using the SAS v9.1.3 analysis software.

10



Figure 1: Corn Prices in Selected N.C. Locations
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Figure 2: Soybean Prices in Selected N.C. Locations
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Figure 3: Diesel Fuel Price
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Figure 4: Differenced Logged Corn Price Pairs
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Figure 5: Differenced Logged Soybean Price Pairs
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Table 2: Augmented Dickey-Fuller Test: Price Pairs for Selected N.C. Locations

Market Location Lags τ p-value F-value p-value

Corn

Cofield–Candor 0 -8.45 0.0001 35.74 0.001
1 -6.88 0.0001 23.67 0.001
2 -5.7 0.0001 16.24 0.001

Nashville–Candor 0 -13.07 0.0001 85.47 0.001
1 -11.39 0.0001 64.84 0.001
2 -9.23 0.0001 42.58 0.001

Statesville–Candor 0 -7.61 0.0001 28.93 0.001
1 -6.06 0.0001 18.36 0.001
2 -4.87 0.0001 11.84 0.001

..................................................................................................

Soybeans

Greenville–Fayetteville 0 -7.73 0.001 29.87 0.001
1 -7.18 0.001 25.79 0.001
2 -7.02 0.001 24.64 0.001

Cofield–Fayetteville 0 -7.49 0.001 28.02 0.001
1 -6.74 0.001 22.73 0.001
2 -6.57 0.001 21.56 0.001

Lumberton–Fayetteville 0 -8.58 0.001 36.79 0.001
1 -8.2 0.001 33.66 0.001
2 -8.51 0.001 36.22 0.001
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Table 3: OLS Estimates of Cointegrating Relationships: P 1
t = C + βP 2

t

Market Location C β Model adj−R2

Corn

Cofield – Candor -0.03578 0.9805 0.9811
(0.0032)a (0.00289)

Nashvile – Candor -0.00933 0.98904 0.9927
(0.002) (0.0018)

Statesville – Candor 0.04517 0.91994 0.9631
(0.00424) (0.00383)

...........................................................................

Soybeans

Greenville – Fayetteville -0.10095 1.02969 0.9952
(0.00285) (0.00151)

Cofield – Fayetteville -0.06986 1.02153 0.9943
(0.00309) (0.00164)

Lumberton – Fayetteville -0.0521 1.00539 0.9944
(0.00301) (0.0016)

a Standard errors in parentheses. *** indicates significance at the 1% level, **
indicates significance at the 5% level, * indicates significance at the 10% level
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estimate unrestricted and restricted forms of a first-order threshold autoregressive

specification (as defined in equation (6)), for which we assume constant transaction

cost bands. The unrestricted model estimates separate autoregressive parameters

for the regime that corresponds to price differences that are less than the

transaction cost band, and the regime corresponding to price differences exceeding

the band. This model is used to test for the significance of threshold effects by

using Hansen’s testing procedure. The restricted specification follows Obstfeld and

Taylor (1997), restricting the within-band parameter to be zero, which corresponds

to a random walk for price differences that do not exceed the transactions cost

band. Then, we estimate the alternative models that allow the thresholds to vary

according to transportation costs and seasonal factors, as in equation (4). Both

symmetric and asymmetric variable thresholds are estimated.

The estimates of the threshold band are presented in table 4 and table 5. For

corn, the neutral band that represents the smallest price differences is at about

8.9–10.2% (Candor–Nashville), while for soybeans, the smallest neutral band is

about 6.9–9.2% (Fayetteville–Greenville). The largest is at about 22.4–24.3%

for corn (Candor–Statesville) and at about 13.1% for soybeans (Fayetteville–

Lumberton).7 These relationships can be used to indicate linkage strengths in

each market pair because the neutral band reflects the price differences that

are required to trigger equilibrating conditions. For example, price differences

of soybeans between Fayetteville and Greenville need to exceed only 9.2% in order

7It is somewhat surprising that the Candor–Statesville market pair indicates the largest
neutral band even though these are the geographically closest corn markets in the analysis. This
might be due to various reasons: we do not have information about the volume of trade, which,
if low, can contribute to the large neutral band; a large body of water separates the two markets;
there are various grain transportation laws, which could be enforced with greater strictness near
Statesville.
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to trigger conditions that will drive prices back to the market pair equilibrium,

while for Fayetteville and Lumberton, the price differences would need to exceed

13.1%.

