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Abstract 

This study aims to investigate the existence of long memory in the Malaysian stock market utilizing daily stock price 
index from the period 1998:09 to 2009:12. Various ARFIMA-G(ARCH)-type models have been taken into 
consideration to address this issue, which has led to several interesting conclusions. Firstly, the long memory property 
exists in both the return and volatility, with and without incorporating the crisis impact. Secondly, the stock volatility is 
found to be experiencing significant leverage effect especially with the inclusion of the impact of crisis. This implies 
that the volatility has the tendency to respond to bad news more than good news as compared to the other periods 
under study. Thirdly, among the various G(ARCH)-type models with different innovation distributions, the Student-t 
distribution provides better specifications in terms of the long memory volatility processes. In summary, ARFIMA-
FIAPARCH model is found to be the most appropriate method of presenting the stylized facts of stock return and 
volatility in Malaysia.
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1.  Introduction 
 
The existence of long memory property in stock return series has become a critical issue 
for the investment community and academia due to the increasing roles of the stock 
markets in terms of portfolio diversification. With the presence of long memory, it is 
believed that the arrival of new market information cannot be fully arbitraged away 
(Mandelbrot, 1971). Following this, if the information is fully utilized, stock market 
participants may outperform the market and make consistent speculative profits. 
 

Although the importance of long memory property is well-established in previous 
literature, many researchers and practitioners argued that the long memory features are 
less prominent if the market is efficient. Most of the previous studies found that emerging 
stock market countries are far from efficient due to the increase in the number of retail 
and institutional investors trading on stock markets. The different reactions in terms of 
their degree of information, interests and risk profiles, and reactions to news across 
different times are believed to be producing long memory in the stock return volatility.  
 

It is well-documented that worldwide stock markets react, in terms of returns and 
volatility, to shocks such as the crash of 1987, the Asian crises in 1997, terrorist attack, 
and the recent financial crisis of 2007. However, according to Roll (1988), the timing and 
magnitude of changes in stock returns and volatility differ across markets around the 
world. Given that globalization has integrated financial markets, the spread of the sub-
prime mortgage crisis of 2007, which resulted in the Lehman Brothers and some major 
financial institutions declaring bankruptcy and many to ask for government bailout to 
survive, had therefore raised the interest of many stock market participants and 
researchers to re-examine its impact on the worldwide stock markets. 
 

This study attempts to test if stock returns and volatility exhibit long memory in 
Malaysian stock price indices from period 1998:09 to 2009:12. This study represents an 
advance over previous empirical literature in a number of important aspects.  

 
Firstly, while many studies have tested the long memory in stock returns (Sadique 

and Silvapulle, 2001) or volatility (Law et al., 2007; Cheong et al, 2007 and Cheong, 
2008), there are none that examine both the returns and volatility simultaneously. Kang 
and Yoon (2007) advocated that the long memory in return and volatility should be 
addressed simultaneously given that the long term dependence phenomena are often 
observed in both the return and volatility. This study, therefore, follows the recent 
literature to address the dual long memory property in Malaysian stock market.  
 

Secondly, there is a widespread view that investors tend to react asymmetrically 
when dealing with good and bad news and investors’ sentiments are more pronounced 
when there is a persistence decrease (bear period) as compared to when there is a 
persistence increase (bull period) in stock prices. Recently, by analyzing the S&P 500 
over a sample period of 1928 to 2006, Cunado et al. (2008, 2010) found that the stock 
returns present long memory behavior during both the bull and bear periods, whereas the 
long range dependence volatility are more prevalent during bear period. In order to 
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determine if investors behave asymmetrically across various periods, this study utilizes 
the Bry and Boschan (BB, 1971) algorithm to identify the existence of bear and bull 
periods. Various Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 
models are then adopted to address not only the nature of long memory component, but 
also the possibility of the leverage effect following the burst of the global crisis. The test 
results are expected to be similar to the overall period if the effect of the crisis is not 
dramatic.  
 

Thirdly, most of the recent studies on GARCH-type models highlighted the 
importance of selecting appropriate innovation distributions. For instance, by considering 
various GARCH-type models, Tang and Shieh (2006) and Kang et al. (2010) suggested 
that the Student-t and skewed Student-t distributions are more appropriate to take into 
account the major stylized facts of stock returns. This study, thus, considers the 
distributional properties of stock returns using the normal, Student-t and skewed Student-
t distributions. 

