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Public Policies and the Demand for Carbonated Soft Drinks: 

A Censored Quantile Regression Approach 
 
 
Abstract: Heavy consumption of soda may contribute to obesity, strokes, and cardiac problems. From 
a health perspective, the distribution of the consumption is at least as important as the mean. Censored 
as well as ordinary quantile regression techniques were used to estimate the demand for sugary soda 
based on household data from 1989 to 1999. It was found that heavy drinkers are more price- and 
expenditure-responsive than are light drinkers. The study shows that increasing the taxes on 
carbonated soft drinks will lead to a small reduction in consumption for small and moderate 
consumers and a huge reduction for heavy consumers. 
 
Keywords: soda demand, quantile regression, taxes 
JEL classification: D12, I10 

 
Heavy consumption of carbonated soft drinks may lead to excessive energy intake, contributing 

to obesity, strokes, and cardiac problems. These problems are increasing in the western world. In 
addition, soda consumption may contribute to dental caries and diabetes. The Norwegian per capita 
consumption of carbonated soft drinks is the third highest in the world. However, many Norwegians 
do not consume soda, indicating that a portion of the population consumes a larger quantity than 
recommended by health experts. Health experts recommend that no more than 10 percent of the 
energy intake should come from sugar, which corresponds to an amount of 35 to 40 grams for a child 
below six years, 45 to 55 grams for a schoolchild, 50 to 60 grams for an adult female, and about 70 
grams for an adult male. In comparison, a 0.5 liter bottle of sugary soda normally contains about 50 
grams of sugar. Although the mean soda consumption is of interest to producers in order to compute 
the total demand, it conveys less information to a nutrition expert. To examine the problem from a 
health perspective, it is important to take account of the whole distribution of the consumption. This is 
because there may be a greater pay-off from reducing the soda consumption of a heavy consumer than 
there is in the case of a low or moderate consumer. A person with heavy soda consumption will 
exceed the intake limit recommended by the experts, and is therefore more exposed to health 
problems. 

This research has three main objectives. First, we will explore the purchase of soda in the whole 
conditional distribution, and find the factors that influence the demand. The mean effects estimated by 
limited dependent variable models may be satisfactory if the parameters are identical in the whole 
distribution. However, the effects are likely to be different for low-consumption households at the 
lower tail compared to persons with high consumption at the upper tail. Hence, we use a censored 
quantile regression approach. Second, we will examine whether price changes, which may be induced 
by tax changes or European Union (EU) membership, have different effects on low, moderate, and 
heavy soda consumers. Finally, we will model the demand for a censored good without relying on 
normality and identically distributed errors, two assumptions seldom fulfilled. The demand for 
censored goods is usually modeled with limited dependent variable models, but the consistency of 
these models is highly dependent on the normality and homoscedasticity of the error terms.  

The next section introduces the empirical model. Then, the quantile regression and censored 
quantile regression techniques are presented. Next, the data are presented and the results from the 
quantile regressions are compared with the results from the symmetrically censored least squares 
(SCLS) model and the Tobit model. Finally, the price elasticities are used to calculate the effects of 
three different policy scenarios. 
 
The Empirical Model 

As the purchase of sugary soda is censored, modeling the demand may best be done within a 
single equation context. Furthermore, using censored quantile regression, we cannot estimate a 
demand system with restrictions across the equations. Consequently, we specify Stone’s logarithmic 
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demand function. For a discussion, see Deaton and Muellbauer (1980: 60-64). This function may be 
written as: 
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where qh

 is household h’s per capita consumption of soda, xh is total per capita expenditure on non-
durables, wjt is the average expenditure share on good j in the survey period t, and pjt is the nominal 

price. The expenditure elasticity, E, the compensated price elasticity, *
j

e , and α are the parameters to 

be estimated. Homogeneity in prices and total expenditure requires that * 0
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� is Stone’s price index. Moschini (1995) showed that this index is 

not invariant to changes in the units of measurement. To avoid this potentially serious problem, we 
used the (log of) consumer price index (CPI)1, which is a Laspeyres index and therefore invariant to 
changes in units of measurement (Moschini, 1995).  

The constant term in equation (1) is expanded to include non-economic variables. Ah is the age 
of the head2 of household h, Tt is the two-week mean temperature in period t, CH is a dummy variable 
for Christmas, and SC is a dummy variable taking account of the differences in demand before and 
after the introduction of the 0.5 liter plastic bottle with screw cap. Furthermore, the socioeconomic 
dummy and seasonal variables, Zh, defined in table 2, and a stochastic error term, εh, are included. The 
model includes prices for two commodities only: sugary soda, and all other non-durables. Since 
expenditure on soda constitutes a marginal share of expenditures on non-durables, the prices for non-
durables except for soda and the CPI are approximately equal. Consequently, homogeneity is imposed 
by deflating the soda price with the CPI. Then, the model to estimate becomes: 
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The compensated price elasticity, *e , is approximately equal to the uncompensated price elasticity, 

because soda purchases constitute a very small share of the total consumption.  
 