Also in tables 4 and 5, we present the parameter estimates of the variable

threshold autoregressive models. For the symmetric and asymmetric cases,

we used a grid search to determine parameters, which does not permit for a

direct statistical significance inference of the parameter estimates. However,

bootstrapping was performed to determine the standard errors of each value.8

Using the results of the grid search estimates, it is possible to understand the

overall effects that each component of the threshold model has on the transaction

cost neutral band.

In both the symmetric and asymmetric specifications, it is not surprising

to find that, typically, diesel prices have a significant effect on the thresholds.

Additionally, in almost all cases (the exception being the Candor–Statesville

market pair), both the symmetric and asymmetric variable threshold models

indicate that higher fuel prices imply a wider neutral band. This is intuitive

in the sense that higher transportation costs would cause price pairs to increase.

The coefficients for the seasonality components, in most cases, also have significant

effects on the neutral band. However, the direction and magnitude of these effects

varies across market pairs and across commodities.9

The comparison of the constant, symmetric, and asymmetric thresholds models

8Estimation of grid searches for large data sets requires a significant amount of computing
power. Due to this, bootstrapping for the symmetric and asymmetric variable threshold models
was restricted to 200 iterations.

9It should be noted that it is difficult to fully identify deterministic seasonal components and
the effects of diesel prices because the fuel prices are likely influenced by seasonality as well.
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indicates that there exist similarities among the constant and asymmetric variable

threshold models. For the constant and asymmetric thresholds specifications,

the estimates imply that the variation that exists in the variable thresholds is

concentrated around the thresholds implied by a constant threshold model.10 How-

ever, the parameters of the symmetric variable threshold model are questionable,

implying a transaction cost band that is unreasonably wide. This may be due

to the inability of the symmetric variable threshold specification to appropriately

account for different price parity behavior at the endpoints of the observed time

series.11 An asymmetric variable thresholds model, however, is more flexible,

which is supported in all cases by its better fit to the data (see table 6) as well

as a more intuitive representation of the transactions costs band. In light of this,

the asymmetric variable thresholds model is preferred over the symmetric variable

thresholds model.

Figure 6 illustrates the threshold bands that are estimated by each model

for corn and soybeans.12 Although the asymmetric variable thresholds are

concentrated around the constant thresholds, in almost all cases the variable

thresholds indicate a widening of the band toward the end of the time series. This

may indicate that in longer time series data, the variable thresholds models can

better represent long-run behavior of the neutral transaction band. Additionally,

the lower threshold may be less concentrated around the constant threshold than

10We compare the thresholds estimates that are produced by the restricted model. Estimates
from the unrestricted constant thresholds model are insignificantly different.

11In an attempt to decrease the influence of endpoints on the estimation of the symmetric
variable thresholds specification, we restricted the data set to 99%, 95%, 90%, and 85% of all
available data points. However, in all cases, the symmetric variable thresholds model exhibits
the same abnormal behavior.

12In figure 6a we present the threshold bands implied by all three specifications in order to
illustrate the poor fit of the symmetric variable thresholds model.
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the associated upper threshold, and vice versa. This is most evident in the case

of the Fayetteville-Cofield and Fayetteville-Lumberton soybean price pairs.13 This

might imply that for longer time series, estimates of the autoregressive parameters

are likely to be sensitive to the assumption of constant thresholds, which has been

noted by Barrett (2001).

Table 6: Comparisons of Sum of Squared Errors for Alternative Models

AR TAR TAR TAR
(Constant τ) (Symmetric τ) (Asymmetric τ)

Corn
Candor-Cofield 0.40621 0.40082 0.25741 0.24912

Candor-Nashville 0.34607 0.34051 0.24297 0.23885

Candor-Statesville 0.67721 0.61355 0.57279 0.5477

Soybeans
Fayetteville-Greenville 0.12468 0.12223 0.12445 0.12392

Fayetteville-Cofield 0.12468 0.12456 0.12226 0.12052

Fayetteville-Lumberton 0.1429 0.14168 0.14097 0.13871

In general, the estimates of the asymmetric variable thresholds models indicate

that the band is typically smaller (narrower) later in the calendar year around the

time that the new crop harvest in North Carolina becomes available. In general,

this conforms with intuition because new harvest induces less intra-state trading,

13This might be an indication of the different ways that transportation costs and seasonality
factors affect transaction costs, depending on the direction in which the commodity is
transported.
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(a) Thresholds Model Estimates – Candor-Cofield (Corn)

(b) Thresholds Model Estimates – Candor-Nashville (Corn)

Figure 6: Comparison of Threshold Model Estimates
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(c) Thresholds Model Estimates – Candor-Statesville
(Corn)

(d) Thresholds Model Estimates – Fayetteville-Greenville
(Soybeans)

Figure 6: Continued
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(e) Thresholds Model Estimates – Fayetteville-Cofield
(Soybeans)

(f) Thresholds Model Estimates – Fayetteville-Lumberton
(Soybeans)

Figure 6: Continued

26



since locally produced commodities are in use. Conversely, the band increases

(broadens) earlier in the calendar when intra-state trading is more prominent.