 
The rest of the study unfolds as follows. The next section briefly introduces the 

method used in testing long memory. Section 3 describes the characteristics of the sample 
data and presents the findings of this study. Section 4 discusses the most relevant 
conclusions. 
 

 
2.  Methodology 

 
2.1 Autoregressive Fractional Integrated Moving Average (ARFIMA) model 

 
According to Granger and Joyeux (1980), and Hosking (1981), for the series xt, t = 1, …, 
T, the ARFIMA(r, d, s) model can be expressed as 
 

tt
d )L()x()L1)(L( εΘ=μ−−Ψ                (1) 

 
ttt z σ=ε , ,                          (2) )1,0(~z t

 
where μ is conditional mean and εt is independent and identically distributed (i.i.d.) with 
a variance , and L is the lag operator as denoted earlier.  2σ

r
r

2
21 L...LL)L( ψ++ψ+ψ=Ψ and are the autoregressive (AR) s

s
2

21 L...LL)L( θ++θ+θ=Θ
and moving-average (MA) polynomials lie outside of unit cycles, respectively.  

 
The process is said to be long memory at the long run as long as d > 0 in equation 

(1). In particular, for d ∈(0, 0.5), and d ≠ 0, the series is covariance stationary and mean-
reverting, with shocks disappearing in the long run; for d ∈ (0.5, 1), the series imply 
mean-reversion, however, it is not a covariance stationary process as there is no long run 
impact of an innovation on future values of the process. For d ≥ 1, the series is 
nonstationarity and non-mean-reversion. On the contrary, the process is said to exhibit 
intermediate memory, for d∈ (−0.5, 0).  
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2.2 Fractional Integrated GARCH (FIGARCH) model 
 
Similar research on the volatility has led to an extension of the ARFIMA representation 
in εt

2, leading to the FIGARCH model. Baillie et al. (1996) have extended the traditional 
GARCH model to capture the long memory component in the return’s volatility. The 
FIGARCH(p, ξ, q) model is given by 
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where , . All the roots of q
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and [1 − β(L)] are assumed to stand in outside the unit root. 
 

The FIGARCH model provides greater flexibility for modeling the volatility as it 
nests GARCH. If ξ = 0, the FIGARCH (p, ξ, q) process reduces to a GARCH (p, q) 
process.  The impact of a shock is said to decrease at a hyperbolic rate when 0<ξ<1. By 
allowing ξ to take a value within 0 and 1, FIGARCH permits for an intermediate range of 
persistence.  
 

 
2.3. The Fractional Integrated Asymmetric Power ARCH (FIAPARCH) model 

 
To take into account both the long memory and asymmetry features in the process of 
conditional variance behavior, Tse (1998) has extended the FIGARCH(p, ξ, q) by 
introducing the function   of the APARCH process. Formally, the  δγε−ε )|(| tt

FIAPARCH(p, ξ,q) can be written as follows:  
 

           (5) δξ−−δ γε−ε−ρβ−−+β−ω=σ )|}(|)L1)(L()]L(1[1{)]L(1[ tt
11

t

where δ, γ and ξ are the model parameters. 
 

Some stylized facts on stock volatility can be captured utilizing the FIAPARCH 
process. For instance, if 0<ξ<1, as stated earlier, the volatility exhibits the long memory 
process.  The γ (−1<γ<1) accounts for the volatility asymmetry, in which positive and 
negative returns of the same magnitude do not generate an equal degree of volatility. The 
negative shocks are said to have more impact on volatility than positive shocks when γ>0, 
vice versa. The δ (δ>0), is a coefficient for the power term and should be specified by the 
data. The FIAPARCH process nests the FIGARCH process when γ=0 and δ=2.  
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2.4 Various Innovations’ Distributions 
 
The parameters of the various-type of GARCH models can be estimated by using non-
linear optimization procedures to maximize the logarithm of the Gaussian likelihood 
function. The log-likelihood of Gaussian or normal distribution (LNorm) can be expressed 
as  

=NormL ∑
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where T is the number of observations.  
 