Quantile Regression and Censored Quantile Regression 
Both quantile regression and censored quantile regression are used in labor economics, but have 

rarely been used to study food consumption. Some exceptions are Manning (1995), who studied the 
demand for alcohol using quantile regression, and Variyam et al. (2002) and Variyam (2003), who 
study demand for nutrition using quantile regression. Steward et al. (2003) used censored quantile 
regression to study the effect of an income change on fruit and vegetable consumption in low-income 
households. 

As discussed by Deaton (1997), quantile regression is most useful when the errors are 
heteroscedastic. Heteroscedasticity is frequently present in household expenditure data, meaning that 
the set of slope parameters of the quantile regressions will differ from each other as well as from the 
Ordinary Least Squares (OLS) parameters. 

We say that a person consumes a product at the θth quantile of a population if he or she 
consumes more of the product than the proportion θ of the population does and less than the 
                                                
1 Our version of the CPI does not include durables. 
2 The head of the household is defined as the person who contributes most to the family economy. 
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proportion (1-θ) consumes. Thus, half the households in a sample consume more than the median and 
half consume less. Similarly, 75 percent of the households consume less than the 0.75 quantile and 25 
percent consume more. The unconditional quantile function is defined as the inverse of the cumulative 
distribution function. 

Conditional quantile functions, or quantile regressions, define the conditional distribution of a 
dependent variable as a function of independent variables. If we have a relation as follows:  

 

i i i
y x β ε= +′                                                                                                                                (3) 

 
where xi is a vector of covariates and εi is a stochastic error term, the conditional expectation 

is ( | )
i i i

E y x x β= ′ , provided that E(εi|xi) = 0. Likewise, the conditional quantile function Qθ (yi|xi) = 

xi’β(θ) if the θth quantile of εi is zero. However, the coefficient vector β depends on the quantile θ. 
Quantile regression, as introduced by Koenker and Basset (1978), is the solution to the following 
minimization problem: 
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Given equation (4), no explicit expression exist for the estimators. Koenker and Basset (1978) showed 
that under some rather general conditions a unique solution of (4) exists. The minimization problem 
can be solved by linear programming (LP) techniques for the different quantiles of y. These methods 
are described in Koenker and D’Orey (1987) and Portnoy and Koenker (1997). When θ = 0.5, the 
problem is minimizing the absolute value of the residuals, which is a median regression. By estimating 
different quantile regressions, it is possible to explore the entire shape of the conditional distribution of 
y, not just the mean, as in linear regressions. This implies that we can explicitly model the price and 
income reactions at different points in the conditional distribution of the demand function.  

Quantile estimators are robust estimators, and are less influenced by outliers in the dependent 
variables than the least squares regression. When the error term is non-normal, quantile regression 
estimators may be more efficient than least squares estimators (Buchinsky, 1998). If the error terms 
are heteroscedastic, and the heteroscedasticity depends on the regressors, the estimated coefficients 
will have different values in the different quantile regressions. Potentially different solutions at distinct 
quantiles may be interpreted as differences in the response of the dependent variable to changes in the 
covariates at various points in the conditional distribution of the dependent variable. Quantile 
regressions are, like the OLS method, invariant to linear transformations.  

Koenker and Basset (1982) introduced a formula for calculating the covariance matrix of the 
estimated parameters. However, in the Stata manual (StataCorp, 2001) it is argued that bootstrap 
methods give better estimates for the covariance matrix. 

For a given set of prices, purchasing a product is partly a matter of income and partly a matter of 
taste. Zero observations are not necessarily the result of high prices or low incomes. When data is 
censored from below at zero, limited dependent variable models are often used. These models are 
dependent upon assumptions of normality and homoscedasticity in the error terms. Failure to fulfill 
these assumptions leads to inconsistent estimates of the parameters. Hurd (1979), Nelson (1981), and 
Arabmazar and Schmidt (1981) showed that estimating limited dependent variables with 
heteroscedasticity in the error terms leads to inconsistent parameter estimates. Goldberger (1983) and 
Arabmazar and Schmidt (1982) showed inconsistency because of non-normality in the error terms.  

Powell (1984, 1986a) established that, under some weak regularity conditions, the censored 
quantile regression estimators are consistent and asymptotically normal, and that consistency of the 
estimators is independent of the distribution of the error terms. The only assumption is that the 
conditional quantile of the error term is zero: Qθ(εi|xi’β) = 0. 