These effects are confirmed in figure 7, which plots the seasonality component of

price bands over 260 weekdays (a calendar year).

Table 7 presents the autoregressive parameter estimates and the associated

half-lives14 for the alternative models. Half-lives are a measure of market

integration in that their values indicate the degree to which the price pairs move

toward equilibrium after a shock. In almost every case, the models that do not

incorporate threshold effects imply longer half-lives, which suggests that ignoring

thresholds will bias the adjustment parameters toward zero, and variable threshold

specifications indicate even smaller half-lives in four of the six market pairs. In

general, for corn, half-lives are smaller (twice as small in many cases) than the half-

lives for soybeans, implying a faster adjustment of price parities – and stronger

market integration – in North Carolina corn markets. Thus, if threshold effects are

not taken into account, price parity models can incorrectly imply a lower degree of

market integration. Additionally, table 8 contains Tsay’s test for threshold effects

and Hansen’s test for differences in parameters across different regimes. In every

case, both test statistics are highly significant, which indicates a strong presence

of threshold effects and difference of parameters across regimes.

Overall, this analysis confirms the presence of threshold effects in price linkages

that exist in corn markets and soybean markets within North Carolina. In

this data set, we find that the asymmetric variable threshold model best fits

14Half-lives represent the period of time that is required for one-half of a deviation from price
parity to be eliminated. The half-life for an estimated adjustment coefficient, λ̂, is − ln(2)/ ln(1+
λ̂).
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(a) Upper Band

(b) Lower Band

Figure 7: Seasonality Component of Asymmetric Variable Thresholds Model
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the data, and the variability is closely clustered around the constant thresholds.

However, in this rich time series data set, the asymmetric variable threshold model

estimates capture the widening of the transaction cost band around and after year

2005. These changes correspond to contemporaneous rises in fuel prices, increased

variability of corn and soybean prices, and enactment of the Energy Policy Act of

2005 and Energy Independence and Security Act of 200715 The potential effects on

corn and soybean prices that may be triggered by external shocks are a motivation

for analyzing impulse responses.

15The Energy Policy Act of 2005 increased the standards for the use of ethanol-based fuels
in the United States. This resulted in a rise in the demand for ethanol-based fuel production,
causing a rise in the price of corn, and an associated increase of soybean prices. Similarly, the
Energy Independence and Security Act of 2007 appropriated taxpayer funding for promoting the
production of biofuels in the following 15 years.
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Table 8: Tests for Thresholds Effects and Nonlinearity

Tsay’s Test Hansen’s Test

Corn
Candor-Cofield 7.51E4 297.4437

[0.0001]a [0.0001]
Candor-Nashville 3.45E5 349.2374

[0.0001] [0.0001]
Candor-Statesville 1.59E5 218.8642

[0.0001] [0.0001]
Soybeans

Fayetteville-Greenville 8.68E4 43.9998
[0.0001] [0.0001]

Fayetteville-Cofield 4.34E5 57.3766
[0.0001] [0.0001]

Fayetteville-Lumberton 2.95E5 46.8915
[0.0001] [0.0001]

a Numbers in brackets are probability values associated with test statistics.
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Impulse Response Analysis

A useful approach to analyzing the dynamic relationship among market price pairs

is through impulse response functions, which can be used to examine the responses

of prices and price pairs to shocks. For instance, it might be of interest to observe

the effects on prices if there is a decision to build an ethanol-fuel production facility

near one of the corn markets, such as the 110 million gallon corn-ethanol plant

proposed to be built by East Coast Ethanol, LLC in 2008. The plant is proposed to

be constructed in Northampton county, North Carolina – 36 miles west of Cofield,

NC and 53 miles north-east of Nashville, NC. Due to the proximity of the ethanol

plant site to the two corn processor sites, it is expected that a rise in the demand

for corn16 will trigger an associated rise in prices, which may impact, through

market linkages, prices in other North Carolina corn markets.

Similarly, shocks to the poultry industry in eastern North Carolina may lead

to associated demand and price responses in North Carolina soybean markets.