However, as highlighted by Tang and Shieh (2006) and Kang et al. (2010), the 

residuals estimated from the GARCH type model often suffer from asymmetry and 
leptokurtosis. To overcome the leptokurtosis problem, the Student-t distribution can be 
considered (Cheong, 2008; Kang and Yoon, 2008). Thus, given the random variable 

),1,0(ST~z t ν , the log-likelihood function of the Student-t distribution (L )Stud  is defined 
as follows:  
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where , and is the gamma function. The parameter ∞≤ν<2 ( )⋅Γ ν, representing the 
number of degrees of freedom, measures the degree of leptokurtosis of the density of 
residuals. The lower values of ν are the fatter tails of the density. As ν  ∞, the Student-t 
distribution approaches the normal one.  
 

On the other hand, to capture the asymmetry and leptokurtosis, Lambert and 
Laurent (2001) proposed the skewed Student-t distribution in which by given the random 
variable , the log-likelihood function of the skewed Student-),k,1,0(SkST~zt ν t 
distribution (L )SkSL  is defined as follows:  

 

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛

+
+−νπ−⎟

⎠
⎞

⎜
⎝
⎛ νΓ−⎟

⎠
⎞

⎜
⎝
⎛ +ν

Γ= )sln(
k/1k

2ln)]2(ln[
2
1

2
ln

2
1lnTLSkSt

∑
=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−ν
+

+ν++σ−
T

1t

tI2
2

t2
t k

2
)msz(

1ln)1()ln(
2
1

              (8) 

where It = 1 if zt ≥ – m/s or It = –1 if zt < – m/s, k is an asymmetry parameter. The 
constant m = m(k,ν) and ),k(ss 2 ν= are the mean and standard deviation of the skewed 
Student-t distribution. The value of ln(k) can represent the degree of asymmetry of 
residual distribution. If ln(k) > 0 (ln(k) < 0), the density is right (left) skewed. When k = 1, 
the skewed Student-t distribution equals the general Student-t distribution.  
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3.  Empirical Results 
 

The data set used in this study comprises daily observations of FTSE Bursa Malaysia 
Kuala Lumpur Composite Index (FBMKLCI) over the period 1998:09 to 2009:12. The 
daily stock returns are defined as the logarithmic difference of the daily closing index 
values. The data is extracted from DataStream® database.  

 
Utilizing the BB algorithm, a bear period trend from 2008:01 to 2008:10 has been 

observed in the Malaysian stock market. Following this, two sub-periods have been 
identified. Sub-period I covers the observations from 1998:09 to 2007:12 in which the 
crisis impact has been isolated. Sub-period II (1998:09 to 2008:10) includes the greatest 
crisis impact and the overall period covers the period from 1998:09 to 2009:12 that 
includes the observations after the rebound of stock market from the recent bear period.  

 
Table 1 of Panel A provides a summary of statistics of the stock return series. The 

significant Ljung–Box statistics for the returns, Q(20) and squared returns, Qs(20), 
indicating the rejection of the null of white noise, asserting that these return series are 
autocorrelated. The significant Jarque–Bera test statistics indicated that the residuals 
appear to be leptokurtic. In summary, it is clear that Malaysian stock market exhibits 
frequent volatilities with extensive amplitude, implying the assumption of normal 
distribution may not be suitable for capturing asymmetry and tail-fatness in a return 
distribution.  

 
 

Table 1. Summary Statistics, ADF Unit Root Tests and KPSS Stationary Tests of 
Stock Return Series 

 A: Sub-Period I B: Sub-Period II C: Overall Period 
Panel A    
Mean (%) 6.65 4.05 5.07 
Std deviation (%) 1.33 1.34 1.29 
Skewness -0.27 -0.40 -0.39 
Excess kurtosis 82.16 74.92 77.21 
J-B 600267.40** 539718.60** 655709.30**

Q(20) 65.48** 63.96** 63.26**

QS(20) 1306.65** 1377.61** 1570.71**

 
Panel B 
ADF  -13.61** -13.92** -15.00**

KPSS 0.26 0.44 0.26 
Notes: Critical values at 5 percent level are –2.87 for ADFμ  and 0.46 for KPSS, respectively. ** indicates 
significant at 5 percent level. 