One of the most useful properties of quantiles is that they are preserved under monotone 
transformations. For example, if we have a set of positive observations, and we take logarithms, the 
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median of the logarithm will be the logarithm of the median of the untransformed data. The censored 
regression model, where purchase is censored from below at zero, can be written as: 

 

{ }max 0, .
i i i

y x β ε′= +                                                                                                                  (5) 

 
Because of the properties of the quantile function, the conditional quantile of this expression may be 
written as: 
 

{ }( | ) max 0, ( | ) max(0, )
i i i i i i

Q y x Q x x x
θ θ

β ε β= + =′ ′                                                               (6) 

 
when the conditional quantile of the error term is zero. Powell (1986a) shows that β can be 
consistently estimated by:  
 

{ }
1

1
min max 0,

n

i ii
y x

N θβ
ρ β

=

� �− ′� � �� �
                                                                                                (7) 

 
where [ ]( ) ( 0)I

θ
ρ λ θ λ λ= − < . I is an indicator function which is equal to 1 when the expression is 

fulfilled and zero otherwise. For observations where 0
i

x β′ ≤ , max (0,xi’β) = 0 and ρ is not a function 

of β. Hence, (7) is minimized using only those observations for which xi’β > 0. Based on this fact, 
Buchinsky (1994) suggested an iterative LP algorithm in which the first quantile regression is run on 
all the observations, and the predicted values of xi’β are calculated. These calculations are used to 
discard sample observations with negative predicted values. The quantile regression is then repeated 
on the truncated sample. The parameter estimates are used to recalculate xi’β for the new sample, the 
negative values are discarded, and so on, until convergence. We have used this algorithm in 
combination with the qreg procedure in Stata. 

The model estimated by quantile regression and censored quantile regression was compared 
with the model estimated by the SCLS method and the Tobit method. The SCLS estimation method 
proposed by Powell (1986b) is based on the “symmetric trimming” idea. If the true dependent variable 
is censored at zero and symmetrically distributed around x’β, we observe the dependent variable as 
asymmetrically distributed due to the censoring. However, symmetry can be restored by 
“symmetrically censoring” at 2 x’β. This is done below with the algorithm proposed in Johnston and 
DiNardo (1997). First, we estimate β using OLS on the original data. Then, we compute the predicted 
values. If the predicted value is negative, we set the observation to missing. If the predicted value of 
the dependent value is greater than twice the predicted value, we set the value of the dependent 
variable equal to 2 xi’β. We then run OLS on these altered data. Finally, we repeat this procedure until 
convergence is achieved. The t-values were found by 100 bootstrap repetitions. 

The Tobit model has the following likelihood function:  
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where y is the left-side variable and x is the vector of right-side variables. To obtain estimates of the 
marginal effects that are comparable to the SCLS parameters, we have to multiply the parameter 
estimates with the probability of a positive outcome: * Pr( 0)

i
yβ β= > . We use the share with 

positive consumption, which is a consistent estimate of the probability.  
 
Data 

The sample is obtained from the household expenditure surveys of Statistic Norway over the 
period from 1989 to 1999. Each year, between 1200 and 1400 households kept account of their 
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purchases over a two-week period. Thus, our total sample consists of about 14,000 observations. The 
households are evenly distributed throughout the year and throughout the country, so the data are 
representative. The surveys were conducted continuously, with new households participating every 
year, so our data consist of repeated cross-section samples. For food products, the quantities purchased 
and the corresponding expenditures are recorded. Table 1 shows the yearly per capita consumption of 
sugary carbonated soft drinks from 1989 to 1999. The years are in the first column. In the second 
column, the percentage of the sample with zero observations each year is presented. Then, the 
quantiles 0.25, 0.50, 0.75, 0.90, and 0.95 follow. The quantiles presented in the table are asymmetric 
to emphasize the high-consumption households. The mean values for each year follow the quantiles, 
and “Dis” is the yearly mean value of the disappearance data from the Breweries’ Association. We 
note that the mean value of the disappearance data is between 62 to 92 percent higher than the mean 
value in the survey data. One likely explanation for this difference is that many children do not report 
the whole quantity of soda purchase to their parents (who keep the accounts), and many adults forget 
to report the soda they buy at the gas station and similar places. “% Sug” is the share of the total 
carbonated soft drink sales that contain sugar.  

The last row shows statistics from linear regressions, using year as the explanatory variable in 
each regression and the other columns as dependent variables. Trend is the parameter value, which 
measures the expected change in liters purchased from one year to another. We note that the share of 
the households that do not purchase sugary carbonated soft drinks is decreasing. The purchased 
quantity is increasing in all the quantiles, but the biggest increase is at the upper tail. All the trend 
parameters are significantly different from zero at the five percent level. 
 