The economic recession of 2008-09 has placed significant financial pressures on

major poultry processors such as Pilgrim’s Pride, causing the company to file

for bankruptcy in December, 2008 and cutting 50 growers in North Carolina.

Because soybeans are an important input to poultry production, incidents such as

the Pilgrim’s Pride bankruptcy may lead to an associated decrease in the demand

for soybeans in eastern North Carolina. However, because North Carolina soybean

markets are linked (as shown above), the price shocks in a particular geographical

region may be transmitted to soybean markets in other parts of the state. By

16On average, 2.8 bushels of corn are required to produce 1 gallon of corn-ethanol. This
implies that for a 110 million gallon corn-ethanol plant, 308 million bushels of corn are required
to maintain full production capacity.
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implementing impulse response functions, it is possible to learn about such price

transmission behavior within interrelated markets.

We examine post-shock response of both the price parity relationship and

individual prices in linked markets. A nonlinear impulse response function is

used, which defines a response, Ωt+r, as a function of all previously observed

data (it, it−1, . . .) and a shock (ψ). Thus, for both markets we select the last

observation in our data set (31 July, 2008) to determine the responses to negative

and positive shocks.17 This approach is consistent with previous studies that

examine price linkage behavior in agricultural markets, such as Goodwin and

Piggott (2001) and Balagtas and Holt (2009). Specifically,

Ωt+r = E[It+r|It = it +ψ, It−1 = it−1, . . .]−E[It+r|It = it, It−1 = it−1, . . .]. (7)

It is necessary to note the nonstationarity of price data as well as the error

correction properties. Due to these factors, shocks may elicit responses that are

temporary, such that there is a return to the initial time path of the variables, or

permanent, causing a persistent shift in the time path. For all analyses, we used

a one-half standard deviation as the shock amount.

Figure 8 illustrates the responses to positive and negative shocks of the price

parity relationships between a central market and an auxiliary market j. For corn,

17As discussed in Gallant, Rossi, and Tauchen (1993), Potter (1995), and Koop, Pesaran,
and Potter (1996), an alternative approach is to observe the effects of a particular shock on
all possible histories. The difficulty, however, is appropriately summarizing the information
attained by applying a shock to the various historical data. A frequent method is to average the
outcomes; however, this may result in a loss of important information. For example, averaging
can difference out discrepancies that might exist in the various impulse responses or weaken the
effects of asymmetric shocks.
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the shock responses end between 10 and 20 weekdays (approximately one to two

weeks), while all of the shock responses in the soybean markets last under one

week. Additionally, five of the six market pairs exhibit a movement back toward

the original price parity relationship; only in the Candor–Cofield market pair, the

resulting price pair relationship is greater than the initial shock amount.

Figure 8: Long-run Impulse Response Functions: Asymmetric Variable Thresholds
Model

In addition to examining the impulse responses of long-run price pair rela-

tionships, we use a generalized threshold autoregressive model, which allows for

short-run components of price interrelationships. Using the generalized threshold
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autoregressive specification, we can attempt to better capture the dynamic aspects

of linked market price pairs after a shock to the price of a particular market.

Unlike the long-run impulse functions, which can be used to examine the post-

shock path of the price pair, short-run impulse response functions can be used to

observe the individual price paths in each market. Specifically, we consider the

following model,

P̃t = θ[α(1) + Θ(1)∆Pt−1 + λ(1)zt−1]

+(1− θ)[α(2) + Θ(2)∆Pt−1 + λ(2)zt−1] + εt,
(8)

where P̃t is an (n × 1) vector of price differences, such that the first element

(P̃1t) represents price differences in the central market and the second element

(P̃2t) represents the price differences in the jth market. Additionally, α is an

(n×1) vector of constants, Θ is an (n×n) matrix of coefficients on the differences

of lagged prices, and λ is an (n × 1) vector of coefficients on the error vector

correction term.18 Finally, ε is an (n× 1) vector of error terms.

Similar to equation (3), there is a transaction costs band, such that

θ =

 1 if zt−1 T τt

0 otherwise
, (9)

We allow for asymmetries in the transaction costs bands according to the threshold

variable, τt, where τ is defined in equation (4). We estimate short-run impulse

response functions for constant and asymmetric variable threshold models. In

order to incorporate variable thresholds, we perform in-sample impulse response

18We assume that price differences between markets that do not exceed the transaction cost
band follow a random walk. This corresponds to following: zt−1 = P1,t−1 − P2,t−1.
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functions, which use parameters estimated in section .