 
 
To check if the return series is I(0), the Augmented Dickey-Fuller (ADF, 1979) unit 

root test and the Kwiatkowski, Phillips, Schmidt and Shin (KPSS, 1992) stationary test 
are performed (Panel B of Table 1). It is noted that the ADF test results reject the unit 
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root null hypothesis for the stock return series while the KPSS test statistics are 
insignificant to reject the null hypothesis of stationarity. Taking together, these results 
suggest that the return series are stationary processes I(0) and hence are relevant for the 
long memory tests. 

 
 

3.1 ARFIMA models 
 
This section estimates some specifications of ARFIMA models in detecting the long 
memory property in the level of return series. Table 2 highlights the ARFIMA 
parameterization selected using the Akaike Information Criteria (AIC)1. An ARFIMA 
(2,d,2) model is found to best represent the long memory process in stock return series. 
The estimates of d are statistically significant at the 5 percent level. Thus, the results 
support that the returns are forecastable and supportive of long memory processes. 
 

Table 2. Estimation Results of the ARFIMA Models  
A: Sub-Period I B: Sub-Period II C: Overall Period  
ARFIMA(2,d,2) ARFIMA(2,d,2) ARFIMA(2,d,2) 

μ 0.076 0.044 0.059 
 (0.048) (0.048) (0.043) 
ψ1 -1.235** -1.185** -1.204**

 (0.103) (0.110) (0.115) 
ψ2 -0.468** -0.434** -0.447**

 (0.090) (0.097) (0.097) 
d 0.092** 0.096** 0.089**

 (0.027) (0.026) (0.024) 
θ1 1.118** 1.072** 1.107**

 (0.122) (0.128) (0.132) 
θ2 0.275** 0.249** 0.285**

 (0.076) (0.044) (0.059) 
ln(L) -3898.23 -4265.92 -4758.18 
AIC 3.397 3.413 3.336 
Skewness -0.010 -0.241 -0.338 
Excess Kurtosis 73.015 67.277 70.914 
J-B 19300.000** 19503.000** 23386.000**

 [0.000] [0.000] [0.000] 
ARCH(5) 30.298** 21.722** 25.830**

 [0.000] [0.000] [0.000] 
Q(20) 38.899** 35.157** 35.373**

 [0.001] [0.002] [0.002] 
Notes: Standard errors and p-values are in parentheses and brackets respectively. ** and * indicate 
significant at 5 and 10 percent significance level respectively. ln(L) value is the maximized value of the log 
likelihood function, and AIC is the Akaike (1974) Information criteria. J-B refers to Jarque-Bera normality 
test. The ARCH(5) denotes the ARCH test statistic with lag 5 while the Q(20) is the Ljung-Box test statistic 
for standardized residuals.  

                                                 
1 The authors would like to thank the referee for the suggestion of estimating the ARFIMA (r,d,s) by 
extending the r and s to 3 instead of 2 to ensure that the minimum AIC is selected. The AIC values for 
various r and s are reported in Appendix A.  
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Nevertheless, the residuals are mostly negatively skewed, implying that the 
distribution is non symmetric. The J–B test statistics also reveal that the residuals appear 
to be leptokurtic. Moreover, the ARCH statistics are highly significant, indicating the 
existence of ARCH effects in the standardized residuals. The significant Q-statistics 
denote that the residuals are not independent. These statistics signify the limitations of 
building the ARFIMA model in the return series and signal the importance of testing the 
existence of long memory in volatility.  
 
 

3.2. Estimating ARFIMA-GARCH-type Models2

 
Table 3 and Table 4 provide the estimation results of the ARFIMA-FIGARCH and 
ARFIMA-FIAPARCH models assuming normal and Student-t innovations’ distributions3.  

 
 

3.2.1. ARFIMA-FIGARCH 
 
As shown in Table 3, the parameter d remains significant revealing the presence of long 
memory in return series. For the volatility component, the long memory parameters, (ξs), 
ranging from 0.445 to 0.484, are all significant at 5 percent significance level, indicating 
the long-range memory phenomenon for volatilities. The existence of long memory in 
both return and volatility contradicts the efficient market hypothesis of Fama (1970) that 
the future return and volatility values are unpredictable.   
 