Table 1. Distribution of Annual per Capita Purchases of Sugary Carbonated Soft Drinks 
__________________________________________________________________________________ 
Year                        Zero%                       Quantile                                               Mean        Dis     %Sug                                           
                         0.25    0.5    0.75       0.9       0.95         
__________________________________________________________________________________ 
1989 33 0 17 52        96    121           34                          89 
1990 35 0 16 49 87 124 33  83 
1991 33 0 20 52 104 143 38  83 
1992 24 1 26 62 100 135 41 73 82 
1993 25 1 27 59 107 143 43 77 82 
1994 21 7 33 72 121 156 49 95 85 
1995 21 17 29 68 120 169 49 95 86 
1996 20 9 39 75 126 181 54 96 86 
1997 18 10 39 78 124 171 56 106 89 
1998 19 8 36 74 117 163 51 101 89 
1999 16 12 39 78 130 169 57 106 91 
Trend (in liters) –1.9 1.4 2.5 3.1 3.8 5.4 2.5 4.6 1.3 
Note: The quantities are measured in liters per capita per year. 
          Dis = the mean value from the disappearance data. 
          % Sug = the percentage of sugary soda purchases in the total soda purchase. 
 

While the expenditures are derived directly from the surveys, we used price variables derived 
from the CPI. Although we could have constructed unit prices, these would reflect quality as well as 
price variations. In addition, unit prices are missing for households that do not purchase any sugary 
soda. Because of these problems, we used the soda price sub index from the CPI as an explanatory 
variable. The CPI is a monthly Laspeyres index, where the sub indexes have fixed weights that are 
changed once a year according to the observed changes in budget shares. One problem with combining 
the survey data with the monthly price indices is that the survey period may involve two different 
months. We solved this problem in the following way. For the households keeping accounts within 
one month, we used the prices for that month. For the households keeping accounts in a period 
overlapping two months, we used a weighted average of the prices for the two months, using the 
number of days in the survey period in each month as weights. 
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To take account of the climatic conditions in Norway, with long winters and short summers, we 
introduce a temperature variable. We assume that when the temperature is above 15 degrees Celsius, 
people do more outdoor activities like sports, hiking, bathing, picnicking, and so on, thereby 
increasing the demand for soda. The temperature variable is constructed as the two-week mean 
temperature measured at the meteorological stations located in each of the six regions of Norway that 
are included in this study. These variables are linked to the households according to purchase time and 
place of abode. Further, we assume that temperatures below 15 degrees Celsius do not influence soda 
consumption. Therefore, the temperature variable has a value of one below 15 degrees Celsius, 
whereas above 15 degrees Celsius it has the value of the temperature. 

 
Table 2. Average Values of Variables in Different Quantile Groups 
____________________________________________________________________________ 
Variable                                Zero                         Quantile Group                            Mean 
   0.25 0.50 0.75 0.90         1.0________ 
Indexes 
 Soda consumption  0.0 0.0   0.7   1.9    3.6 7.4 1.9 
 Total expenditure   5.4 5.4 5.3 5.4 5.5 5.7 5.4 
 Price of soda        1.0 1.0   1.0   1.0   1.0   1.0   1.0 
 Age (Year)  52.4 52.4 44.1 43.5 42.4 42.2 45.6 
 Temperature      2.0   2.0   2.1   2.4   2.7   2.8   2.3 
Dummy variables in % 
 Christmas   2.6 2.7 2.0 3.0 4.4 6.4 3.2 
 Screw cap  63.4 64.1 76.8 77.6 78.0 75.4 73.9 
Household type 
 One person  31.0 30.3  5.8  7.7  9.5 17.9 14.2 
 Couple without children  32.9 33.0 18.6 17.6 17.7 23.5 22.3 
 Couple with children  22.1 22.6 59.2 59.2 56.8 43.1 48.1 
 Single parent  3.5 3.6 5.2 4.8 4.7 4.9 4.6 
 Other household  10.4 10.5 11.2 10.7 11.5 10.5 10.9 
Region 
 Central East   20.5 20.6 20.4 18.2 18.0 20.2 19.5 
 Other East   26.6 26.4 26.1 27.5 30.7 31.1 27.7 
 South   14.4 14.6 14.7 15.0 13.7 12.6 14.4 
 West   17.7 17.7 18.2 19.1 18.0 16.8 18.1 
 Central   9.4  9.2 10.2  9.3 9.8 9.6 9.6 
 North  11.4 11.4 10.4 10.9  9.8  9.7 10.6 
Season 
 Winter  26.6 26.4 25.3 23.6 22.8 18.7 24.1 
 Spring  25.8 25.8 26.1 28.3 27.6 30.5 27.2 
 Summer  19.8 19.8 21.7 21.8 23.2 23.7 21.7 
 Fall  27.8 28.0 27.0 26.3 26.4 27.0 27.0 
____________________________________________________________________________ 
 