Figure 9 illustrates responses to positive and negative shocks to prices in the

central market for the constant and variable thresholds models. Similarly, figure 10

shows responses to price shocks in the jth market. In almost all cases, the initial

price responses are as expected, in that the larger response is associated with

the market in which the shock occurred. Additionally, the nonstationarity of the

price series is reflected in the permanent shifts of the price paths after a shock.

Generally, positive shocks lead to prices equilibrating at a higher level in both

of the linked markets, and conversely, negative shocks lead to price equilibration

at lower levels. This might imply that, although equilibration of the price pair

relationship occurs, the market in which the price shock transpires influences

the direction and level at which the price pair equilibrates. However, in some

instances, we observe negative shocks leading to price equilibration at a level that

is higher than the pre-shock price level.19 This type of outcome is only evident in

the richer asymmetric variable thresholds model; specifically, in the Fayetteville–

Cofield market pair.

Also, although the direction and general time path of the impulse response

functions are similar for markets across models, the magnitude of the impulse

response as well as the time path of the price variable are noticeably different

in the different specifications. First, it is almost always the case that when

using the asymmetric variable threshold model parameters, shocks in the central

and auxiliary markets lead to larger price movements, which often results in

greater post-shock price differences. Additionally, unlike the time path of the

19Similarly, positive shocks can lead to price equilibration at a level that is lower than the
price level before the shock.
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(a) Constant Thresholds Model

(b) Asymmetric Thresholds Model

Figure 9: Short-run Impulse Response Functions: Shock to the Central Market
Price
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(a) Constant Thresholds Model

(b) Asymmetric Thresholds Model

Figure 10: Short-run Impulse Response Functions: Shock to the jth Market Price
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price variable that is characterized by the constant thresholds model, the price

movements in the asymmetric variable thresholds model often exhibit jumps across

regimes. These differences can be attributed to allowing the neutral transaction

costs band to vary according to external factors.

Despite the important differences that surface when the variable thresholds

model is used, the price behavior that is exhibited in both specifications strongly

supports long-run market integration. This result is consistent with the findings

of Goodwin and Piggott (2001). Regardless of whether isolated price shocks

occur in the central or auxiliary market, the impulse responses reflect behavior

that is consistent with converging prices. In general, when a price in the central

market is shocked, there is a longer time-to-convergence than that of a shock to

the jth auxiliary market. However, the time-to-convergence is typically longer in

the asymmetric variable thresholds model, which might be due (as above) to the

effects of external factors on the neutral transaction costs band. While responses

to market shocks begin to expire in 10–15 weekdays in the constant thresholds

specification, the responses in the variable thresholds model typically last 20–30

weekdays.

Overall, the comparison of impulse response functions using the alternate

specifications indicates that the constant thresholds model may underestimate the

time-to-convergence as well as the magnitude of the effect that a shock can have

on prices in linked markets. Relaxing the assumption of a constant transaction

costs band by allowing thresholds to vary according to external factors can lead to

an improved representation of price parity relationships in interrelated markets.

This can be crucial in examining the potential effects of policy as well as other
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events that can trigger shocks to North Carolina corn and soybean markets.

Conclusion

This analysis examines spatial price linkages in North Carolina corn markets

and soybean markets by using asymmetric, threshold autoregressive and error

correction models. The primary motivation was to remove several restrictive

assumptions that have been used in previous literature. Specifically, we allow

thresholds to vary according to external factors, such as a fuel price index and

seasonality effects, implying an analysis of linked price dynamics with a variable

neutral transactions costs band. This extends the analyses within the existing

literature, which restricts the band to be constant.

In general, our results confirm the findings of Goodwin and Piggott (2001).

The variable thresholds models indicate that prices in North Carolina corn and

soybean markets are highly interrelated, but the statistically significant presence

of threshold effects may influence the price linkages in the spatially separated

markets. However, relative to constant thresholds models, specifications that

allowed for variable thresholds had a better fit to the data and implied faster

adjustments to deviations from spatial equilibrium. Specifically, asymmetric

variable thresholds model typically outperformed the alternative constant and

symmetric variable thresholds specifications.

Additionally, we use nonlinear impulse response functions to evaluate the

behavior of dynamic adjustments to localized price shocks. In both the constant

and variable thresholds models, the responses strongly suggest high market
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integration and quick equilibration of price paths. However, in many cases the

magnitude of the post-shock price change as well as the time-to-convergence are

larger when the asymmetric variable thresholds model is used. This might imply

that using a model that assumes a constant transaction costs band may lead to

underestimating the overall post-shock price effects in North Carolina corn and

soybean markets.
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