 

Besides, the estimates of fat-tailed parameter ν, ranging from 5.435 to 5.529, are 
statistically significant at the 5 percent level suggesting the usefulness of Student-t 
distribution in modeling the leptokurtosis of estimated residuals. With reference to the 
log-likelihood and the AIC as well as Pearson goodness-of-fit test statistics, P(60), the 
ARFIMA-FIGARCH models with Student-t distributed innovations performs better than 
those with normal distributions.  
 
 
 
 
 
 
 
 
 

                                                 
2 The results of ARFIMA(2,d,2)-GARCH(1,1) are not reported but available upon request. In general, the 
results show that the sum of the estimates of α1 and β1 is close to one, indicating that the volatility process 
is highly persistent.  
3 This study shows the results based on the normal and Student-t distributions only. The estimation results 
based on skewed Student-t distribution are not reported given that the ln(k) is not statistically significant for 
all models considered. 
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Table 3. Estimation Results of ARFIMA-FIGARCH Models 

 A: Sub-Period I B: Sub-Period II C: Overall Period 
 Normal Student-t  Normal Student-t  Normal Student-t  
μ 0.051* 0.039 0.043 0.028 0.056** 0.041*

 (0.029) (0.026) (0.030) (0.026) (0.027) (0.024) 
ψ1 -0.865** -0.867** -0.864** -0.866** -0.863** -0.866**

 (0.024) (0.034) (0.027) (0.035) (0.029) (0.039) 
ψ2 -0.403** -0.388** -0.399** -0.387** -0.399** -0.388**

 (0.027) (0.044) (0.029) (0.042) (0.029) (0.044) 
d 0.088** 0.077** 0.090** 0.081** 0.086** 0.077**

 (0.026) (0.024) (0.027) (0.023) (0.025) (0.021) 
θ1 0.942** 0.928** 0.939** 0.918** 0.943** 0.922**

 (0.033) (0.039) (0.035) (0.040) (0.035) (0.043) 
θ2 0.438** 0.410** 0.423** 0.402** 0.433** 0.411**

 (0.034) (0.048) (0.037) (0.047) (0.035) (0.048) 
ω 1.765 2.869 2.778 2.803 2.210 2.210 
 (1.299) (3.481) (2.212) (2.510) (1.624) (1.704) 
α 0.067 0.154 -0.073 0.063 -0.073 0.014 
 (0.184) (0.223) (0.128) (0.187) (0.124) (0.161) 
β 0.351 0.458 0.268** 0.362 0.261** 0.311 
 (0.216) (0.308) (0.131) (0.242) (0.130) (0.202) 
ξ 0.445** 0.484** 0.476** 0.466** 0.464** 0.448**

 (0.073) (0.136) (0.070) (0.094) (0.061) (0.073) 
ν  5.529**  5.435**  5.518**

  (0.644)  (0.543)  (0.528) 
ln(L) -2983.20 -2921.77 -3341.83 -3261.01 -3739.89 -3655.50 
AIC 2.604 2.551 2.677 2.613 2.625 2.567 
Qs(20) 15.257 16.279 8.452 6.960 8.650 6.882 
 [0.644] [0.573] [0.971] [0.990] [0.967] [0.991] 
ARCH(5) 0.493 0.573 0.255 0.114 0.255 0.081 
 [0.782] [0.721] [0.937] [0.989] [0.937] [0.995] 
P(60) 122.218** 60.261 132.885** 56.495 145.331** 60.487 
 [0.000] [0.430] [0.000] [0.568] [0.000] [0.422] 
RBD(5) 2.916 8.791 5.453 2.156 7.290 2.233 
 [0.713] [0.118] [0.363] [0.827] [0.200] [0.816] 
Notes:  d and ξ are the long memory parameters for return and volatility process respectively.  Standard 
errors and p-values are in parentheses and brackets respectively. ** and * indicate significant at 5 and 10 
percent significance level respectively. ln(L) value is the maximized value of log likelihood function, and 
AIC is the Akaike (1974) Information criteria. The Qs(20) is the Ljung-Box test statistic for square 
standardized residuals while the ARCH(5) denotes the ARCH test statistic with lag 5.  P(60) is the Pearson 
goodness-of-fit statistic for 60 cells and RBD(5) represents the RBD statistics with the embedding 
dimension m = 5.   
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3.2.2. ARFIMA-FIAPARCH 
 