Table 2 shows the variables in categories corresponding to the quantile groups defined by the 
purchase of carbonated soft drinks. The quantile groups are defined according to the distribution of the 
dependent variable, measured by an index of per capita sugary soda expenditures divided by the soda 
price index. The “Zero” column shows the mean values for the households that did not purchase 
sugary soda in the survey period. The following five columns show the mean values for the quantile 
groups, and the last column gives the mean values of all the households. The 0.25 quantile group 
reports the mean values for the 25 percent of households with the lowest per capita sugary soda 
purchases, including the households in the “Zero” column. The 0.50 quantile group shows the mean 
values of the households having between 25 and 50 percent of the lowest sugary soda consumption, 
and so on. The “1” column shows the mean values for the 10 percent of households with the highest 
per capita consumption of sugary soda. 
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The first row in table 2 consists of the mean values of the dependent variable3 in each quantile 
group. The next row shows the expenditure variable, which is the logarithm of the expenditure per 
capita deflated by the CPI. The third row lists the average soda price deflated with the CPI. The age of 
the head in each household and the temperature variable follow. The next variable is a Christmas 
dummy variable to account for the Christmas period. This variable has a value of one in the 26th two-
week period and zero otherwise. In addition, we include a dummy variable to take account of the 
introduction of the 0.5 liter bottle with screw cap. Before 1992, soda was sold in small glass bottles 
containing just 0.33 liters of soda, with an iron cap. Thus, the likelihood of an open bottle being 
carried around was limited. This likelihood greatly increased after the introduction of the screw cap 
bottle. To model the combined effects of increased bottle size and the screw cap, we use a dummy 
variable taking a value of zero before 1992 and a value of one in 1992 and after. Finally, several 
dummy variables taking care of the household-specific characteristics, location, and time period are 
introduced. 

We note that the expenditure variable is higher in the upper part of the distribution than at the 
mean. Next, the age of household heads declines gradually from the lower to the higher parts of the 
distribution. In addition, there are more households in the upper 10 percent during Christmas time, and 
there are fewer households consuming no sugary soda after the introduction of the new screw cap 
bottle than there were before. Further, one-person households are over-represented in the upper 
quantile groups, whereas couples with children are over-represented in the middle quantile groups. 
 
Results 

Model (2) was estimated using Buchinsky’s (1994) algorithm for censored quantile regression, 
implemented in Stata (StataCorp, 2001). From a health perspective, consumption of soda with sugar is 
of strong interest. The purchase of soda with sugar represents between 82 and 91 percent of the total 
soda purchase. We attempted to estimate a model involving all carbonated soft drinks – those with 
sugar and those with artificial sweetener. However, it turned out that the demand for soda with 
artificial sweetener was not very responsive to price. In addition, we obtained very unclear estimates 
for both total soda consumption and consumption of soda with artificial sweetener. 

Table 3 shows the estimated parameters/marginal effects in five different quantile regressions, 
and the corresponding marginal effects of the SCLS and the Tobit models. In the 0.25-quantile 
regression, 26 percent of the observations were censored away. In the 0.5-, 0.75-, 0.90-, and 0.95-
quantile regressions, the censoring did not have any effect, and the complete data sample was used. 
Consequently, we estimated the model simultaneously for these quantiles to take account of the 
possible correlation between the error terms. The marginal effects of the SCLS and the Tobit models 
are presented in the two rightmost columns.  

The expenditure elasticity is significantly different from zero in all the quantiles, and it increases 
from 0.25 in the 0.25 quantile to 0.45 in the 0.95 quantile. The price elasticity is not significant in the 
lowest quantile, whereas at the median it is significant at the 10 percent level, and in all the other 
quantiles it is significant at the five percent level. The numerical value increases steadily from –0.62 in 
the 0.25 quantile to –1.60 in the 0.95 quantile. Age has a negative and significant effect in all the 
quantiles. Except for the lowest quantile, the effect is similar in all the quantiles. The temperature 
elasticity is about 0.06 in all the quantiles. This means that an increase in the two-week mean 
temperature from 18 to 19 degrees, which is an increase of 5.6 percent, will increase the demand for 
soda by 0.34 percent. Further, we can see that the introduction of new and larger bottles with screw 
caps increased consumption by between 8 and 11 percent. The consumption of carbonated sugary soft 
drinks shifts upward by about 30 percent in the two-week period around Christmas. Families with 
children is the reference household, the Central East region is the reference location, and winter is the 
reference quarter. R2 is low, which is common when cross-sectional data is used. In the last row, the 
number of observations for each quantile regression is printed.  

We note that the comparable elasticities of the SCLS model are quite near the median in most 
cases, whereas the Tobit estimates are lower. In some cases, they are even lower than in the 0.25-
quantile regression, indicating that the Tobit model is too restrictive.  

                                                
3 The dependent variable is in logarithmic form, after adding one to avoid ln(0). However, here it is shown 
untransformed 
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Table 3. Quantile Regression, SCLS and Tobit Estimates 
_____________________________________________________________________ 
 Variable                                                            Quantile                        SCLS      Tobit  
 0.25 0.50 0.75 0.90 0.95           
________________________________________________________________ 
Total expenditure 0.25 0.31 0.38 0.43 0.45 0.31 0.27 
 (13.17) (17.60) (23.47) (22.25) (16.36) (25.83) (24.44) 
Price of soda   –0.62 –0.77 –1.05 –1.48 –1.60 –0.88 –0.55 
 ( –1.39) (–1.93) (–2.47) (–3.21) (–2.20) (–2.59) (–1.89) 
Age –0.16 –0.37 –0.38 –0.35 –0.32 –0.35 –0.33 
 (–4.80) (–11.47) (–12.14) (– 9.00) (–7.49) (–11.67) (–18.39) 
Temperature 0.06 0.07  0.06  0.06 0.06 0.06 0.05 
 (5.02) (6.62) ( 6.86) ( 4.92) (2.97) (6.00) (6.44) 
Screw cap 0.11 0.11 0.10 0.10 0.08 0.11 0.10 
 (3.80) (4.27) (3.36) (3.22) (1.67) (5.50) (5.26) 
Christmas 0.28 0.32 0.31 0.30 0.33 0.28 0.23 
 (6.01) (5.57) (5.84) (6.05) (5.02) (7.00) (7.25) 
One person –0.83 –0.61 –0.31 –0.04 0.09 –0.59 –0.47 
 (–13.62) (–20.55) (–8.38) (–0.90) (1.88) (–19.67) (–25.33) 
Couple without   –0.56 –0.30 –0.14     –0.03 –0.01 –0.28 –0.24 
children         (–19.29) (–12.76) (–6.11) (–1.28) (–0.38) (–14.00) (–16.00) 
Single parent –0.14 –0.16 –0.06 –0.04 –0.01 –0.14 –0.12 
 (–4.04) (–4.65) (–1.32) (–0.90) (–0.10) (–4.67) (–4.86) 
Other household     –0.23  –0.06 0.02 0.05 0.06 –0.05 –0.05 
 (–8.66) ( –2.05) (0.73) (1.64) (1.62) (–2.50) (–2.68) 
Other East  0.18  0.17  0.15  0.12 0.12 0.16 0.12 
 ( 6.76) ( 6.75) ( 6.30) ( 4.42) (3.17) (8.00) (7.52) 
South  0.06   0.06   0.04  0.02  0.06 0.05 0.03 
 ( 2.11) (1.94) (1.29) ( 0.67) (1.26) (2.50) (1.49) 
West      0.15  0.10  0.08  0.03  0.00 0.10 0.07 
 ( 5.43) ( 3.98) ( 3.44) ( 1.11) ( 0.07) (5.00) (4.16) 
Central      0.16  0.12  0.11  0.08  0.02 0.13 0.09 
 ( 4.80) (3.77) (3.25) ( 2.77) ( 0.32) (5.21) (4.17) 
North       0.13  0.09   0.05  0.02  0.05 0.09 0.05 
 ( 3.94) ( 3.10) (1.61) ( 0.50) ( 0.90) (3.58) (2.32) 
Spring 0.07 0.08 0.10 0.11 0.10 0.08 0.07 
 (2.96) (3.69) (4.71) (4.21) (3.04) (4.71) (4.51) 
Summer 0.04 0.01 0.03 0.06 0.05 0.03 0.03 
 (1.52) (0.63) (1.28) (2.26) (1.21) (1.29) (1.55) 
Fall  –0.03  –0.02  –0.01  0.01 –0.03 –0.02 –0.02 
 (–1.01) (–0.64) (–0.51) ( 0.27) (–0.85) (1.20) (–0.97) 
Constant –0.50  0.41  0.51    0.48 0.54 0.36 0.31 
 (–3.21) (2.61) (3.53) (2.60) (2.48) (2.93) (3.21) 
R2 0.03 0.08 0.06 0.07 0.08 0.21 0.06 
# observations 10282   13985  13985 13985 13985 13985     13985 
_______________________________________________________________________ 
Note: The t-values are reported in parentheses. 
 