 

The estimation results of ARFIMA–FIAPARCH model under the normal and 
Student-t distributions are reported in Table 4. The values of fractionally differencing 
parameters (d and ξ) are significantly different from zero, indicating the existence of dual 
long memory process. However, the results do not find the strong evidence that the long 
range dependence volatility is more prevalent when the crisis periods are included.  

 
Consistent with the ARFIMA-FIGARCH models, the Student-t distribution 

provides the best representation than the normal one, given the significant tail parameter 
(ν), ranging from 5.827 to 6.066 at 5 percent significant level. The insignificant 
diagnostic statistics, for instance, the Qs(20), ARCH(5), P(60), RBD(5), also further 
confirm the selection of Student-t distribution to capture time-varying volatility.  

 
Additionally, there is a strong evidence of volatility asymmetry since the (δ) 

parameters are statistically significant with all the innovation’s distributions. In addition, 
the asymmetric coefficients (γ) are positive and significant in all sub-periods and overall 
period. In particular, by referring to the Student-t distribution, these γs increased from 
0.235 (Sub-Period I) to 0.289 (Sub-period II) and then reduced to 0.250 (Overall Period). 
Given the significant asymmetric coefficients, the results suggest that bad news have a 
larger impact of volatility than good news of the similar magnitude, especially when the 
crisis periods are included, and thus, support the presence of a “leverage effect”. It is not 
surprising as following the burst of the sub-prime crisis of 2007, a series of bad news has 
caused the U.S. stock price index to plunged from 13930 (2007:10) to as low as 9325 
(2008:10) points and most of the worldwide stock markets followed, resulting in a 
downturn in their stock markets.  

 
In fact, Awartani and Corradi (2005) and Evans and McMillan (2007) also found 

that GARCH-class of models that do not allow for asymmetries in the volatility process 
are beaten by asymmetric GARCH models. As seen in the tables, according to the AIC, 
the ARFIMA-FIAPARCH models fit the return series better than the ARFIMA-
FIGARCH models.   
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Table 4. Estimation Results of ARFIMA-FIAPARCH Models 
 A: Sub-Period I B: Sub-Period II C: Overall Period 
 Normal Student-t  Normal Student-t  Normal Student-t  
μ 0.010 0.015 0.000 0.000 0.020 0.017 
 (0.033) (0.028) (0.032) (0.028) (0.028) (0.026) 
ψ1 -0.863** -0.866** -0.862** -0.866** -0.861** -0.866**

 (0.017) (0.019) (0.019) (0.020) (0.020) (0.022) 
ψ2 -0.381** -0.387** -0.376** -0.387** -0.380** -0.389**

 (0.032) (0.029) (0.038) (0.030) (0.034) (0.032) 
d 0.092** 0.081** 0.092** 0.088** 0.086** 0.083**

 (0.026) (0.028) (0.024) (0.023) (0.023) (0.021) 
θ1 0.933** 0.925** 0.930** 0.913** 0.934** 0.917**

 (0.029) (0.028) (0.028) (0.028) (0.027) (0.029) 
θ2 0.411** 0.406** 0.398** 0.397** 0.410** 0.407**

 (0.040) (0.038) (0.041) (0.037) (0.038) (0.037) 
ω 5.866** 6.494** 6.540** 6.502** 5.848** 5.570**

 (1.785) (2.191) (2.159) (2.170) (1.783) (1.965) 
α 0.212* 0.237** 0.065 0.165 0.046 0.100 
 (0.128) (0.110) (0.114) (0.109) (0.107) (0.122) 
β 0.547** 0.578** 0.436** 0.513** 0.415** 0.445**

 (0.147) (0.120) (0.114) (0.124) (0.111) (0.144) 
ξ 0.485** 0.507** 0.491** 0.497** 0.480** 0.480**

 (0.059) (0.058) (0.051) (0.052) (0.046) (0.049) 
News, γ 0.286** 0.235** 0.316** 0.289** 0.289** 0.250**