Figure 1 presents the estimates for some of the most important of the quantile elasticities and the 
corresponding SCLS elasticities. For the expenditure elasticity, the price elasticity, and the age 
elasticity, we plot the different quantile regression results for 0.25, 0.50, 0.75, 0.90, and 0.95, with the 
solid curves representing the 90 percent confidence band. The dashed lines represent the SCLS 
estimates with the 90 percent confidence band. In all the panels, the quantile regression estimates lie at 
some points outside the confidence interval for the SCLS model, suggesting that the effects of these 
covariates are not constant across the conditional distribution of the dependent variable. 
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Figure 1. Quantile Regression SCLS Estimates with 90 Percent Confidence Intervals 

 
Results from statistical tests for equality of coefficients across the estimated quantiles are 

presented in table 4. When one or both the quantile regressions are censored, different parts of the 
sample are used for estimation, and we cannot obtain the covariance between the regressions. In these 
cases, we calculate quasi t-statistics to test for equality between the coefficients. The quasi t-statistics 
ignore any covariance between the coefficients. The first three columns of table 4 give the quasi t-
statistics for equality tests of the coefficients at the 0.25 quantile, with the coefficients at the 0.75, 
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0.90, and 0.95 quantiles. If the numerical value of the t-statistics is larger than 1.96, then equality is 
rejected at the five percent level of significance. As discussed above, censoring was not a problem at 
the 0.50, 0.75, 0.90, and 0.95 quantiles. Therefore, these equations were estimated simultaneously, and 
the covariance matrix between the coefficients was calculated by bootstrapping. In the last three 
columns of table 4, the t-statistics of tests for equality between coefficients at the 0.50, 0.75, 0.90, and 
0.95 quantiles are reported.  
 
Table 4. Tests for Equality of Coefficients across Quantiles  
_________________________________________________________________________________ 
 q25 = q75 q25 = q90 q25 = q95 q50 = q90 q50 = q95 q75 = q95 
_________________________________________________________________________________ 
Total Expenditure –5.15*  –7.00* –6.45* 5.80* 4.47* 2.29* 
Price of soda   0.68   1.28 1.24 1.44 1.17 0.82 
Age  5.09*  4.17*  2.86* 0.37 1.17 1.68 
Temperature –0.09 –0.13   0.14 0.37 0.49 0.22 
Screw cap 0.26 0.24 0.68 0.24 0.67 0.56 
Christmas –0.45 –0.24 –0.64 0.32 0.24 0.36 
One person –7.86* –11.67* –12.50* 12.90* 12.92* 8.36* 
Couple without –11.27* –13.34* –11.68* 8.74* 9.28* 4.99* 
children 
Single parent –1.60 –1.91 –2.00* 2.72* 2.22* 0.86 
Other household –6.41* –6.85* –5.82* 3.06* 2.88* 1.27 
Other East  0.68   1.38  1.14 1.47 1.11 0.69 
South  0.65  0.96  0.13 0.91 0.00 0.44 
West  1.84    2.92* 3.08* 2.03* 2.35* 2.13* 
Central  1.16   1.74 2.51* 1.03 1.73 1.78 
North  1.76   2.36*  1.48 2.05* 0.76 0.10 
Spring  –0.85 –1.27  –0.75 1.16 0.50 0.10 
Summer  0.31  –0.48 –0.17 1.62 0.84 0.50 
Fall  –0.40   –0.89 0.06 0.79 0.35 0.51 
Constant –4.79*  –4.41* –3.84* 0.36 0.51 0.14 
__________________________________________________________________________ 
Note: An asterix indicates significance at the five percent level. 
 

The tests reject the H0 hypothesis of equality for all the expenditure elasticities. For the price 
elasticities, however, the H0 hypotheses are not rejected between any of the quantiles. Further, the tests 
suggest that the age elasticity is less in the 0.25 quantile than in the other quantiles. For the 
temperature, the tests suggest that the effect is similar in all parts of the distribution. This is also true 
for the effect of the introduction of larger bottles with screw caps, and for the effect of Christmas. The 
differences of single households (relative to couples with children) vary across the distribution. The 
same is true for couples without children and other households as compared with the reference group. 

These tests indicate that the effects of many of the covariates are different in different parts of 
the conditional distribution of soda consumption. Hence, a quantile regression approach is warranted. 
 
The Effects of Public Policies 

The demand for carbonated soft drinks containing sugar may continue to increase if nothing is 
done to prevent it. Unless younger people completely change their attitudes as they age, the negative 
age elasticity indicates that consumption will increase. The positive expenditure elasticity, together 
with the steadily growing real household income, will also contribute to growing consumption.  

Public authorities have several options for influencing the demand for soda. First, they could ban 
the sale of soft drinks in schools. Furthermore, they could restrict school children from going outside 
the school area during school time. Second, as with smoking and drinking, information about the 
health aspects of soda consumption may be used to prevent further increases in consumption. Last, but 
not least, economic means may be used to reduce the demand for sugary drinks, either by influencing 
the income of the households and/or the prices of the products. The disadvantage of influencing 
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household income, for example by income taxes, is that it will have an effect on the consumption of all 
goods, healthy or unhealthy. Hence, it is better to use prices to influence the consumption.  