 (0.103) (0.073) (0.096) (0.072) (0.083) (0.065) 
Power, δ 1.185** 1.296** 1.294** 1.360** 1.320** 1.429**

 (0.194) (0.181) (0.186) (0.156) (0.193) (0.183) 
ν  6.066**  5.827**  5.938**

  (0.678)  (0.605)  (0.600) 
ln(L) -2964.01 -2911.16 -3320.58 -3247.65 -3719.47 -3644.12 
AIC 2.589 2.544 2.662 2.604 2.612 2.560 
 2.619 2.576 2.690 2.635 2.637 2.587 
 2.589 2.544 2.662 2.604 2.612 2.560 
 2.600 2.556 2.672 2.615 2.621 2.570 
Qs(20) 19.269 19.830 8.383 8.496 8.760 7.723 
 [0.375] [0.342] [0.972] [0.970] [0.965] [0.982] 
ARCH(5) 1.157 1.181 0.331 0.430 0.318 0.207 
 [0.328] [0.316] [0.894] [0.828] [0.902] [[0.960] 
P(60) 113.658** 63.236 124.307** 60.856 135.419** 56.497 
 [0.000] [0.329] [0.000] [0.409] [0.000] [0.568] 
RBD(5) 7.954 4.695 2.265 -2.003 4.533 0.285 
 [0.159] [0.454] [0.811] [1.000] [0.475] [0.998] 
Note: see Table 3. 
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4.  Conclusions 
 
By using daily stock price index spanning from period 1998:09 to 2009:12, this study has 
investigated the presence of dual long memory property in the Malaysian stock market 
following the U.S. sub-prime crisis in year 2007, using various ARFIMA-G(ARCH)-type 
models. This study also explores the relative importance of the asymmetry and 
distributional assumption in modeling stock return series. Several salient points have 
emerged from the current study. Firstly, the long memory property exists in both the 
return and volatility with and without incorporating the crisis impact. 
 

Secondly, this study found that both ARFIMA-FIGARCH and ARFIMA-
FIAPARCH models fit the data well. However, the FIAPARCH was able to separate the 
impact of good and bad news. Given the significant asymmetric parameter, this study 
supported the leverage effect. In particular, stock volatility is found to be experiencing 
significant leverage effect especially with the inclusion of the impact of crisis. This 
implies that volatility has the tendency to respond to bad news more than good news as 
compared to the other periods under study.  

 
Thirdly, among the various ARFIMA-G(ARCH)-type models with different 

innovation distributions, the Student-t distribution provides better specifications in terms 
of long memory volatility processes. The estimated results with Student-t distribution 
outperform the normal and skewed Student-t in capturing leptokurtosis in residuals, 
which indicates that specifying the error distribution is, as important as, modeling the 
long memory and asymmetric component of return series.  

 
Overall, ARFIMA-FIAPARCH model with Student-t distribution is found to be 

the most appropriate method of presenting the stylized facts of stock return and volatility 
in Malaysia.  
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Appendix 
 

Appendix A. AIC Values for ARFIMA Models with r, s = 0, 1, 2, 3 
 s = 0 s = 1 s = 2 s = 3 

r = 0     
Sub-Period I 3.4217 3.4183 3.4187 3.4132 
Sub-Period II 3.4340 3.4307 3.4304 3.4260 
Overall Period 3.3600 3.3577 3.3577 3.3466 
     
r = 1     
Sub-Period I 3.4188 3.4190 3.4034 3.3983 
Sub-Period II 3.4313 3.4309 3.4170 3.4143 
Overall Period 3.3581 3.3581 3.3397 3.3369 
     
r = 2     
Sub-Period I 3.4176 3.3990 3.3973 3.3976 
Sub-Period II 3.4290 3.4137 3.4129 3.4135 
Overall Period 3.3498 3.3370 3.3358 3.3362 
     
r = 3     
Sub-Period I 3.4122 3.3977 3.3985 3.3981 
Sub-Period II 3.4280 3.4166 3.4173 3.4184 
Overall Period 3.3460 3.3361 3.3367 3.3375 
Note: Numbers in bold are the selected model with minimum AIC. 
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