In Norway, carbonated soft drinks are exposed to a production tax of NOK4 1.55 per liter. In 
addition, soft drinks have a value added tax (VAT) of 12 percent, which is the same as for other food 
products. Most non-food products have a 24 percent VAT. We will study three price scenarios for 
sugary carbonated soft drinks. In the first scenario, we use the elasticities from the quantile regression 
model and the SCLS model to calculate the effects of a doubling of the VAT. This means a price 
increase of 10.8 percent. In the second scenario, we calculate the impact of doubling the production 
tax as well as doubling the VAT. This corresponds to a price increase of 27.3 percent. In the third 
scenario, we study the effect of Swedish prices in Norway. According to Statistics Norway and 
Eurostat, the European purchase parity survey (Bruksås et al., 2001) shows that Swedish soda and 
juice prices are about 29.8 percent lower than Norwegian prices. However, the general price level is 
about 10.4 percent lower, and, correspondingly, the real soda price level is about 21.7 percent lower in 
Sweden than in Norway. We assume that Norwegian soda prices decrease down to the Swedish level, 
which may occur if Norway joins the EU. Table 5 shows the results from the three price scenarios in 
percentages and liters. Purchases in 1999 are used as a base level to calculate the changes in liters.  

Table 5 shows that the percentage effects are largest in the upper quantiles. Furthermore, the 
changes in liters are even larger in the upper quantiles. If the objective is to reduce consumption 
among the heavy soda consumers, price changes seem to be an effective tool. A doubling of 
production tax and the VAT will reduce the consumption of the top five percent of soda consumers by 
approximately 44 percent, or 74 liters per year. The lowest soda consumers will reduce their 
consumption by 17 percent, or about two liters per year. The mean effects are calculated using the 
SCLS elasticities. They are between the median and the 0.75 quantile in all the scenarios, which is 
reasonable. To find the effects of a price change on the zero-consumption households, we estimated a 
binary logit model. The own-price parameter was very small and insignificant. Hence, we believe that 
price changes will not have any effect on the zero-consumption households.  
 
Table 5. Predicted Annual Changes in Soda Purchases per Capita due to Price Changes 
______________________________________________________________________________ 
Policy Change                                              Quantile______________________ ______________                                                                                                                          
 0.25 0.50 0.75 0.90 0.95         SCLS 
Doubling of VAT for soda 
Change in percent –6.7 –8.3 –11.3 –16.0 –17.3 –9.5 
Change in liters –0.8 –3.2 –8.8 –20.8 –29.2 –5.1 
 
Doubling of VAT and production tax for soda 
Change in percent –16.9 –21.0 –28.7 –40.0 –43.7 –24.0 
Change in liters –2.0 –8.2 –22.4 –52.5 –73.8 –12.9 
 
Swedish prices in Norway 
Change in percent 13.5 16.7 22.8 32.1 34.7 19.1 
Change in liters 1.6 6.5 17.8 41.8 58.7 10.2 
_______________________________________________________________________________ 
 
Concluding Remarks 

Our analysis investigates the demand for sugary carbonated soft drinks and how the authorities 
may influence consumption. Steady increases in consumption of soft drinks have been observed for 
many years. Until recently, studies have focused on average values, but because heavy consumption of 
sugary soft drinks contributes to obesity and other health issues, the focus should be on heavy 
consumption. Moderate or low consumption is of less concern. 

The results show that many of the covariates have different effects in different parts of the 
conditional distribution, warranting a quantile regression approach. Heavy drinkers are more 
                                                
4 The exchange rate from the Central Bank of Norway is currently US$1 = 6.27 NOK  
 (January 25, 2005). 
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expenditure-responsive than light drinkers are, whereas age seems to be more important at and above 
the median than below it. While the expenditure effect is positive, the age effect is negative. This 
means that the trend towards increasing consumption of sugary soda will continue if young people do 
not drastically change their habits when they grow older. Steady growth in incomes and the 
consumption trend will almost surely continue, pushing soda consumption higher, with the highest 
growth in the upper quantiles.  

High temperature increases consumption, and has a similar effect on sugary soda consumption 
in all the quantiles. Due to the change in the bottle type, from the 0.33 liter glass bottle with an iron 
cap to the 0.5 liter plastic bottle with a screw cap, the demand shifted upwards by about 10 percent in 
all quantiles. 

The study shows that a doubling of the production tax and the value added tax will reduce the 
consumption of sugary soda by two liters per year for the moderate consumers and by 74 liters per 
year for those in the top five percent in terms of consumption.  
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